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Abstract

In this paper we study transition layers in the solutions to the Allen-
Cahn equation in two dimensions. We show that one can construct
an approximate invariant manifold to this equation using a version of
Lyapunov-Schmidt reduction. Given such manifold one can show that
for any straight line segment intersecting the boundary of the domain
orthogonally there exists a solution to the Allen-Cahn equation, whose
transition layer is located near this segment. The last result has been
proven by the author in [12], where the construction of the approximate
invariant manifold relied on formal asymptotic expansion.

1 Introduction

In this paper we consider the following elliptic problem:

ε2∆u+ f(u) = 0 in Ω,

∂nu = 0 on ∂Ω,
(1.1)

where f(u) = u(1−u2), Ω ∈ R2 is a bounded domain with smooth boundary,
ε is a small parameter and ∂n denotes the derivative in the direction of the
outward normal. Equation (1.1) is know as the Allen-Cahn equation and was
introduced in [2] as a model describing the evolution of antiphase boundaries.
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The stationary problem (1.1) and its parabolic counterpart have been a
subject of an extensive research for many years. In order to describe some
of the known results for (1.1) we define the Allen-Cahn functional

J(u) =
∫

Ω
[
ε2

2
|∇u|2 − F (u)], F (u) = −1

4
(1− u2)2.

By PerΩ(A) we denote the perimeter of the set A ⊂ Ω. Intuitively the
gradient flow of J , in the limit as ε → 0, reduces to the gradient flow of
PerΩ. It is known that the gradient flow of PerΩ is simply the motion by
mean curvature of ∂A. Summarizing: transition layers in the Allen-Cahn
flow evolve, as ε → 0, by their mean curvature. We refer the reader to
[16, 5, 7, 8, 9, 17, 10] for more details of this aspect of the problem.

The stationary Allen-Cahn equation was, among others, analyzed in [11].
The authors used Γ-convergence techniques to show that in a neighborhood
of a local, isolated minimizer of PerΩ there exists a local minimizer to the
functional J . They further used this idea to show the existence of stable so-
lutions for (1.1) in two dimensional, non-convex domains, such as a dumbbell
(see also [15]).

In [12] we studied the Allen-Cahn equation in two dimensions and showed
that for any smooth, stationary and nondegenerate solution to the mean
curvature flow there is a corresponding stationary solution to the Allen-
Cahn equation. This result in some sense completes the results described
above as it establishes the connection between functionals J and PerΩ on
the level of their critical points.

Throughout this paper we assume that a curve γ ∈ Ω, our candidate for
an interface, is such that:

(i) the curvature of γ is 0 (γ is a straight line segment);

(ii) γ intersects ∂Ω at exactly two points γ0, γ1 and at those points γ ⊥ ∂Ω;

(iii) γ is nondegenerate in the sense described below (see (1.6) to follow).

In [12] we proved the following:

Theorem 1.1 Let U be the unique heteroclinic solution to

Uηη + f(U) = 0, −∞ < η <∞,

U(±∞) = ±1, U(0) = 0.
(1.2)

Let d(γ;x, y) denote the signed distance of a point (x, y) ∈ Ω to the straight
line that contains γ. For each sufficiently small ε there exists a solution uε
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to (1.1) such that

‖uε(x, y)− U(d(γ;x, y)/ε)‖C0(Ω) ≤ Cε, (1.3)

where C > 0 is independent on ε.

Recently Pacard and Ritoré [14] have proven a generalization of the ex-
istence result presented here. Namely, they showed that any nondegenerate
minimal hypersurfaces in (n+ 1), n ≥ 1, Riemanian manifold is a nodal set
of a solution to the Allen-Cahn equation. The key idea in their approach is
to invert the linearized operator in carefully chosen weighted spaces.

In [12] we also analyzed the Morse index of the solution described in
Theorem 1.1. More precisely we study the following eigenvalue problem:

ε2∆V + f ′(uε)V = −ΛV in Ω,

∂nV = 0 on ∂Ω.
(1.4)

The Morse index of uε is simply the number of negative eigenvalues of (1.4).
To state our result we need to define a geometric eigenvalue problem

that, as we will see, plays an important role in our considerations. Let
κ∂Ω(γi), i = 0, 1 be the curvatures of ∂Ω at the points of intersection with
γ. Consider the following eigenvalue problem

−θss = λθ, 0 < s < |γ|,

θκ∂Ω(γ0) + θs = 0, s = 0,

−θκ∂Ω(γ1) + θs = 0, s = |γ|,

(1.5)

where γ is parameterized by arclength in such a way that s increases from
γ0 to γ1 and ∂Ω is oriented counterclockwise from γ0 to γ1. We say that γ
is non-degenerate if (1.5) does not have a zero eigenvalue. This is equivalent
to the following condition:

κ∂Ω(γ0) + κ∂Ω(γ1)− κ∂Ω(γ0)κ∂Ω(γ1)|γ| 6= 0. (1.6)

We can now state our second theorem.

Theorem 1.2 The Morse index of the solution to (1.1) described in Theo-
rem 1.1 equals the number of negative eigenvalues of (1.5). Moreover for any
k∗ > 0 there exists εk∗ such that, for all ε ∈ (0, εk∗ ], if {Λk}k=1,...,k∗ are the
first k∗ eigenvalues of the linearized problem (1.4) then Λk = λkε

2 + o(ε2),
where {λk}k=1,...,k∗ are the first k∗ eigenvalues of (1.5).
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Remark 1.1 By an explicit calculation one can show that (1.5) has at most
two negative eigenvalues. For example if both curvatures are negative then
the spectrum is positive. In this case γ is a local minimizer of the perimeter
and this situation was treated in [11]. If both curvatures are positive then:

• If 1
κ∂Ω(γ0) + 1

κ∂Ω(γ1) > |γ| then (1.5) has one negative eigenvalue (short
axis case).

• If 1
κ∂Ω(γ0) + 1

κ∂Ω(γ1) < |γ| then (1.5) has two negative eigenvalues (long
axis case).

Obviously, except a degenerate case, any combination of the curvatures gives
rise to one of the three cases described above.

Some key ideas in [12] were motivated by [1]. In this paper the au-
thors considered the dynamics of the mass conserving Allen-Cahn equation.
Starting from a one parameter family of approximate interfaces with con-
stant mean curvature intersecting the boundary they were able to construct
an approximate invariant manifold to the parabolic PDE consisting of small
drops moving along the boundary. Their construction relies on the fact
that the interfaces for the mass conserving Allen-Cahn equation evolve by
volume-preserving mean curvature flow [4].

In [12] the analogous step in the proof of the existence is carried out by
using the formal asymptotic expansion technique. In the present paper we
outline another method of constructing the approximate invariant manifold.
It relies on a version of Lyapunov-Schmidt reduction which, in the context
of the Allen-Cahn equation, we have developed in [6] where we show the
existence of phantom interfaces in 2 dimensions (see also [3], [13]). (Phantom
are solutions to (1.1) with multiple transition layers collapsing onto each
other as ε→ 0).

The author would like to thank Manuel del Pino and Patricio Felmer for
the discussions during the preparation of this paper.

2 Approximate manifold equation

2.1 Change of variables

We can assume that after rotation and scaling γ = {(y1, y2) | y1 = 0, 0 <
y2 < 1}. Let ν > 0 be a fixed number and let Ων = {|y| < ν} ∩ Ω. We
introduce new variables in Ων as follows: assume that ∂Ων ∩∂Ω is expressed
near y2 = 0 (y2 = 1 respectively) as a graph of smooth function y2 = g0(y1)
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(y2 = g1(y1) respectively). Let η be a smooth cut off function such that
η(s) = 1, for |s| < 1 and η(s) = 0 for |s| > 2. Let σ > 0 be a small fixed
number. Set

ζ = y2 − η(y2/σ)g0(y1)− η((1− y2)/σ)[g1(y1)− 1]

We fix ν, σ such that the change of variables (y1, y2) 7→ (y1, ζ) is a smooth
map from Ων to the cylinder Cν = {|y1| < ν, 0 < ζ < 1}. We also introduce
stretched variables x = y1/ε, z = ζ/ε in the stretched cylinder Cν/ε. For
future references we observe that in the new variables:

ε2∆y = ∆x,z +B

where B is a second order differential operator with coefficients of order
O(ε|x|) + O(ε). In particular it is a small perturbation of ∆ provided that
ν is sufficiently small. We also have near z = 0:

ε∂n =
−1 + |g′0(εx)|2

(1 + |g′0(εx)|2)1/2
∂z +

g′0(εx)
(1 + |g′0(εx)|2)1/2

∂x,

with a similar formula near z = 1/ε. We see that ε∂n = ±∂z + b, where the
coefficients of the boundary operator b are of order O(ε|x|). Let φ ∈ H2(0, 1)
be given and consider a function of the form v = v(x − 1

εφ(εz)). Then we
have, say at z = 0:

−∂zv + bv = {[−1 + |g′0(φ(0))|2]φ′(0) + g′0(φ(0))}v′
+O(ε|x− 1

εφ(0)|)v′.

In the sequel we will assume that φ is such that

[−1 + |g′j(φ(ζ))|2]φ′(ζ) + g′j(φ(ζ)) = 0, j, ζ = 0, 1 (2.1)

so that for functions depending on x − 1
εφ(εz) we have that ±∂zv + bv =

O(ε|x − 1
εφ|)v

′. We observe that linearizing (2.1) we obtain the boundary
conditions in (1.5). We also notice that any function φ that satisfies (2.1)
can be uniquely represented as φ(ζ) = φ1 + m1ζ + m0, where φ1 satisfies
the linearized boundary conditions. This is thanks to the non-degeneracy
condition.

2.2 Statement of the problem

Recall that U = U(η) is the heteroclinic solution to (1.2) such that U(±∞) =
±1.
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Let Θk, λk denote the eigenfunctions and eigenvalues of (1.5) and let φ
satisfying (2.1) be given. We set

Zk(x, z) = U ′(x− 1
ε
φ(εz))Θk(εz).

Our goal is to construct a solution to the following problem:

ε2∆u+ f(u) =
∑Kε

k=1 czZk + gε in Ω,

∂nu = hε on ∂Ω.
(2.2)

The unknowns here are: u = u(y, φ), c = {ck}, y = (y1, y2) ∈ Ω. In order to
construct solution to (2.2) we will consider inner, outer and boundary layer
expansion of u. Functions gε = gε(y) and hε = hε(y) come from ’gluing’
approximate solutions in those regions. The above equation is to be valid
for y ∈ Ω, ‖φ‖H2 ≤ Mε, M > 0 large. We take Kε = [1/ε]. We speak
of solution to (2.2) up to exponentially small order if gε = O(e−c/ε) and
hε = O(e−c/ε).

We will first consider the approximate manifold problem in Ων . Switch-
ing to stretched variables we get the following ’interior’ problem

∆u+Bu+ f(u) =
∑Kε

k=1 czZk + gε in Cν/ε,

±∂zu+ bu = hε on for z = 0, 1/ε.
(2.3)

In the rest of this note we concentrate on solving problem (2.3). It is con-
venient to formulate this problem in the infinite strip S = {0 < z < 1/ε}
instead of Cν/ε since the solution to the original problem can be obtained
by taking an appropriate cutoff of the solution in S. We will look for the
solution in the form:

u(x, z) = w(x, z) + ψ(x, z), w(x, z) = U(x− 1
ε
φ(εz)).

We let
Lψ = ∆ψ +Bψ + f ′(w)ψ.

We will introduce notation

N(ψ) = f ′(w)ψ + f(w)− f(w + ψ), R(w) = −∆w −Bw − f(w)

Our problem now is to solve

Lψ = R(w) +
∑Kε

k=1 ckZk +N(ψ) in S,

(±∂z + b)ψ = −(±∂z + b)w on ∂S.
Notice that passing from the solution defined in S to the one defined in Ων

we need to introduce a cut-off version of u, which in turn leads to terms gε

and hε in (2.2), as pointed out earlier.
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2.3 Solving the linear problem

We will state without a proof a Proposition that allows to solve the linearized
problem. We refer the reader to [6] for details.

Proposition 2.1 Consider the following problem

Lv = h+
∑Kε

k=1 ckZk in S,

(±∂z + b)ψ = g on ∂S∫
S vZk = 0, k = 1, . . . ,Kε.

(2.4)

Assume that h ∈ L2(S), g ∈ L2(∂S).
There exists a unique solution to (2.4) in addition satisfying estimate

‖v‖H2(S) ≤ C

‖h‖L2(S) +

(
Kε∑
k=1

c2k‖Zk‖2
L2(S)

)1/2

+ ‖g‖L2(∂S)


where constants ck are determined from the following expression:

ck‖Zk‖2
L2(S) =

∫
S
(Lv − h)Zk

We observe here that ‖Zk‖2
L2(S) = ε−1α0, where α0 =

∫
|U ′|2.

2.4 Boundary layer expansion

We further write ψ = ψ0 +ψ1 where ψ0 is of order O(ε) and corresponds to
a boundary layer term, while ψ1 is of order O(ε3/2). In this section we will
use Proposition 2.1 to solve the following problem for ψ0:

Lψ0 =
∑Kε

k=1 c0kZk, in S

(±∂z + b)ψ0 = −(±∂z + b)w, on ∂S∫
S ψ0Zk = 0, k = 1, . . . ,Kε

(2.5)

In fact the existence of a unique solution to (2.5) is guaranteed from by
Proposition 2.1. We we will compute c0k’s in order to obtain the estimate
for ψ0. We have:

c0kε
−1α0 =

∫
S(Bψ0)Zk +

∫
S [∆Zk + f ′(w)Zk]ψ0

+
∫
∂S [Zk∂zψ0 − ψ0∂zZk]
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Straightforward calculations yield the following estimate:

|c0k| ≤ Cε3/2‖ψ0‖H2(S) + Cε3 (2.6)

where we have taken into account ‖φ‖H2(0,1) ≤Mε. Thus

ε−1
Kε∑
k=1

c20kα0 ≤ Cε‖ψ0‖2
H2(S) + Cε4

which together with the H2 estimate in Proposition 2.1 gives

‖ψ0‖H2(S) ≤ Cε (2.7)

2.5 Solving the problem with homogeneous boundary con-
ditions

We are going to solve the following problem for ψ1:

Lψ1 = R(w) +
∑Kε

k=1 c1kZk +N(ψ0 + ψ1) in S,

(±∂z + b)ψ1 = 0 on ∂S.
(2.8)

Observe that the term
∑Kε

k=1 c0kZk coming from (2.5) and
∑Kε

k=1 c1kZk will at
the end be combined so that we get the solution to (2.2) with ck = c0k +c1k.

We will use Proposition 2.1 to set up a fixed point argument to solve
(2.8). For that we consider a ball BKε3/2 in H2(S), with large K to be
chosen. Assume that v ∈ BKε3/2 . It suffices to show that if ψ1 is a solution
to

Lψ1 = R(w) +
∑Kε

k=1 c1kZk +N(ψ0 + v) in S,

(±∂z + b)ψ1 = 0 on ∂S.

then ψ1 ∈ BKε3/2 . Using Proposition 2.1 we know that ψ1 exists. Further-
more by the H2 estimate we get:

‖ψ1‖H2(S) ≤ C

‖R(w)‖L2(S) +

(
Kε∑
k=1

ε−1α0c
2
1k

)1/2

+ ‖N(ψ0 + v)‖L2(S)


Firstly, we have:

‖R(w)‖L(S) ≤ Cε3/2 (2.9)

Deriving (2.9) is rather straightforward after making use of the explicit form
of w, the operator B and ‖φ‖H2(0,1) ≤Mε.
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Secondly, using the quadratic nature on N(ψ0 + v), Sobolev embedding
and estimate (2.7) we get:

‖N(ψ0 + v)‖L2(S) ≤ C(‖ψ0‖L2(S) + ‖v‖L2(S)) ≤ Kε3 + Cε2.

Finally, we multiply Lψ1 be Zk, k = 1, . . . ,Kε to evaluate c1k’s. The esti-
mate we get is similar to (2.6) since, except for the nonlinear term we are
dealing with the expression of the same type:

|c1k| ≤ Cε3/2‖ψ1‖H2(S) + Cε5/2

hence

ε−1
Kε∑
k=1

c21kα0 ≤ Cε‖ψ0‖2
H2(S) + Cε3

Combining all those estimates we clearly get that map v 7→ ψ1 leaves the
ball BKε3/2 invariant provided that that ε is taken sufficiently small and K
is taken sufficiently large.

We now define u, the solution to (2.2) by:

u = [U(x− 1
ε
φ(εz)) + ψ0 + ψ1]χν + U(

y1

ε
)(1− χν)

where χν is a cutoff function supported in Ω2ν and equal to 1 in Ων . This
ends the construction of the approximate invariant manifold.
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