Practice problems

Problem 1. Show that the following functions form an orthogonal set

- (a) $\sin(2n+1)x$, on the interval $[0, \pi/2]$, n = 0, 1, 2, ...
- (b) $sin((n+\frac{1}{2})x$ on the interval $[-\pi,\pi], n = 0, 1, 2, ...$

Problem 2. Show that a square integrable function f satisfies the Dini's test, i.e.

$$\int_{-\pi}^{\pi} \frac{|f(x+\tau) - f(x)|}{|\tau|} d\tau < \infty$$

if and only if it satisfies

$$\int_{-\pi}^{\pi} \frac{|f(x+\tau) - f(x)|}{|\sin \tau|} d\tau < \infty.$$

Hint: Show that if $|\tau| \leq 1$ it holds

$$\frac{|\sin \tau|}{|\tau|} \le C_1, \quad \text{and} \frac{|\tau|}{|\sin \tau|} \le C_2$$

for certain constants C_1, C_2 .

Problem 3. Give an example of a function which is continuous but *not* Hölder continuous at x = 0. Can you find an example of a function whose Fourier series converges at all points of the interval $(-\pi, \pi)$ which is not Hölder continuous at at least one point. Hint: consider functions of the form $f(x) = \frac{1}{|\log x|^p}$, p > 0.

Problem 4. Use the method of characteristics to solve the following Cauchy problems.

- (a) $2u_x 5u_y = 4$, u(x, 0) = x.
- (b) $u_x + 3u_y = u + 2, u(0, y) = y.$
- (c) $u_x + u_y = 1 u$, subject to the Cauchy condition u = x on y = 2x.
- (d) $u_x 2u_y = u 1$, subject to the Cauchy condition u = 2y on x = ky, giving reasons for any restrictions that must be placed on k.
- (e) $yu_x + x^3u_y = x^3y$, subject to the Cauchy condition $u = x^4$ on $y = x^2$.
- (f) $u_x + 2u_y = u$ given that u(x, 0) = 3x, $x \ge 0$ and $u(0, y) = \sin y$, $y \ge y$.