Mark L. Lewis

Kent State University

May 23, 2010

OSU-Denison Conference 2010

(Joint work with J. P. Cossey – University of Akron)

• Throughout G will be a finite group and p will be a prime.

- Throughout G will be a finite group and p will be a prime.
- $\mathrm{IBr}(G)$ is the set of irreducible *p*-Brauer characters of G.

- Throughout G will be a finite group and p will be a prime.
- $\mathrm{IBr}(G)$ is the set of irreducible p-Brauer characters of G.
- G° denotes the p-regular elements of G. If χ is a character of G, then we use χ^o to denote the restriction of χ to G^o .

- Throughout G will be a finite group and p will be a prime.
- $\mathrm{IBr}(G)$ is the set of irreducible p-Brauer characters of G.
- G^o denotes the p-regular elements of G. If χ is a character of G, then we use χ^o to denote the restriction of χ to G^o .

Definition

Given a p-Brauer character $\varphi \in \mathrm{IBr}(G)$, we say $\chi \in \mathrm{Irr}(G)$ is a lift of φ if $\chi^o = \varphi$.

- Throughout G will be a finite group and p will be a prime.
- IBr(G) is the set of irreducible *p*-Brauer characters of G.
- G^o denotes the *p*-regular elements of G. If χ is a character of G, then we use χ^o to denote the restriction of χ to G^o .

Definition

Given a *p*-Brauer character $\varphi \in \mathrm{IBr}(G)$, we say $\chi \in \mathrm{Irr}(G)$ is a *lift* of φ if $\chi^o = \varphi$.

ullet When G is p-solvable, the Fong-Swan theorem implies that φ has a lift.

 Much of the study of lifts has focused on particular canonical sets of lifts.

- Much of the study of lifts has focused on particular canonical sets of lifts.
- J. P. Cossey has initiated the study of all lifts of φ . For example, when |G| is odd, he has shown that the number of lifts of φ can be bounded in terms of a vertex for φ .

- Much of the study of lifts has focused on particular canonical sets of lifts.
- J. P. Cossey has initiated the study of all lifts of φ . For example, when |G| is odd, he has shown that the number of lifts of φ can be bounded in terms of a vertex for φ .
- We will show that the oddness hypothesis in Cossey's results can be removed in certain cases.

• In a p-solvable group G, we say Q is a vertex for $\varphi \in \mathrm{IBr}(G)$ if there is a subgroup U so that φ is induced from a p-Brauer character of U having p'-degree and Q is a Sylow p-subgroup of U.

- In a p-solvable group G, we say Q is a vertex for $\varphi \in \mathrm{IBr}(G)$ if there is a subgroup U so that φ is induced from a p-Brauer character of U having p'-degree and Q is a Sylow p-subgroup of U.
- It is known that all of the vertices for φ are conjugate in G.

- In a p-solvable group G, we say Q is a vertex for $\varphi \in \mathrm{IBr}(G)$ if there is a subgroup U so that φ is induced from a p-Brauer character of U having p'-degree and Q is a Sylow p-subgroup of U.
- It is known that all of the vertices for φ are conjugate in G.
- Cossey showed that if |G| is odd and Q is a vertex for φ , then the number of lifts of φ is at most |Q:Q'|.

We now remove the hypothesis that |G| is odd.

However, we do need to add some hypotheses:

- G is p-solvable
- p is an odd prime
- Q is abelian

We now remove the hypothesis that |G| is odd.

However, we do need to add some hypotheses:

- G is p-solvable
- p is an odd prime
- Q is abelian

$\mathsf{Theorem}$

Let G be a p-solvable group and let p be an odd prime. If $\varphi \in \mathrm{IBr}(G)$ has abelian vertex Q, then the number of lifts of φ is at most |Q|.

We use the generalized vertices defined by Cossey. To do this, we need p-factored characters.

We use the generalized vertices defined by Cossey. To do this, we need p-factored characters.

• A character $\chi \in Irr(G)$ is *p*-factored if $\chi = \alpha\beta$ where α is p-special and β is p'-special.

We use the generalized vertices defined by Cossey. To do this, we need p-factored characters.

- A character $\chi \in Irr(G)$ is p-factored if $\chi = \alpha\beta$ where α is p-special and β is p'-special.
- Let $\chi \in Irr(G)$. Then (Q, δ) is a generalized vertex for χ if there is a subgroup U with a p-factored character $\psi \in Irr(U)$ and Sylow *p*-subgroup *Q* of *U* so that $\psi^{G} = \chi$ and δ is the restriction to Q of the p-special factor of ψ .

Since any primitive irreducible character of a p-solvable group is p-factored and p-special characters restrict irreducibly to a Sylow p-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

Since any primitive irreducible character of a p-solvable group is p-factored and p-special characters restrict irreducibly to a Sylow p-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

$\mathsf{Theorem}$

(Cossey) Suppose |G| is odd and $\chi \in Irr(G)$. Let (Q, δ) be a generalized vertex for χ . If $\chi^0 \in \mathrm{IBr}(G)$, then

Since any primitive irreducible character of a p-solvable group is p-factored and p-special characters restrict irreducibly to a Sylow p-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

$\mathsf{Theorem}$

(Cossey) Suppose |G| is odd and $\chi \in Irr(G)$. Let (Q, δ) be a generalized vertex for χ . If $\chi^0 \in \mathrm{IBr}(G)$, then

 \bullet δ is linear

Since any primitive irreducible character of a p-solvable group is p-factored and p-special characters restrict irreducibly to a Sylow p-subgroup, all characters have generalized vertices.

However, for a general irreducible character χ , it seems unlikely that one can say anything useful about the set of all generalized vertices for χ .

Theorem

(Cossey) Suppose |G| is odd and $\chi \in Irr(G)$. Let (Q, δ) be a generalized vertex for χ . If $\chi^0 \in IBr(G)$, then

- \bullet δ is linear
- 2 all generalized vertices for χ are conjugate to (Q, δ) .

Again, we will remove the hypothesis that |G| is odd.

We do need to assume that p is odd.

Again, we will remove the hypothesis that |G| is odd.

We do need to assume that p is odd.

To get δ linear, we use a recent theorem of Navarro:

$\mathsf{Theorem}$

(Navarro) Let G be a p-solvable group for odd prime p. Let $\chi \in \operatorname{Irr}(G)$ be p-special. If $\chi(1) > 1$, then χ° is not in $\operatorname{IBr}(G)$.

Again, we will remove the hypothesis that |G| is odd.

We do need to assume that p is odd.

To get δ linear, we use a recent theorem of Navarro:

$\mathsf{Theorem}$

(Navarro) Let G be a p-solvable group for odd prime p. Let $\chi \in \operatorname{Irr}(G)$ be p-special. If $\chi(1) > 1$, then χ° is not in $\operatorname{IBr}(G)$.

Note: this theorem is not true if p = 2.

As a corollary to Navarro's result, we obtain the following:

Corollary

Let G be a p-solvable group where p is an odd prime. If $\chi \in \operatorname{Irr}(G)$ satisfies $\chi^{\circ} \in \operatorname{IBr}(G)$ and has generalized vertex (Q, δ) , then δ is linear.

As a corollary to Navarro's result, we obtain the following:

Corollary

Let G be a p-solvable group where p is an odd prime. If $\chi \in \operatorname{Irr}(G)$ satisfies $\chi^o \in \operatorname{IBr}(G)$ and has generalized vertex (Q, δ) , then δ is linear.

Notice that Q is now a vertex for χ^o .

As a corollary to Navarro's result, we obtain the following:

Corollary

Let G be a p-solvable group where p is an odd prime. If $\chi \in \operatorname{Irr}(G)$ satisfies $\chi^o \in \operatorname{IBr}(G)$ and has generalized vertex (Q, δ) , then δ is linear.

Notice that Q is now a vertex for χ^o .

If p=2, this corollary is not true. In $GL_2(3)$, there is a counterexample.

We now prove:

Theorem

Let G be a p-solvable group and p an odd prime. If $\chi \in Irr(G)$ with $\chi^{o} \in \mathrm{IBr}(G)$, then all the generalized vertices for χ are conjugate.

We now prove:

$\mathsf{Theorem}$

Let G be a p-solvable group and p an odd prime. If $\chi \in Irr(G)$ with $\chi^{o} \in \mathrm{IBr}(G)$, then all the generalized vertices for χ are conjugate.

When p = 2, the theorem is not true.

Now, we return to our original question of counting the number of lifts of a given Brauer character $\varphi \in \mathrm{IBr}(G)$.

Counting lifts

Now, we return to our original question of counting the number of lifts of a given Brauer character $\varphi \in \mathrm{IBr}(G)$.

The main work is to count the number of lifts of φ with a given generalized vertex.

Counting lifts

Now, we return to our original question of counting the number of lifts of a given Brauer character $\varphi \in \mathrm{IBr}(G)$.

The main work is to count the number of lifts of φ with a given generalized vertex.

$\mathsf{Theorem}$

Assume that G is a p-solvable group and p is an odd prime. Suppose that $\varphi \in \mathrm{IBr}(G)$ has vertex subgroup Q that is abelian, and let $\delta \in \operatorname{Irr}(Q)$. Then $|L_{\varphi}(Q,\delta)| \leq |N_{G}(Q):N_{G}(Q,\delta)|$.

Counting lifts

We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is G-conjugate to (Q, δ_i) for some i. Thus, $|L_{\varphi}| = \sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)|$.

We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is *G*-conjugate to (Q, δ_i) for some *i*. Thus, $|L_{\omega}| = \sum_{i=1}^{k} |L_{\omega}(Q, \delta_i)|$.

Applying the count for the generalized vertices:

$$\sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)| \leq \sum_{i=1}^{k} |N_{G}(Q) : N_{G}(Q, \delta_i)|.$$

Counting lifts

We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is G-conjugate to (Q, δ_i) for some i. Thus, $|L_{\varphi}| = \sum_{i=1}^{k} |L_{\varphi}(Q, \delta_i)|$.

Applying the count for the generalized vertices:

$$\textstyle\sum_{i=1}^k |L_\varphi(Q,\delta_i)| \leq \textstyle\sum_{i=1}^k |\operatorname{N}_G(Q) : \operatorname{N}_G(Q,\delta_i)|.$$

Finally, counting the sizes of the orbits of $N_G(Q)$ on the linear characters of Q, we obtain $\sum_{i=1}^{k} |N_G(Q) : N_G(Q, \delta_i)| = |Q|$.

Mark L. Lewis Kent State University

Counting lifts

We use the count on the number of lifts of φ with a given generalized vertex to get the bound on the total number of lifts of φ :

Take $\delta_1, \ldots, \delta_k$ to be representatives of the $N_G(Q)$ orbits of the characters of Q.

One can show that every generalized vertex for a lift of φ is *G*-conjugate to (Q, δ_i) for some *i*. Thus, $|L_{i,j}| = \sum_{i=1}^{k} |L_{i,j}(Q, \delta_i)|$.

Applying the count for the generalized vertices:

$$\textstyle\sum_{i=1}^k |L_{\varphi}(Q,\delta_i)| \leq \sum_{i=1}^k |\operatorname{N}_G(Q) : \operatorname{N}_G(Q,\delta_i)|.$$

Finally, counting the sizes of the orbits of $N_G(Q)$ on the linear characters of Q, we obtain $\sum_{i=1}^{k} |N_G(Q) : N_G(Q, \delta_i)| = |Q|$.

Combining: $|L_{\omega}| \leq |Q|$. (As desired.)

Mark L. Lewis Kent State University

We would like to remove the hypothesis that Q is abelian.

We would like to remove the hypothesis that Q is abelian.

The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .

We would like to remove the hypothesis that Q is abelian.

The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .

In working by induction, we find a proper subgroup I that contains Q and has Brauer characters that induce φ .

Kent State University

We would like to remove the hypothesis that Q is abelian.

The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .

In working by induction, we find a proper subgroup I that contains Q and has Brauer characters that induce φ .

We find a Brauer character ζ of I that induces φ and has vertex Q.

Mark L. Lewis Kent State University We would like to remove the hypothesis that Q is abelian.

The point where Q is abelian is needed is in counting the number of lifts of φ with vertex (Q, δ) .

In working by induction, we find a proper subgroup I that contains Q and has Brauer characters that induce φ .

We find a Brauer character ζ of I that induces φ and has vertex Q.

By the inductive hypothesis, we know that $|L_{\mathcal{C}}(Q,\delta)| \leq |N_{I}(Q):N_{I}(Q,\delta)|.$

Mark L. Lewis Kent State University In this particular case, we can show that $N_I(Q,\delta) = N_G(Q,\delta)$. The result follows if we can show that the number of Brauer characters in I with vertex Q that induce φ is at most $|N_G(Q):N_I(Q)|$.

In this particular case, we can show that $N_I(Q,\delta) = N_G(Q,\delta)$. The result follows if we can show that the number of Brauer characters in I with vertex Q that induce φ is at most $|N_G(Q):N_I(Q)|$.

When Q is abelian, we can show that this occurs in our situation.

An open question

Hence, we ask the follow question:

Hence, we ask the follow question:

Vertices

Question:

Let G be a p-solvable group. Suppose $\varphi \in \mathrm{IBr}(G)$ has vertex Q. Suppose $Q \leq I \leq G$. Is it true that the number of characters in $\mathrm{IBr}(I)$ with vertex Q that induce φ is at most $|\mathrm{N}_G(Q):\mathrm{N}_I(Q)|$?

Hence, we ask the follow question:

Question:

Let G be a p-solvable group. Suppose $\varphi \in \mathrm{IBr}(G)$ has vertex Q. Suppose $Q \leq I \leq G$. Is it true that the number of characters in $\operatorname{IBr}(I)$ with vertex Q that induce φ is at most $|\operatorname{N}_G(Q):\operatorname{N}_I(Q)|$?

If the answer is yes, when p is odd, then we can remove the hypothesis that Q is abelian.

Mark I Lewis Kent State University

An open question

Hence, we ask the follow question:

Question:

Let G be a p-solvable group. Suppose $\varphi \in \mathrm{IBr}(G)$ has vertex Q. Suppose $Q \leq I \leq G$. Is it true that the number of characters in $\mathrm{IBr}(I)$ with vertex Q that induce φ is at most $|\mathrm{N}_G(Q):\mathrm{N}_I(Q)|$?

If the answer is yes, when p is odd, then we can remove the hypothesis that Q is abelian.

We have not been able to settle this question at this time.

Mark L. Lewis Kent State University

Interestingly, the question does have a positive answer when |G| is odd or when p = 2.

Interestingly, the question does have a positive answer when |G| is odd or when p=2.

Also, when p is odd, we can prove that if G is a minimal counterexample, then I is a maximal subgroup, |G:I| is a power of 2, and φ restricts homogeneously to every normal subgroup of G contained in 1. Furthermore, writing N for the core of 1 in G and M for a normal subgroup of G so that M/N is a chief factor of G, if α is the irreducible constituent of φ_N , then α^M has a unique irreducible constituent.

Mark I Lewis Kent State University