Jing Li     

     Associate Professor
     Department of Mathematical Sciences
     Kent State University
     Kent, OH 44242
     Phone: (330) 672-9111
     Fax: (330) 672-2209
     E-mail: li@math.kent.edu

     Curriculum Vitae

Office: Room 360, Mathematiccal Sciences Building
Office hours: Wed/Fri: 10:45am--12:15pm, Tuesday: 11:45am-1:45pm.

Teaching

Research Interest 

Numerical solution of partial differential equations, domain decomposition and parallel computing, with application on computational fluid, structural dynamics, and acoustics.

Publication and preprints

  1. Jing Li and Xuemin Tu. A non-overlapping domain decomposition method for incompressible Stokes equation with continuous pressures. SIAM J. Numer. Anal., 51 (2013), pp. 1235-1253.
  2. Xuemin Tu and Jing Li. A unified dual-primal finite element tearing and interconnecting approach for incompressible Stokes equations. Internat. J. Numer. Methods Engrg., 94 (2013), pp. 128--149.
  3. Jing Li, Charbel Farhat, Philip Avery, and Radek Tezaur. A dual-primal FETI method for solving a class of fluid-structure interaction problems in the frequency domain . Internat. J. Numer. Methods Engrg., 89 (2012), pp. 418--437.
  4. Jing Li and Xuemin Tu. Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems. Numer. Linear Algebra Appl., 16 (2009), pp. 745--773.
  5. Xuemin Tu and Jing Li. A Balancing Domain Decomposition Method by Constraints for Advection-diffusion Problems. Commun. Appl. Math. Comput. Sci., 3 (2008), pp. 25--60.
  6. Jing Li and Olof B. Widlund. On the Use of Inexact Subdomain Solvers for BDDC Algorithms. Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1415--1428.
  7. Jing Li and Olof B. Widlund. BDDC Algorithms for Incompressible Stokes Equations. SIAM J. Numer. Anal., 44 (2006), pp. 2432--2455.
  8. Jing Li and Olof B. Widlund. FETI--DP, BDDC, and Block Cholesky Methods. Internat. J. Numer. Methods Engrg., 66 (2006), no. 2, pp. 250--271.
  9. Jing Li. A Dual-Primal FETI Method for incompressible Stokes Equations. Numerische Mathematik , 102 (2005), no. 2, pp. 257--275.
  10. Charbel Farhat and Jing Li. An Iterative Domain Decomposition Method for the Solution of a Class of Indefinite Problems in Computational Structural Dynamics. Appl. Numer. Math., 54(2005), no. 2, pp. 150--166.
  11. Charbel Farhat, Jing Li and Philip Avery. A FETI--DP Method for the Parallel Iterative Solution of Indefinite and Complex-Valued Solid and Shell Vibration problems. Internat. J. Numer. Methods Engrg., 63(2005), pp. 398--427.
  12. Charbel Farhat, Philip Avery, Radek Tezaur, and Jing Li. A Dual-Primal Domain Decomposition Method for Acoustic Scaterring, J. of Comput. Acoustics, 13 (2005), no. 3, pp. 499--524.
  13. Xuemin Tu and Jing Li, BDDC for Nonsymmetric Positive Definite and Symmetric Indefinite Problems, In  Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng., volume 70, Springer, 2009, pp.~75--86.
  14. Jing Li and Olof Widlund. A BDDC Preconditioner for Saddle Point Problems. In  Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng., volume 55, pp. 413--420, Springer, 2007.
  15. Charbel Farhat, Jing Li, Michel Lesoinne, and Philip Avery. A FETI Method for the Solution of a Class of Indefinite or Complex Second- or Fourth-Order Problems. In  Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng., volume 40, pp. 19--33, Springer, 2004.
  16. Jing Li. Dual-Primal FETI Methods for Solving Stokes/Navier-Stokes Equations. In Domain Decomposition Methods in Science and Engineering, Proc. of the 14th international conference on domain decomposition methods,  pp. 225-231, 2003.
  17. Jing Li, Dual-Primal FETI Methods for Stationary Stokes and Navier-Stokes Equations (compressed pdf file). PhD thesis, Courant Institute of Mathematical Sciences, September, 2002. 

Web Links