Practice problems

Problem 1. Show that the following functions form an orthogonal set
(a) $\sin (2 n+1) x$, on the interval $[0, \pi / 2], n=0,1,2, \ldots$.
(b) $\sin \left(\left(n+\frac{1}{2}\right) x\right.$ on the interval $[-\pi, \pi], n=0,1,2, \ldots$

Problem 2. Show that a square integrable function f satisfies the Dini's test, i.e.

$$
\int_{-\pi}^{\pi} \frac{|f(x+\tau)-f(x)|}{|\tau|} d \tau<\infty
$$

if and only if it satisfies

$$
\int_{-\pi}^{\pi} \frac{|f(x+\tau)-f(x)|}{|\sin \tau|} d \tau<\infty
$$

Hint: Show that if $|\tau| \leq 1$ it holds

$$
\frac{|\sin \tau|}{|\tau|} \leq C_{1}, \quad \text { and } \frac{|\tau|}{|\sin \tau|} \leq C_{2}
$$

for certain constants C_{1}, C_{2}.
Problem 3. Give an example of a function which is continuous but not Hölder continuous at $x=0$. Can you find an example of a function whose Fourier series converges at all points of the interval $(-\pi, \pi)$ which is not Hölder continuous at at least one point. Hint: consider functions of the form $f(x)=\frac{1}{|\log x|^{p}}, p>0$.
Problem 4. Use the method of characteristics to solve the following Cauchy problems.
(a) $2 u_{x}-5 u_{y}=4, u(x, 0)=x$.
(b) $u_{x}+3 u_{y}=u+2, u(0, y)=y$.
(c) $u_{x}+u_{y}=1-u$, subject to the Cauchy condition $u=x$ on $y=2 x$.
(d) $u_{x}-2 u_{y}=u-1$, subject to the Cauchy condition $u=2 y$ on $x=k y$, giving reasons for any restrictions that must be placed on k.
(e) $y u_{x}+x^{3} u_{y}=x^{3} y$, subject to the Cauchy condition $u=x^{4}$ on $y=x^{2}$.
(f) $u_{x}+2 u_{y}=u$ given that $u(x, 0)=3 x, x \geq 0$ and $u(0, y)=\sin y, y \geq y$.

