This is a file the includes all of the data obtained from MAGMA for the paper

“A generalization of a theorem of Huppert and Manz” by Mark L. Lewis that appeared in the Journal of Algebra and its Applications.

 

--------------------------------------------------------------------------------

 

Here is the code I used

 

a7 := AlternatingGroup (7);

cta7 := CharacterTable (a7);

lat := SubgroupLattice (a7);

t := [ ];

s := [ ];

for i in [2..9] do

ttemp := [ ];

stemp := [ ];

chi := cta7[i];

for j in [1..39] do

temp := lat[j];

tct := CharacterTable (temp);

tchi := Restriction (chi,temp);

ttemp[j] := InnerProduct (tchi,tct[1]);

if ttemp[j] gt 0 then

Append(~stemp,j);

end if;

end for;

t[i] := ttemp;

s[i] := stemp;

end for;

 

--------------------------------------------------------------------------------

 

This gave the following results:  (The numbers correspond to subgroups of

The lattice for A7. 

 

> t;

[

    undef,

    [ 6, 4, 4, 2, 2, 0, 3, 3, 2, 2, 3, 2, 2, 2, 0, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1,

    1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1 ],

    [ 10, 4, 4, 4, 2, 1, 1, 1, 2, 2, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0,

    0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],

    [ 10, 4, 4, 4, 2, 1, 1, 1, 2, 2, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0,

    0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],

    [ 14, 8, 4, 6, 2, 2, 5, 5, 4, 2, 3, 4, 2, 2, 2, 3, 3, 1, 3, 1, 1, 3, 2, 2,

    1, 2, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 0 ],

    [ 14, 8, 6, 4, 2, 2, 5, 5, 4, 4, 4, 3, 2, 2, 0, 3, 1, 3, 1, 3, 2, 1, 3, 2,

    1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0 ],

    [ 15, 7, 7, 5, 3, 3, 3, 3, 3, 3, 3, 2, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1,

    0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0 ],

    [ 21, 11, 5, 7, 5, 3, 6, 6, 5, 3, 3, 4, 1, 3, 1, 3, 2, 0, 2, 2, 1, 2, 2, 1,

    1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],

    [ 35, 17, 11, 11, 7, 5, 8, 8, 9, 5, 5, 5, 3, 3, 1, 4, 2, 2, 2, 2, 3, 2, 2,

    1, 2, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]

]

>            

> s;\

[

    undef,

    [ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22,

    23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39 ],

    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 31

    ],

    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 31

    ],

    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

    22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38 ],

    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22,

    23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36 ],

    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

    22, 23, 24, 27, 31, 33 ],

    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22,

    23, 24, 25, 26, 28, 29, 30, 34 ],

    [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

    22, 23, 24, 25, 26, 27, 28, 29, 30, 32 ]

]

>      

 

--------------------------------------------------------------------------------

 

Here is the lattice for A7:

 

[ 1]  Order 1     Length 1                Maximal Subgroups:
---
[ 2]  Order 2     Length 105  Cyclic      Maximal Subgroups: 1
[ 3]  Order 3     Length 35   Cyclic      Maximal Subgroups: 1
[ 4]  Order 3     Length 140  Cyclic      Maximal Subgroups: 1
[ 5]  Order 5     Length 126  Cyclic      Maximal Subgroups: 1
[ 6]  Order 7     Length 120  Cyclic      Maximal Subgroups: 1
---
[ 7]  Order 4     Length 35   Elem Abel   Maximal Subgroups: 2
[ 8]  Order 4     Length 105  Elem Abel   Maximal Subgroups: 2
[ 9]  Order 4     Length 315  Cyclic      Maximal Subgroups: 2
[10]  Order 6     Length 105  Cyclic      Maximal Subgroups: 2 3
[11]  Order 6     Length 210  Soluble     Maximal Subgroups: 2 3
[12]  Order 6     Length 420  Soluble     Maximal Subgroups: 2 4
[13]  Order 9     Length 70   Elem Abel   Maximal Subgroups: 3 4
[14]  Order 10    Length 126  Soluble     Maximal Subgroups: 2 5
[15]  Order 21    Length 120  Soluble     Maximal Subgroups: 4 6
---
[16]  Order 8     Length 315  Nilpotent   Maximal Subgroups: 7 8 9
[17]  Order 12    Length 35   Soluble     Maximal Subgroups: 4 7
[18]  Order 12    Length 35   Soluble     Maximal Subgroups: 3 7
[19]  Order 12    Length 35   Soluble     Maximal Subgroups: 4 7
[20]  Order 12    Length 35   Abelian     Maximal Subgroups: 7 10
[21]  Order 12    Length 105  Soluble     Maximal Subgroups: 9 10
[22]  Order 12    Length 105  Soluble     Maximal Subgroups: 4 8
[23]  Order 12    Length 105  Soluble     Maximal Subgroups: 8 10 11
[24]  Order 18    Length 70   Soluble     Maximal Subgroups: 11 12 13
[25]  Order 20    Length 126  Soluble     Maximal Subgroups: 9 14
---
[26]  Order 24    Length 105  Soluble     Maximal Subgroups: 12 16 17
[27]  Order 24    Length 105  Soluble     Maximal Subgroups: 11 16 18
[28]  Order 24    Length 105  Soluble     Maximal Subgroups: 16 20 21 23
[29]  Order 24    Length 105  Soluble     Maximal Subgroups: 12 16 22
[30]  Order 24    Length 105  Soluble     Maximal Subgroups: 12 16 19
[31]  Order 36    Length 35   Soluble     Maximal Subgroups: 13 17 18 19 20
[32]  Order 36    Length 70   Soluble     Maximal Subgroups: 9 24
[33]  Order 60    Length 21   Simple      Maximal Subgroups: 11 14 18
[34]  Order 60    Length 42   Simple      Maximal Subgroups: 12 14 22
---
[35]  Order 72    Length 35   Soluble     Maximal Subgroups: 24 26 27 28 30 31
[36]  Order 120   Length 21   Nonsolvable Maximal Subgroups: 23 25 27 33
[37]  Order 168   Length 15   Simple      Maximal Subgroups: 15 26 29
[38]  Order 168   Length 15   Simple      Maximal Subgroups: 15 29 30
---
[39]  Order 360   Length 7    Simple      Maximal Subgroups: 27 29 32 33 34
---
[40]  Order 2520  Length 1    Simple      Maximal Subgroups: 35 36 37 38 39
 

--------------------------------------------------------------------------------

 

Finally, we include the character table for A7:

 

Character Table of Group a7

---------------------------

 

 

---------------------------------------------

Class |    1   2  3   4   5   6   7    8    9

Size  |    1 105 70 280 630 504 210  360  360

Order |    1   2  3   3   4   5   6    7    7

---------------------------------------------

p  =  2    1   1  3   4   2   6   3    8    9

p  =  3    1   2  1   1   5   6   2    9    8

p  =  5    1   2  3   4   5   1   7    9    8

p  =  7    1   2  3   4   5   6   7    1    1

---------------------------------------------

X.1   +    1   1  1   1   1   1   1    1    1

X.2   +    6   2  3   0   0   1  -1   -1   -1

X.3   0   10  -2  1   1   0   0   1   Z1 Z1#3

X.4   0   10  -2  1   1   0   0   1 Z1#3   Z1

X.5   +   14   2 -1   2   0  -1  -1    0    0

X.6   +   14   2  2  -1   0  -1   2    0    0

X.7   +   15  -1  3   0  -1   0  -1    1    1

X.8   +   21   1 -3   0  -1   1   1    0    0

X.9   +   35  -1 -1  -1   1   0  -1    0    0

 

 

Explanation of Symbols:

-----------------------

 

# denotes algebraic conjugation, that is,

#k indicates replacing the root of unity w by w^k

 

Z1     = (CyclotomicField(7:Sparse := true)) ! [ RationalField() | 0, 1, 1, 0,

1, 0 ]