< 17 >

Kent State University

Bounding an index by the largest character degree of a solvable group

Mark L. Lewis

Kent State University

May 28, 2011

Zassenhaus Group Theory Conference 2011

Mark L. Lewis

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

• Throughout G will be a finite group and p will be a prime.

Mark L. Lewis

Kent State University

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

- Throughout G will be a finite group and p will be a prime.
- Irr(G) is the set of irreducible characters of G and $cd(G) = \{\chi(1) \mid \chi \in Irr(G)\}$ are the character degrees of G.

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

- Throughout G will be a finite group and p will be a prime.
- Irr(G) is the set of irreducible characters of G and $cd(G) = \{\chi(1) \mid \chi \in Irr(G)\}$ are the character degrees of G.
- We write b(G) for the largest irreducible character degree of G.
 I.e., b(G) = max{a | a ∈ cd(G)}.

Kent State University

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

- Throughout G will be a finite group and p will be a prime.
- Irr(G) is the set of irreducible characters of G and $cd(G) = \{\chi(1) \mid \chi \in Irr(G)\}$ are the character degrees of G.
- We write b(G) for the largest irreducible character degree of G.
 I.e., b(G) = max{a | a ∈ cd(G)}.
- We investigate the relationship between |G : O_p(G)|_p and b(G).

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

 In "Character Theory of Finite Groups," Isaacs proves in Theorem 12.29 that if b(G) < p, then |G: O_p(G)|_p < p.

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

- In "Character Theory of Finite Groups," Isaacs proves in Theorem 12.29 that if b(G) < p, then |G : O_p(G)|_p < p.
- In Theorem 12.32, he proves if $b(G) < p^{3/2}$, then $|G: \mathbf{O}_p(G)|_p < p^2$.

Image: A math a math

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

- In "Character Theory of Finite Groups," Isaacs proves in Theorem 12.29 that if b(G) < p, then |G : O_p(G)|_p < p.
- In Theorem 12.32, he proves if $b(G) < p^{3/2}$, then $|G : \mathbf{O}_p(G)|_p < p^2$.
- Motivated by these results, Benjamin proved that if G is p-solvable and $b(G) < p^2$, then $|G : \mathbf{O}_p(G)|_p < p^2$.

Image: A math a math

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
In the second section.			
Introduction			

- In "Character Theory of Finite Groups," Isaacs proves in Theorem 12.29 that if b(G) < p, then |G : O_p(G)|_p < p.
- In Theorem 12.32, he proves if $b(G) < p^{3/2}$, then $|G: \mathbf{O}_p(G)|_p < p^2$.
- Motivated by these results, Benjamin proved that if G is p-solvable and $b(G) < p^2$, then $|G : \mathbf{O}_p(G)|_p < p^2$.
- Benjamin also proved that if G is solvable, then $|G : \mathbf{O}_{p}(G)|_{p} \leq (b(G))^{2}$. If in addition |G| is odd, then $|G : \mathbf{O}_{p}(G)|_{p} \leq b(G)$.

Image: A math a math

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

• Qian proved that if G is any group and $b(G) < p^2$, then $|G : \mathbf{O}_p(G)|_p < p^2$.

Image: A mathematical states and a mathem

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

• Qian proved that if G is any group and $b(G) < p^2$, then $|G : \mathbf{O}_p(G)|_p < p^2$.

• Qian and Shi also proved that if G is any group, then $|G : \mathbf{O}_p(G)|_p \le (b(G))^2$. If G has an abelian Sylow *p*-subgroup, then $|G : \mathbf{O}_p(G)|_p \le b(G)$.

Kent State University

Mark L. Lewis

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
Introduction			

Recently, Jafari showed that if G is solvable and G does not have a section isomorphic to Z_p ≥ Z_p, then |G : O_p(G)|_p ≤ b(G).

< □ > < 同 >

3 →

Introduction	Our results	Solvable groups	<i>p</i> -solvable groups
In the design of the second			
Introduction			

Recently, Jafari showed that if G is solvable and G does not have a section isomorphic to Z_p ≥ Z_p, then |G : O_p(G)|_p ≤ b(G).

- Corollary:
 - **1** If G is solvable and $b(G) < p^p$, then $|G : \mathbf{O}_p(G)|_p \le b(G)$.
 - ② If G is solvable and a Sylow p-subgroup has nilpotence class at most p, then |G : O_p(G)|_p ≤ b(G).

Mark L. Lewis

Image: A math a math

	Our results	Solvable groups	<i>p</i> -solvable groups
Our results			

Using Jafari's argument, we proved the following results.

Mark L. Lewis

Kent State University

< 17 >

Using Jafari's argument, we proved the following results.

Theorem

Let G be a p-solvable group and let p be an odd prime that is not a Mersenne prime. Then $|G : \mathbf{O}_p(G)|_p \leq b(G)$.

Mark L. Lewis

Kent State University

< 17 ▶

Using Jafari's argument, we proved the following results.

Theorem

Let G be a p-solvable group and let p be an odd prime that is not a Mersenne prime. Then $|G : \mathbf{O}_p(G)|_p \leq b(G)$.

Theorem

Let G be a p-solvable group and suppose that G does not have a section isomorphic to $z_p \wr Z_p$. Then $|G : \mathbf{O}_p(G)_p \leq b(G)$.

Mark L. Lewis

Image: A math a math

These theorems are not true if we remove the hypothesis that either p is not a Mersenne prime or have a section that is isomophic to $Z_p \wr Z_p$.

< □ > < 同 >

These theorems are not true if we remove the hypothesis that either p is not a Mersenne prime or have a section that is isomophic to $Z_p \wr Z_p$.

In particular, when p is a Mersenne prime, there exists a solvable group G with $b(G) = p^p$ and $|G : \mathbf{O}_p(G)|_p = p^{p+1}$.

Image: A math a math

These theorems are not true if we remove the hypothesis that either p is not a Mersenne prime or have a section that is isomophic to $Z_p \wr Z_p$.

In particular, when p is a Mersenne prime, there exists a solvable group G with $b(G) = p^p$ and $|G : \mathbf{O}_p(G)|_p = p^{p+1}$.

When f is a Fermat prime, there exists a group G with $b(G) = 2^{2f}$ and $|G : \mathbf{O}_2(G)|_2 = 2^{2f+1}$.

Mark L. Lewis

・ロン ・回 ・ ・ ヨン・

	Our results	Solvable groups	<i>p</i> -solvable groups
Our results			

Mark L. Lewis

< ≣ ► ≣ •∕) ৭ ে Kent State University

・ロト ・回 ト ・ ヨト ・

	Our results	Solvable groups	<i>p</i> -solvable groups
Our results			

Theorem

Let G be a p-solvable group. Then $|G: \mathbf{O}_p(G)|_p \leq (b(G)^p/p)^{1/(p-1)}.$

Mark L. Lewis

Kent State University

< A

	Our results	Solvable groups	<i>p</i> -solvable groups
Our results			

Theorem

Let G be a p-solvable group. Then $|G: \mathbf{O}_p(G)|_p \leq (b(G)^p/p)^{1/(p-1)}.$

Note that if $b(G) = p^p$, then $(b(G)^p/p)^{1/(p-1)} = p^{p+1}$. Thus, our first example shows that this bound is best possible when G is *p*-solvable.

	Our results	Solvable groups	<i>p</i> -solvable groups
Our results			

Theorem

Let G be a p-solvable group. Then $|G: \mathbf{O}_p(G)|_p \leq (b(G)^p/p)^{1/(p-1)}.$

Note that if $b(G) = p^p$, then $(b(G)^p/p)^{1/(p-1)} = p^{p+1}$. Thus, our first example shows that this bound is best possible when G is *p*-solvable.

Kent State University

We have not worked to see if we can remove the *p*-solvable hypothesis.

We now outline the arguments in our proofs. We begin by looking at how to prove the results when G is solvable.

We now outline the arguments in our proofs. We begin by looking at how to prove the results when G is solvable.

This first lemma is essentially a known result.

Lemma

Let P be a p-group, and assume that P acts faithfully and coprimely on an abelian group V. Assume one of the following conditions:

- p is odd and not a Mersenne prime.
- 2 $Z_p \wr Z_p$ is not a section of P.

Then P has a regular orbit on V.

Theorem

Let G be a solvable group. Assume either p is an odd prime that is not a Mersenne prime or that G does not have a section isomorphic to $Z_p \wr Z_p$. Then $|G : \mathbf{O}_p(G)|_p \le b(G)$.

Mark L. Lewis

Kent State University

< A

Theorem

Let G be a solvable group. Assume either p is an odd prime that is not a Mersenne prime or that G does not have a section isomorphic to $Z_p \wr Z_p$. Then $|G : \mathbf{O}_p(G)|_p \le b(G)$.

Outline of proof: Take G to be a counterexample with |G| minimal. We may assume $\mathbf{O}_{p}(G) = 1$.

Mark L. Lewis

< 17 >

Theorem

Let G be a solvable group. Assume either p is an odd prime that is not a Mersenne prime or that G does not have a section isomorphic to $Z_p \wr Z_p$. Then $|G : \mathbf{O}_p(G)|_p \le b(G)$.

Outline of proof: Take G to be a counterexample with |G| minimal. We may assume $\mathbf{O}_p(G) = 1$.

Let *P* be Sylow *p*-subgroup of *G* and *F* the Fitting subgroup of *G*. Note that *p* does not divide |F|. Using the inductive hypothesis, we may assume G = PF. Now, *P* acts faithfully and coprimely on $F/\Phi(F)$.

Mark L. Lewis

Kent State University

Image: A math a math

We now use the Lemma to see that P has a regular orbit in its action on $\operatorname{Irr}(F/\Phi(F))$. This gives a linear character $\lambda \in \operatorname{Irr}(F)$ whose stabilizer is F. In particular, $\lambda^G \in \operatorname{Irr}(G)$, and so,

$$b(G) \geq \lambda^G(1) = |G:F| = |P| = |G|_{\rho},$$

contradicting the choice of G.

To prove the general inequality, we need the following result that was proved by Isaacs.

Theorem (Isaacs)

Let P be a p-group that acts faithfully and coprimely on a group V. Then there exists an element $v \in V$ so that $|\mathbf{C}_P(v)| \leq (|P|/p)^{1/p}$.

< 17 >

To prove the general inequality, we need the following result that was proved by Isaacs.

Theorem (Isaacs)

Let P be a p-group that acts faithfully and coprimely on a group V. Then there exists an element $v \in V$ so that $|\mathbf{C}_P(v)| \leq (|P|/p)^{1/p}$.

< 17 >

Kent State University

Recall our theorem:

Theorem

Let G be a p-solvable group. Then
$$|G: \mathbf{O}_p(G)|_p \leq (b(G)^p/p)^{1/(p-1)}$$
.

Mark L. Lewis

	Our results	Solvable groups	<i>p</i> -solvable groups
Solvable gr	oups		

Outline of proof:

・ロト・(部)・・ヨト・ヨー のの

Mark L. Lewis

Kent State University

< 口 > < 同

Solvable groups

Outline of proof:

We work by induction on |G|. By the inductive hypothesis, we may assume that $\mathbf{O}_{p}(G) = 1$. Let P be a Sylow p-subgroup, and let F be the Fitting subgroup of G. By the inductive hypothesis, G = PF.

Outline of proof:

We work by induction on |G|. By the inductive hypothesis, we may assume that $\mathbf{O}_p(G) = 1$. Let *P* be a Sylow *p*-subgroup, and let *F* be the Fitting subgroup of *G*. By the inductive hypothesis, G = PF.

Now, P acts faithfully and coprimely on $F/\Phi(F)$. We use Isaacs' theorem to find $\lambda \in \operatorname{Irr}(F/\Phi(F))$ so that $|\mathbf{C}_P(\lambda)| \leq (|P|/p)^{1/p}$.

Mark L. Lewis

Image: A math a math

If T is the stabilizer of λ in G, then $T = F\mathbf{C}_P(\lambda)$, and so

$$|G\colon T|=|P\colon \mathbf{C}_P(\lambda)|\geq \frac{|P|}{\left(\frac{|P|}{p}\right)^{1/p}}=\left(|P|^{p-1}p\right)^{1/p}.$$

Kent State University

Bounding an index by the largest character degree of a solvable group

Mark L. Lewis

If T is the stabilizer of λ in G, then $T = F\mathbf{C}_P(\lambda)$, and so

$$|G\colon T| = |P\colon \mathbf{C}_P(\lambda)| \geq \frac{|P|}{\left(\frac{|P|}{p}\right)^{1/p}} = \left(|P|^{p-1}p\right)^{1/p}.$$

This implies that $(|P|^{p-1}p)^{1/p} \leq b(G)$, and we conclude that $|P| \leq (b(G)^p/p)^{1/(p-1)}$, as desired.

・ロン ・日子・ ・ ヨン

Kent State University

Mark L. Lewis

We now discuss how to prove our results when G is p-solvable. We first need the following consequence of Gluck's regular orbit theorem which was proved by Dolfi.

We now discuss how to prove our results when G is p-solvable. We first need the following consequence of Gluck's regular orbit

theorem which was proved by Dolfi.

Lemma (Dolfi)

Let p be a prime an odd prime, and suppose that P is a p-group that is a permutation group on Ω . Then there exists a set $\Delta \subseteq \Omega$ so that $P_{\Delta} = 1$.

p-solvable groups

We now discuss how to prove our results when G is p-solvable. We first need the following consequence of Gluck's regular orbit theorem which was proved by Dolfi.

Lemma (Dolfi)

Let p be a prime an odd prime, and suppose that P is a p-group that is a permutation group on Ω . Then there exists a set $\Delta \subseteq \Omega$ so that $P_{\Delta} = 1$.

We also need a result of Moretó and Tiep.

We now discuss how to prove our results when G is p-solvable. We first need the following consequence of Gluck's regular orbit theorem which was proved by Dolfi.

Lemma (Dolfi)

Let p be a prime an odd prime, and suppose that P is a p-group that is a permutation group on Ω . Then there exists a set $\Delta \subseteq \Omega$ so that $P_{\Delta} = 1$.

We also need a result of Moretó and Tiep.

Lemma (Moretó and Tiep)

Let A act faithfully and coprimely on a nonabelian simple group S. Then A has at least 2 regular orbits on Irr(S).

・ロト ・回ト ・ヨト

With these two lemmas we prove:

Mark L. Lewis

Kent State University

p-solvable groups

With these two lemmas we prove:

Lemma

Let S be a nonabelian simple group, and let p be a prime that does not divide |S|. Suppose $V = S_1 \times \cdots \times S_n$ where $S_i \cong S$. Assume P is a p-group that acts faithfully on V via automorphisms, and assume the action of P transitively permutes the S_i 's. If G is the semi-direct product of P acting on V, then there exists $\theta \in Irr(V)$ so that θ^G is irreducible.

< 17 >

p-solvable groups

With these two lemmas we prove:

Lemma

Let S be a nonabelian simple group, and let p be a prime that does not divide |S|. Suppose $V = S_1 \times \cdots \times S_n$ where $S_i \cong S$. Assume P is a p-group that acts faithfully on V via automorphisms, and assume the action of P transitively permutes the S_i 's. If G is the semi-direct product of P acting on V, then there exists $\theta \in Irr(V)$ so that θ^G is irreducible.

< 17 >

Idea of proof of main theorems when G is p-solvable:

Mark L. Lewis

Kent State University

Idea of proof of main theorems when G is p-solvable:

We work by induction on |G|, and we observe that all sections of G satisfy the inductive hypothesis.

Idea of proof of main theorems when G is p-solvable:

We work by induction on |G|, and we observe that all sections of G satisfy the inductive hypothesis.

Using the inductive hypothesis, we may show that $\mathbf{O}_p(G) = 1$ and $\Phi(G) = 1$.

Image: A math a math

p-solvable groups

Idea of proof of main theorems when G is p-solvable:

We work by induction on |G|, and we observe that all sections of G satisfy the inductive hypothesis.

Using the inductive hypothesis, we may show that $\mathbf{O}_p(G) = 1$ and $\Phi(G) = 1$.

Let *F* be the Fitting subgroup of *G* and let *P* be a Sylow *p*-subgroup. If all minimal normal subgroups of *G* are abelian, then use the inductive hypothesis to show that we may assume G = PF and then the result holds via the solvable case.

イロン イヨン イヨン イ

Kent State University

Let V be a minimal normal subgroup of G that is not abelian. Then $V = S_1 \times \cdots \times S_n$ where $S_i \cong S$ and S is a nonabelian simple group with (|S|, p) = 1.

p-solvable groups

Let V be a minimal normal subgroup of G that is not abelian. Then $V = S_1 \times \cdots \times S_n$ where $S_i \cong S$ and S is a nonabelian simple group with (|S|, p) = 1.

Use the inductive hypothesis to assume that $G = H = V \mathbf{C}_{G}(V) P$.

Image: A math a math

Bounding an index by the largest character degree of a solvable group

Mark I Lewis

Mark I Lewis

p-solvable groups

Let V be a minimal normal subgroup of G that is not abelian. Then $V = S_1 \times \cdots \times S_n$ where $S_i \cong S$ and S is a nonabelian simple group with (|S|, p) = 1.

Use the inductive hypothesis to assume that $G = H = V C_G(V) P$.

By the Lemma, we can find $\theta \in Irr(V)$ so that $\mathbf{C}_P(\theta) = \mathbf{C}_P(V)$.

A B > A B >

メロト メロト メヨト メ

Kent State University

p-solvable groups

Let V be a minimal normal subgroup of G that is not abelian. Then $V = S_1 \times \cdots \times S_n$ where $S_i \cong S$ and S is a nonabelian simple group with (|S|, p) = 1.

Use the inductive hypothesis to assume that $G = H = V C_G(V) P$.

By the Lemma, we can find $\theta \in Irr(V)$ so that $\mathbf{C}_{P}(\theta) = \mathbf{C}_{P}(V)$.

Let $\gamma \in \operatorname{Irr}(\mathbf{C}_{G}(V))$ so that $\gamma(1) = b(\mathbf{C}_{P}(V))$.

Mark L. Lewis

p-solvable groups

This implies that $(\theta \times \gamma)^G$ is irreducible, and hence, $b(G) > |P : \mathbf{C}_P(V)| b(\mathbf{C}_G(V)).$

Mark L. Lewis

Kent State University

p-solvable groups

This implies that $(\theta \times \gamma)^G$ is irreducible, and hence, $b(G) > |P : \mathbf{C}_P(V)| b(\mathbf{C}_G(V)).$

Using the inductive hypothesis in $C_G(V)$, we obtain the desired conclusions.

Mark L. Lewis

Bounding an index by the largest character degree of a solvable group

Kent State University

Image: A math a math