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Abstract

The standard BDDC (balancing domain decomposition by constraints) precondi-
tioner is shown to be equivalent to a preconditioner built from a partially sub-
assembled finite element model. This results in a system of linear algebraic equa-
tions which is much easier to solve in parallel than the fully assembled model; the
cost is then often dominated by that of the problems on the subdomains. An im-
portant role is also played, both in theory and practice, by an average operator and
in addition exact Dirichlet solvers are used on the subdomains in order to eliminate
the residual in the interior of the subdomains. The use of inexact solvers for these
problems and even the replacement of the Dirichlet solvers by a trivial extension
are considered. It is established that one of the resulting algorithms has the same
eigenvalues as the standard BDDC algorithm, and the connection of another with
the FETI–DP algorithm with a lumped preconditioner is also considered. Multigrid
methods are used in the experimental work and under certain assumptions, it can
be established that the iteration count essentially remains the same as when exact
solvers are used, while considerable gains in the speed of the algorithm can be re-
alized since the cost of the exact solvers grows superlinearly with the size of the
subdomain problems while the multigrid methods are linear.
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1 Introduction

Domain decomposition methods based on nonoverlapping subdomains have
been widely used and studied for solving large symmetric positive definite
linear systems arising from the discretization of elliptic partial differential
equations; see [27, Chapters 4–6] and the references therein. Three of the main
families of these iterative substructuring methods are the balancing Neumann-
Neumann methods [21], [23], [6], the FETI methods [9], [8], and the BDDC
methods [5], [24], [25]. The BDDC algorithms represent an interesting redesign
of the Neumann-Neumann algorithms with the coarse, global component ex-
pressed in terms of a set of primal constraints. All these methods are closely re-
lated. Thus, common tools were developed in [18] for the study of the one-level
FETI and the classical balancing Neumann–Neumann algorithms; cf. also [27,
Chapter 6]. Fragakis and Papadrakakis [10] found experimentally that pairs
of such methods have essentially identical spectra; they also discussed primal
iterative substructuring methods which are close counterparts to various FETI
algorithms. In an important contribution to the theory, Mandel, Dohrmann,
and Tezaur [25] established that the preconditioned operators of a pair of
BDDC and FETI–DP algorithms, with the same primal constraints, have the
same nonzero eigenvalues. In a recent paper, the authors [22] rederived the
BDDC and FETI–DP algorithms and also gave a short proof of the main re-
sult in [25]. A key to these simplifications is a change of variables so that a
primal constraint on the average over an interface edge or face is represented
by a single primal variable in the new coordinate system.

In the current standard BDDC, Neumann-Neumann, and FETI algorithms,
the subdomain problems are always solved by direct solvers. For an approach
to solving the coarse level problem approximately in the BDDC algorithm,
see Tu [28,29]. We believe that her work illustrates the fact that it is easier
to modify BDDC than FETI–DP algorithms. We also note that the compu-
tational work of a direct sparse solver grows faster than linearly with the
number of unknowns, and that it can become quite expensive for problems
with subdomains with many degrees of freedom. Storage considerations can
also, in practice, limit the size of the subdomain problems when direct solvers
are used.

The computing cost of some inexact solvers, e.g., a multigrid V-cycle iteration,
grows only linearly with the problem size. If the subdomain (and coarse level)
problems can be solved approximately, and the resulting algorithm retains a
good condition number, substantial gains in efficiency can be realized. We note
that inexact solvers have been considered in domain decomposition precondi-
tioners in [1], [14], [15], [4], [26] and for one-level FETI methods in [17]. In
some of these methods, subdomain Dirichlet problems are solved by multigrid
V-cycles and a well-chosen preconditioner for the subdomain interface Schur
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operator is required. It is shown that, with several strategies, there is very
little deterioration of convergence rates when replacing the exact solutions of
the subdomain problems by multigrid approximations, and the convergence
rates of the algorithms are primarily determined by the performance of the
preconditioner chosen for the interface Schur operator.

In this paper, we consider the effects of using inexact subdomain solvers in
BDDC algorithms and we also consider a related question concerning FETI–
DP algorithms. The standard BDDC preconditioner is shown to be equivalent
to a preconditioner defined in terms of a partially subassembled problem,
which is obtained from subdomain problems by assembling only with respect
to a few select primal interface degrees of freedom for each subdomain. Com-
pared with the original discrete problem, the partially subassembled one has
much fewer connections between neighboring subdomains and therefore its so-
lution is more suitable for parallel implementation. An average operator, which
involves discrete harmonic extensions of the interface jump, is used to connect
the solution of the partially subassembled problem, which in general is dis-
continuous across the subdomain interface, with the original problem defined
on a space of continuous finite element functions. We also establish that one
of the proposed algorithms, using a different average operator, has the same
non-zero eigenvalues as a FETI–DP algorithm with a lumped preconditioner.

This paper is organized as follows. The preconditioners using a partially sub-
assembled problem are described in Sections 2 and 3. Their connections with
the standard BDDC operator and a FETP-DP algorithm with a lumped pre-
conditioner are shown in Section 4. The condition number bounds of several
preconditioned operators are established in Section 5. Different choices of the
coarse level primal set of degrees of freedom are discussed in Section 6 for
both two- and three-dimensional problems. The use of multigrid V-cycles for
solving the subdomain problems and the partially subassembled problem is
discussed in Section 7. In Section 8, numerical experiments of solving a two-
dimensional Poisson equation further demonstrate the connections between
the related algorithms as well as the effects of using multigrid methods in the
algorithms.

2 Discretization and decomposition

Let us consider Poisson’s equation on a bounded, polyhedral domain Ω, in
two or three dimensions, with homogeneous Dirichlet boundary conditions.
The equivalent variational problem is: find u ∈ (H1

0 (Ω))
d

= {w ∈ (H1(Ω))d |
w = 0 on ∂Ω}, d = 2 or 3, such that,

a(u, v) = (f, v), ∀v ∈ (H1
0 (Ω))d, (1)
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where a(u, v) =
∫
Ω∇u · ∇v.

We denote by Ŵ the conforming finite element space of functions which are
continuous across the element boundaries. The finite element solution u ∈ Ŵ ,
of the problem (1), can be written as

Au = f, (2)

where the stiffness matrix A is symmetric positive definite.

The domain Ω is decomposed into N nonoverlapping polyhedral subdomains
Ωi, i = 1, 2, ..., N , of a characteristic diameter H. Each subdomain is a union
of shape regular elements and the nodes on the boundaries of neighboring
subdomains match across the interface Γ = (∪∂Ωi)\∂Ω. The interface Γ is
composed of the subdomain faces and/or edges, which are regarded as open
sets, and of the subdomain vertices, which are end points of edges. In three
dimensions, the subdomain faces are shared by two subregions, and the edges
are shared by more than two subregions; in two dimensions, the edges are
shared by two subregions. The interface of the subdomain Ωi is defined by
Γi = ∂Ωi ∩ Γ. We assume, as is customary in domain decomposition theory,
that the triangulation of each subdomain is quasi uniform. A characteristic
diameter of the elements of the underlying triangulation is denoted by h. We
also denote the set of nodes on Ωi and Γi by Ωi,h and Γi,h, respectively.

The discrete solution space Ŵ is decomposed into subspaces of subdomain
interior type and of subdomain interface type, i.e.,

Ŵ = WI

⊕
ŴΓ =

(
N∏

i=1

W
(i)
I

) ⊕
ŴΓ,

where WI is the product of subdomain interior variable spaces W
(i)
I . The ele-

ments of W
(i)
I are supported in the subdomain Ωi and vanish on the subdomain

interface Γi. ŴΓ is the space of traces on Γ of functions in Ŵ . For any func-
tion in the space Ŵ , the neighboring subdomains share the same degrees of
freedom on the common subdomain interface Γ. We also denote the space of
interface variables on the subdomain Ωi by W

(i)
Γ , and the associated product

space by WΓ =
∏N

i=1 W
(i)
Γ . We will often consider functions in this space are

discontinuous across the interface.

The subdomain problems with Neumann boundary conditions on the subdo-
main interface can be written as

A(i)u(i) =




A
(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ







u
(i)
I

u
(i)
Γ


 =




f
(i)
I

f
(i)
Γ


 = f (i), i = 1, 2, ..., N, (3)
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where u(i) = (u
(i)
I , u

(i)
Γ ) ∈ (W

(i)
I , W

(i)
Γ ). The global problem (2) can then be

assembled from the subdomain problems (3), i.e., it can be represented as

A =
N∑

i=1

R(i)T

A(i)R(i), and f =
N∑

i=1

R(i)T

f (i),

where R(i) is the restriction operator from the global vector space Ŵ to the
subdomain vector space W (i), i.e., it maps vectors in the space Ŵ to their
components on the subdomain Ωi.

3 Preconditioners using partially subassembled problems

We introduce a space of partially subassembled variables as

W̃ = Wr

⊕
ŴΠ =

(
N∏

i=1

W (i)
r

) ⊕
ŴΠ.

The space ŴΠ corresponds to a few select subdomain interface degrees of
freedom, for each subdomain, and is typically spanned by subdomain vertex
nodal basis functions, and/or by interface edge and/or face basis functions
with weights at the nodes of the edge or face. These basis functions corre-
spond to the primal interface continuity constraints enforced in the BDDC
algorithm. These interface degrees of freedom are shared by neighboring sub-
domains, and they are called the coarse level, primal degrees of freedom. The
remaining interface degrees of freedom are the dual interface variables. We will
always assume that the basis has been changed so that we have explicit pri-
mal unknowns corresponding to the primal continuity constraints on edges or
faces; see Remark 1 in Section 6. The complementary space Wr is the product
of the subdomain spaces W (i)

r , which corresponds to the subdomain interior
and dual interface degrees of freedom and is spanned by all the basis func-
tions which vanish at the primal degrees of freedom. Thus, the functions in
the space W̃ are only continuous at the coarse level, primal degrees of freedom
and are typically discontinuous elsewhere across the subdomain interface.

The partially subassembled problem matrix, corresponding to the variables in
the space W̃ , is obtained by assembling the subdomain matrices (3) only with
respect to the coarse level primal variables, and we have

Ã =
N∑

i=1

R
(i)T

A(i)R
(i)

,

where R
(i)

is the restriction operator from the space W̃ to W (i). Denoting
the injection of Ŵ into W̃ by R̃, we have A = R̃T ÃR̃, i.e., the matrix A can
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be formed from Ã by assembling with respect to the dual interface variables
on the subdomain interface. Thus, we can obtain the fully assembled stiffness
matrices by two stages of subassembly.

In order to define certain scaling operators, we need to introduce a positive
scaling factor δ†i (x), for each node x on the interface Γi of the subdomain
Ωi. In applications, these scaling factors will depend on the heat conduction
coefficient and the first of the Lamé parameters for scalar elliptic problems and
the equations of linear elasticity, respectively; see [20], [19]. Here, with Nx the
set of indices of the subdomains which have x on their boundaries, we will only
need to use inverse counting functions defined by δ†i (x) = 1/card(Nx), where
card(Nx) is the number of the subdomains in the set Nx. It is easy to see that∑

j∈Nx
δ†j(x) = 1. Given the scaling factors at the subdomain interface nodes,

we can define the scaled injection operator R̃D; each row of R̃ corresponds
to a degree of freedom of the space W̃ , and multiplying each such row which
corresponds to a dual interface degree of freedom with the scaling factor δ†i (x),
where x ∈ Γi,h is the corresponding interface node, gives us R̃D.

The first preconditioner introduced in this paper for solving problem (2) is

M−1
1 = R̃T

DÃ−1R̃D.

To multiply Ã−1 with a vector g̃, which belongs to the space of right hand sides
corresponding to W̃ , we need to solve the following partially subassembled
problem, with a leading block diagonal submatrix,

Ãũ =




A(1)
rr Ã

(1)T

Πr

. . .
...

Ã
(1)
Πr . . . ÃΠΠ







u(1)
r

...

uΠ




=




g(1)
r

...

gΠ




= g̃, (4)

where ÃΠΠ =
∑N

i=1 R
(i)T

Π A
(i)
ΠΠR

(i)
Π and Ã

(i)
Πr = R

(i)T

Π A
(i)
Πr. Here R

(i)
Π is the restric-

tion operator which maps functions in the space ŴΠ onto their components
on the subdomain Ωi. The inverse of Ã can be written as, cf. [22],

Ã−1 =




A−1
rr 0

0 0


 +



−A−1

rr ÃT
Πr

I


 S̃−1

Π

[
−ÃΠrA

−1
rr I

]
, (5)

where the coarse problem matrix S̃Π =
∑N

i=1 R
(i)T

Π (A
(i)
ΠΠ −A

(i)
ΠrA

(i)−1

rr A
(i)T

Πr )R
(i)
Π .

It is formed by solving subdomain Neumann problems with given values of
the primal degrees of freedom. We see from equation (5) that to multiply Ã−1

by a vector, subdomain Neumann problems with given primal values and a
coarse problem need to be solved.
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Since A = R̃T ÃR̃, the preconditioned operator M−1
1 A can be written as

R̃T
DÃ−1R̃DR̃T ÃR̃, which has the same non-zero eigenvalues as the operator

R̃R̃T
DÃ−1R̃DR̃T Ã. We define an average operator

ED,1 = R̃R̃T
D : W̃ → W̃ ,

which preserves the values of the coarse level primal component and the sub-
domain interior component of the vectors, and provides an average of the dual
subdomain interface values. Given any w ∈ W̃ , we denote its subdomain in-
terior components by w

(i)
I , its coarse level component on subdomain Ωi by

w
(i)
Π , and its dual interface components by w

(i)
∆ . For two-dimensional problems

where the coarse level primal set of variables contain all the subdomain corner
variables, the component of ED,1w on subdomain Ωi can be written as,

(ED,1w)(i)(x) = w
(i)
I (x) + w

(i)
Π (x) +

∑

Eij⊂∂Ωi

(δ†i (x)w
(i)
∆,Eij(x) + δ†j(x)w

(j)
∆,Eij(x)),

at any node x ∈ Ωi,h. Here E ij represents an edge of the subdomain Ωi, which

is shared with the subdomain Ωj, and w
(i)
∆,Eij represents the restriction of w

(i)
∆

to the edge E ij. From the fact that
∑

j∈Nx
δ†j(x) = 1, for any interface node

x ∈ Γi,h, i.e., δ†i (x) = 1− δ†j(x), in this case, we have

(ED,1w)(i) = w(i) − ∑

Eij⊂∂Ωi

δ†j(E ij)(w(i) |Eij −w(j) |Eij), (6)

where we have also used that fact that δ†j(x) have the same value, δ†j(E ij), at
all the nodes of E ij. We can see from equation (6) that the interface jump
w(i) − w(j) is extended by zero to the interior of subdomain Ωi in ED,1w.

In Section 6, we will establish a result on the stability of this average operator,
i.e., we will bound the jump of the interface variables in equation (6) by the
norms of w(i) and w(j). Since the discrete harmonic extension of the interface
values to the subdomain interiors gives the minimum in the energy norm,
cf. [27, Section 4.4], a better stability bound can be obtained if, in the above
example, the component of the averaged vector on the subdomain Ωi would
be

(ED,2w)(i) = w(i) − (I ⊕H(i))
∑

Eij⊂∂Ωi

δ†j(E ij)(w(i) |Eij −w(j) |Eij), (7)

where H(i) = −A
(i)−1

II A
(i)T

ΓI maps the subdomain interface variables to the
interior of the subdomain Ωi. Correspondingly, we define our second average
operator by

ED,2 = R̃(R̃T
D −HJD),
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where JD : W̃ → W̃ , is a jump operator for the dual interface variables across
the subdomain interface. For any w ∈ W̃ , the component on subdomain Ωi of
JDw is defined by

(JDw(x))(i) =
∑

j∈Nx

δ†j(x)(w(i)(x)− w(j)(x)), ∀x ∈ Γi,h.

We note that JDw always vanishes in the interior of the subdomain and for the
coarse level primal component. For a matrix form of the jump operator, see
[27, Section 6.3.3]. H : W̃ → W̃ , is the direct sum of the subdomain discrete
harmonic extension operators H(i).

The preconditioner corresponding to the use of the average operator ED,2 in
the algorithm is defined by

M−1
2 = (R̃T

D −HJD)Ã−1(R̃D − JT
DHT ),

where HT is the direct sum of subdomain operators −A
(i)
ΓIA

(i)−1

II . The compo-
nent on subdomain Ωi of JT

Dw is given by

(JT
Dw(x))(i) =

∑

j∈Nx

(δ†j(x)w(i)(x)− δ†i (x)w(j)(x)), ∀x ∈ Γi,h.

The subdomain interior and the coarse level primal components of JT
Dw always

vanish.

4 Connections between FETI–DP and BDDC algorithms

We know that the preconditioned operator M−1
1 A has the same non-zero eigen-

values as the operator ED,1Ã
−1ET

D,1Ã. It can then be shown, as in [22], that

the operators ED,1Ã
−1ET

D,1Ã and (I − ET
D,1)Ã(I − ED,1)Ã

−1 have the same
non-zero eigenvalues. From the fact that I − ED,1 equals the jump opera-
tor JD defined in Section 3, it can then further be shown that the operator
(I −ET

D,1)Ã(I −ED,1)Ã
−1 has the same nonzero eigenvalues as the FETI–DP

algorithm with a lumped preconditioner, cf. [22]. In a recent paper by Fragakis
and Papadrakakis [11], it is shown that the performances of FETI algorithms
with lumped preconditioners and their primal versions are very similar.

We next show that the preconditioned operator M−1
2 A has the same eigen-

values as those of the standard BDDC operator. Here we write the BDDC
operator as R̃T

D,ΓS̃−1
Γ R̃D,ΓSΓ, for solving the reduced interface problem, which

has been shown in [22] to be equivalent to the original BDDC operator intro-
duced in [5], [24]. SΓ and S̃Γ are the subdomain interface Schur complements
of the matrices in problems (2) and (4), respectively. R̃D,Γ is formed in the
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same way as R̃D and maps the space of continuous interface variables to the
space of partially subassembled interface variables with the appropriate scal-
ing. We also denote the restriction of the operators R̃ and JD to the space of
the partially subassembled interface variables by R̃Γ and JD,Γ, respectively.

We first introduce the following lemma,

Lemma 1 AT
ΓIR̃

T
D,Γ + ÃT

ΓIJD,Γ − ÃT
ΓI = 0.

Proof: Since AΓI can be obtained from ÃΓI by assembling with respect to
the dual interface variables, we have AΓI = R̃T

Γ ÃΓI . Then, from the fact that
R̃ΓR̃T

D,Γ + JD,Γ = I, cf. [22, Lemma 1], we have

AT
ΓIR̃

T
D,Γ + ÃT

ΓIJD,Γ − ÃT
ΓI = ÃT

ΓIR̃ΓR̃T
D,Γ + ÃT

ΓIJD − ÃT
ΓI = 0.

2

Theorem 1 The preconditioned operator M−1
2 A has the same eigenvalues as

the BDDC operator R̃T
D,ΓS̃−1

Γ R̃D,ΓSΓ, except for some eigenvalues equal to 1.

Proof: We know, by using Gaussian elimination, that A and Ã−1 can be written
as

A =




AII AT
ΓI

AΓI AΓΓ


 =




I

AΓIA
−1
II I







AII

SΓ







I A−1
II AT

ΓI

I


 , (8)

Ã−1 =




AII ÃT
ΓI

ÃΓI ÃΓΓ




−1

=




I −A−1
II ÃT

ΓI

I







A−1
II

S̃−1
Γ







I

−ÃΓIA
−1
II I


 . (9)

Replacing Ã−1 and A in the preconditioned operator M−1
2 A by the products

in equations (8) and (9), we find that M−1
2 A has the same eigenvalues as the

operator




I A−1
II AT

ΓI

I







I A−1
II ÃT

ΓIJD

R̃T
D,Γ







I −A−1
II ÃT

ΓI

I







A−1
II

S̃−1
Γ







I

−ÃΓIA
−1
II I







I

JT
DÃΓIA

−1
II R̃D,Γ







I

AΓIA
−1
II I







AII

SΓ


 . (10)

Here we have written the operator, R̃T
D − HJD, and its transpose in matrix

form, and moved the last term of the operator to the front, which does not
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change the spectrum of the operator. From Lemma 1 and a simple computa-
tion, we see that the product of the matrices in (10) equals




I

R̃T
D,Γ







A−1
II

S̃−1
Γ







I

R̃D,Γ







AII

SΓ


 =




I

R̃T
D,ΓS̃−1

Γ R̃D,ΓSΓ


 ,

which has the same eigenvalues as the BDDC operator, R̃T
D,ΓS̃−1

Γ R̃D,ΓSΓ, ex-
cept for some eigenvalues equal to 1. 2

5 Condition number bounds

Condition number bounds of the BDDC algorithms have been established in
[24], [25], and [22], and they also apply to the preconditioned operator M−1

2 A
as just established in Section 4. In this section, we will follow the analysis in
[25] and [18], and reduce the condition number bounds of M−1

1 A and M−1
2 A

to estimates of the norm of the average operators ED,1 and ED,2. This will also
lead to a condition number bound for the FETI-DP algorithm with a lumped
preconditioner.

We define the Ã−seminorm on the space W̃ by

|w|
Ã

= wT Ãw =
N∑

i=1

wT R
(i)T

A(i)R
(i)

w =
N∑

i=1

|R(i)
w|A(i) .

We know that the seminorms | · |A(i) and | · |H1(Ωi) are the same on the space
W (i). The following assumption on the stability of ED,1 and ED,2, will be made
specific in Section 6 for different cases.

Assumption 1 For the average operators ED,1 and ED,2,

N∑

i=1

|R(i)
(ED,kw)|2H1(Ωi)

≤ Φk(H, h)
N∑

i=1

|R(i)
w|2H1(Ωi)

, ∀w ∈ W̃ , k = 1, 2,

where Φk(H, h) are functions of the mesh sizes H and h.

With Assumption 1, we are ready to prove the following theorem.

Theorem 2 Let Assumption 1 hold. Then the preconditioned operators M−1
k A,

k = 1, 2, are symmetric, positive definite with respect to the bilinear from 〈·, ·〉A
and

〈u, u〉A ≤
〈
M−1

k Au, u
〉

A
≤ Φk(H, h) 〈u, u〉A , ∀u ∈ Ŵ .

10



Proof: Here we only give a proof for the preconditioned operator M−1
2 A. The

same arguments are also valid for M−1
1 A.

Lower bound: Given u ∈ Ŵ , let

w = Ã−1(R̃D − JT
DHT )Au ∈ W̃ . (11)

We then have, from the fact that R̃T R̃D = I and that range(JT
D) ⊂ null(R̃T ),

that

〈u, u〉A = uT Au =
1

2
uT (R̃T +HT JD)(R̃D − JT

DHT )Au

+
1

2
uT (R̃T −HT JD)(R̃D − JT

DHT )Au

=
1

2
uT (R̃T +HT JD)Ãw +

1

2
uT (R̃T −HT JD)Ãw

= uT R̃T Ãw =
〈
w, R̃u

〉
Ã

. (12)

From the Cauchy-Schwarz inequality and the fact that A = R̃T ÃR̃, we have

〈
w, R̃u

〉
Ã
≤ 〈w, w〉1/2

Ã

〈
R̃u, R̃u

〉1/2

Ã
= 〈w, w〉1/2

Ã
〈u, u〉1/2

A . (13)

Therefore, from (12) and (13), we have, 〈u, u〉A ≤ 〈w, w〉
Ã
. Since

〈w, w〉
Ã

= uT A(R̃D − JT
DHT )T Ã−1ÃÃ−1(R̃D − JT

DHT )Au

= uT A(R̃T
D −HJD)Ã−1(R̃D − JT

DHT )Au =
〈
u,M−1

2 Au
〉

A
, (14)

we have, 〈u, u〉A ≤
〈
u,M−1

2 Au
〉

A
, which gives the lower bound of the theorem.

Upper bound: Given u ∈ Ŵ , take w ∈ W̃ as in equation (11). We have,
(R̃T

D −HJD)w = M−1
2 Au. Using that A = R̃T ÃR̃ and Assumption 1, we have

〈
M−1

2 Au,M−1
2 Au

〉
A

=
〈
(R̃T

D −HJD)w, (R̃T
D −HJD)w

〉
A

=
〈
R̃(R̃T

D −HJD)w, R̃(R̃T
D −HJD)w

〉
Ã

= |ED,2w|2Ã ≤ Φ2(H, h)|w|2
Ã
.

Therefore, from equation (14), we have

〈
M−1

2 Au,M−1
2 Au

〉
A
≤ Φ2(H, h)

〈
u,M−1

2 Au
〉

A
. (15)

Using the Cauchy-Schwarz inequality and equation (15), we have

11



〈
u,M−1

2 Au
〉

A
≤〈u, u〉1/2

A

〈
M−1

2 Au,M−1
2 Au

〉1/2

A

≤
√

Φ2(H, h) 〈u, u〉1/2
A

〈
u,M−1

2 Au
〉1/2

A
.

This gives 〈
u,M−1

2 Au
〉

A
≤ Φ2(H, h) 〈u, u〉A ,

and the upper bound of the theorem. 2

6 Examples related to Assumption 1

In this section, we specify the functions Φk(H, h) in Assumption 1 for both
two and three dimensional problems, and for different choices of the coarse
level primal set degrees of freedom. Here, we always denote by C a positive
constant, which is independent of H, h, and the number of subdomains.

6.1 Two-dimensional problems

For a two-dimensional subdomain Ωi, we denote its edge shared with subdo-
main Ωj by E ij. For any finite element function u(i) ∈ W (i), let IH,Eij

u(i) be

the linear interpolant of u(i) on E ij between its two end point, and let u
(i)
Eij be

its average value on the edge E ij, which is defined by

u
(i)
Eij =

∫
Eij u(i) ds∫
Eij 1 ds

. (16)

The following lemma can be found in [27, Lemma 4.15].

Lemma 2 Let Ωi be a two-dimensional subdomain. For any u(i) ∈ W (i),

‖u(i)‖2
L∞(Ωi)

≤ C (1 + log(H/h)) ‖u(i)‖2
H1(Ωi)

.

By using Lemma 2, we can prove the following lemma.

Lemma 3 Let Ωi be a two-dimensional subdomain. For any u(i) ∈ W (i),

‖u(i) − IH,Eij

u(i)‖2
L2(Eij) ≤ CH (1 + log(H/h)) |u(i)|2H1(Ωi)

,

‖u(i) − u
(i)
Eij‖2

L2(Eij) ≤ CH|u(i)|2H1(Ωi)
.

12



Proof: We first use a trace theorem, cf. [27, Lemma A.6],

‖u(i)‖2
L2(Eij) ≤ H‖u(i)‖2

H1(Ωi)
, (17)

where the factor H results from a scaling argument; more precisely, it can be
obtained by mapping the domain Ωi, of diameter H, into a reference domain
of diameter 1, by isotropic dilation as in [27, Section 3.4].

We denote the two finite element nodal basis functions on the coarse mesh
associated with the two end points of the edge E ij by φH

1 and φH
2 , and denote

the function values of u(i) at the two end points by u1 and u2. We have

‖IH,Eij

u(i)‖2
L2(Eij) ≤ 2|u1|2‖φH

2 ‖2
L2(Eij) + 2|u2|2‖φH

2 ‖2
L2(Eij).

We know that ‖φH
1 ‖2

L2(Eij) and ‖φH
2 ‖2

L2(Eij) can be bounded by CH, cf. [27,
Lemma B.5]. Then, from Lemma 2, we have

‖IH,Eij

u(i)‖2
L2(Eij) ≤ CH (1 + log(H/h)) ‖u(i)‖2

H1(Ωi)
.

From (17) and the above inequality, we obtain the first inequality of the lemma,
by using a Poincaré inequality, cf. [27, Theorem A.18], and the fact that u(i)−
IH,Eij

u(i) does not change with the addition of a constant to u(i).

For the second inequality, from the definition of the average value in equation
(16), the Cauchy-Schwarz inequality, and inequality (17), we have

|u(i)
Eij |2 =

∣∣∣
∫

Eij

u(i)ds
∣∣∣
2/∣∣∣

∫

Eij

1 ds
∣∣∣
2 ≤ C

1

H
‖u(i)‖2

L2(Eij) ≤ C‖u(i)‖2
H1(Ωi)

.

Therefore, ‖u(i)
Eij‖2

L2(Eij) ≤ CH‖u(i)‖2
H1(Ωi)

. Combining with (17) and noting

that u(i)−u
(i)
Eij is unchanged with respect to a constant shift of the function u(i),

we have the second inequality of the lemma, by using a Poincaré inequality.
2

From equation (6), we know that, for any w ∈ W̃ , we can write the component
of ED,1w on the subdomain Ωi as

(ED,1w)(i) = w(i) − ∑

Eij⊂∂Ωi

δ†j(E ij)Ih(ϑEij(w(i) − w(j))), (18)

where we assume that all the subdomain corner variables are coarse level
primal variables. ϑEij is the standard linear finite element cut-off functions of
the edge E ij; it equals 1 at the interior nodes of the edge E ij and vanishes
at the other nodes of Ωi,h. The standard interpolation operator Ih brings us
back to the finite element space; it acts on a piecewise quadratic, continuous
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function. To bound the norm of (ED,1w)(i), as required in Assumption 1, we
only need to bound the terms with the interface jump in equation (18). It is
known, see [27, Lemma 4.31], that we can ignore the Ih operator when we
derive our estimates.

For the case where only the subdomain corner variables are the primal vari-
ables, IH,Eij

w(i) and IH,Eij
w(j) are the same, and we have,

|ϑEij(w(i) − w(j))|H1(Ωi)≤ |ϑEij(w(i) − IH,Eij

w(i))|H1(Ωi)

+|ϑEij(w(j) − IH,Eij

w(j))|H1(Ωi).

A bound of the first term in the right hand side will be sufficient; the same
argument can be used for the second term. The support of the function
ϑEij(w(i) − IH,Eij

w(i)) in the subdomain Ωi is only in the strip of elements,
with a width h, next to the edge E ij. We denote such an element by K and
denote its nodes on the edge E ij by xs, s = 1, ..., nK , where nK is the number
of such nodes. Then the slope of the function ϑEij(w(i) − IH,Eij

w(i)) in the
element K can be bounded in terms of its values at the nodes xs. We have

∫

K

|∇(ϑEij(w(i) − IH,Eij

w(i)))|2 ≤ Ch2
nK∑

s=1

(w(i)(xs)− IH,Eij
w(xs))

2

h2
.

Summing over the elements K next to the edge E ij, we have

|ϑEij(w(i) − IH,Eij

w(i))|2H1(Ωi)
≤ C

1

h
‖w(i) − IH,Eij

w(i)‖2
L2(Eij).

Then from the first inequality in Lemma 3,

|ϑEij(w(i) − IH,Eij

w(i))|2H1(Ωi)
≤ C

H

h
(1 + log(H/h)) |w(i)|2H1(Ωi)

,

i.e., Φ1(H, h) = C H
h

(1 + log(H/h)), in Assumption 1, for the case where only
subdomain corner degrees of freedom are primal.

For the case where the coarse level primal variables also include averages over
the subdomain edges, we can bound the terms with the interface jump in
equation (18) by

|ϑEij(w(i) − w(j))|H1(Ωi) ≤ |ϑEij(w(i) − wEij)|H1(Ωi) + |ϑEij(w(j) − wEij)|H1(Ωi),

where wEij represents the common edge average value of w(i) and w(j) on E ij.
Following the same argument as above and using the second inequality in
Lemma 3, we can bound the first term in the right hand side by

|ϑEij(w(i) − wEij)|2H1(Ωi)
≤ C

1

h
‖w(i) − wEij‖2

L2(Eij) ≤ C
H

h
|w(i)|2H1(Ωi)

,
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i.e., Φ1(H, h) = CH/h, in Assumption 1, for the case where the set of coarse
level primal variables contain both the subdomain corner and the edge average
degrees of freedom.

Remark 1 To enforce the continuity of the edge integrals (16) across the
subdomain interface, a change of basis is implemented such that there is an
explicit degree of freedom for each edge corresponding to a finite element ba-
sis function with weights at the nodes of the edge determined by the integral
(16). Since subdomain corner variables, i.e., the variables at the end points of
the edges, are also primal variables and therefore continuous, the weights at
the corner points can be taken as zero. Then only the interior points of each
edge are involved in the edge average basis function, which makes changing
basis completely independent on different edges. For an discussion of how to
implement the change of variables, see [22], [19, Section 6], and [16].

6.2 Three-dimensional problems

For a three-dimensional subdomain Ωi, we denote its face shared with the
subdomain Ωj by F ij. ϑFij is the face finite element cut-off function, which
equals 1 at the interior nodes of F ij and vanishes at the other nodes of Ωi,h.
For each edge E ik of the subdomain Ωi, we denote by MEik the index set of all
neighboring subdomains which have E ik as an edge. The edge cut-off function
ϑEik equals 1 at the interior nodes of E ik and vanishes at the other nodes of
Ωi,h.

The following results can be found in Lemmas 4.16 and 4.21 of [27].

Lemma 4 Let Ωi be a three-dimensional subdomain. For any u(i) ∈ W (i),

‖u(i) − u
(i)
Eij‖2

L2(Eik) ≤ C (1 + log(H/h)) |u(i)|2H1(Ωi)
,

‖u(i) − u
(i)
Eij‖2

L2(Fij) ≤ CH (1 + log(H/h)) |u(i)|2H1(Ωi)
.

In this section, we only specify the bound for Φ1(H, h) in Assumption 1 for
the case where the coarse level primal variables consist of both the subdomain
vertex and edge average degrees of freedom; for other options, see [20] or [27,
Section 6.4]. Very much as for the two-dimensional problems, we can write the
component on the subdomain Ωi of ED,1w as

(ED,1w)(i) = w(i) − ∑

Fij⊂∂Ωi

δ†j(F ij)Ih(ϑFij(w(i) − w(j)))

− ∑

Eik⊂∂Ωi

∑

l∈MEik

δ†l (E ik)Ih(ϑEik(w(i) − w(l))). (19)
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In the following, we give bounds for the edge and face terms.

Edge terms: Denote the common edge average value of w(i) and w(l) on E ik

by wEik , and we have,

|ϑEik(w(i) −w(l))|2H1(Ωi)
≤ 2|ϑEik(w(i) −wEik)|2H1(Ωi)

+ 2|ϑEik(w(l) −wEik)|2H1(Ωi)
.

To bound the first term in the right hand side, we only need to look at the
elements next to the edge E ik in the subdomain Ωi. For each such element K,
we denote its nodes on E ik by xs, s = 1, ..., nK , and we have

∫

K

∣∣∣∇(ϑEik(w(i) − wEik))
∣∣∣
2 ≤ Ch3

nK∑

s=1

(w(i)(xs)− wEik)2

h2
.

Summing over the elements K, we have

|ϑEik(w(i)−wEik)|2H1(Ωi)
≤ C‖w(i)−wEik‖2

L2(Eik) ≤ C (1 + log(H/h)) |w(i)|2H1(Ωi)
,

where the last inequality is a result of Lemma 4.

Face terms: Denote one edge of the face F ij by E ik and the common edge
average value of w(i) and w(j) on E ik by wEik . We have

|ϑFij(w(i)−w(j))|2H1(Ωi)
≤ 2|ϑFij(w(i)−wEik)|2H1(Ωi)

+2|ϑF ij(w(j)−wEik)|2H1(Ωi)
.

For the first term, we note that ϑFij(w(i) − wEik) is supported only in the
elements next to the face F ij in the subdomain Ωi. Let us denote such an
element by K and denote its nodes on the face F ij by xs, s = 1, ..., nK , where
nK is the number of such nodes. We then have

∫

K

∣∣∣∇(ϑFij(w(i) − wEik))
∣∣∣
2 ≤ Ch3

nK∑

s=1

(w(i)(xs)− wEik)2

h2
.

Summing over the elements which are next to F ij, we have

|ϑFij(w(i) −wEik)|2H1(Ωi)
≤ 1

h
‖w(i) −wEik‖2

L2(Fij) ≤ C
H

h
(1 + log

H

h
)|w(i)|2H1(Ωi)

,

where the last step is a result of Lemma 4.

Combining the bounds on the edge and face terms in the right hand side of
equation (19), we have Φ1(H, h) = C H

h
(1 + log(H/h)), in Assumption 1, for

the case where the set of coarse level primal degrees of freedom consist of both
the subdomain vertex and edge average degrees of freedom.
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6.3 Using discrete harmonic extensions

Better stability results can be obtained for the average operator ED,2 which
employs a discrete harmonic extension of the interface jump to the interior of
subdomains. For two-dimensional problems, the components of ED,2w in the
subdomain Ωi can be written, as in equation (7),

(ED,2w)(i) = w(i) − ∑

Eij⊂∂Ωi

δ†j(E ij)(Ih ⊕H(i))(ϑEij(w(i) − w(j))),

for any given w ∈ W̃ . A bound on the edge terms can be found in [30, Lemma
3.3]. For three dimensional problems, where both subdomain vertex and edge
average degrees of freedom are chosen as primal variables, the results can be
found in [27, Lemma 6.34]. In both cases, Φ2(H, h) = C (1 + log(H/h))2, in
Assumption 1.

To summarize, for two-dimensional problems, when only subdomain corner
variables are chosen as coarse level primal variables, Φ1(H, h) = C H

h
(1 +

log H
h
), for the average operator ED,1, and Φ2(H, h) = C (1 + log(H/h))2, for

ED,2, in Assumption 1. When the edge average degrees of freedom are also
chosen as primal degrees of freedom for two-dimensional problems, Φ1(H, h) =
CH/h, for ED,1. For three-dimensional problems, we have Φ1(H, h) = C H

h
(1+

log H
h
), for ED,1, and Φ2(H, h) = C (1 + log(H/h))2 for ED,2, when both the

subdomain vertex and edge average degrees of freedom are chosen as primal
variables.

7 Inexact solvers

A BDDC preconditioner which uses inexact solvers is defined by

M−1
3 = (R̃T

D −HV JD)Ã−1
V (R̃D − JT

DHT
V ),

where HV is the direct sum of subdomain operators −A
(i)−1

IIV
A

(i)T

ΓI . Here A
(i)−1

IIV

and Ã−1
V can represent the action of one or several multigrid V-cycles or W-

cycles for solving the subdomain Dirichlet problems and the global partially
subassembled problem (4), with a zero initial guess, respectively. They can be
written in terms of the exact solution operators as, cf. [3], [13],

A
(i)−1

IIV
= (I −Mi

µ)A
(i)−1

II , i = 1, 2, ..., N ; Ã−1
V = (I − M̃ ν)Ã−1,

where Mi and M̃ are error propagation matrices corresponding to one multi-
grid V-cycle or W-cycle iteration. µ and ν are the number of iterations used.
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A few nested levels of meshes for the multigrid implementation, for solving the
partially assembled problem (4), are shown in Figure 1, with nine subdomains
in two dimensions and for the case where the coarse level primal variables are
those at the subdomain corners. From the structure of the matrix in (4), we
can see that at each level of the V-cycle, a Gauss-Seidel smoothing step can
be implemented subdomain by subdomain independently at first, and then
followed by a Gauss-Seidel step on the coarse level primal variables, which has
to be done sequentially. In our implementation, the coarsest level mesh in the
multigrid methods is always given in terms of the nodes related to the coarse
level primal variables, e.g., as in Figure 1. At the coarsest level, the problem
is solved exactly and the coarse level problem matrix is the stiffness matrix of
the continuous bilinear finite element space on the coarsest level mesh. When
the size of the coarse level problem is relatively small, the main effort of a
multigrid V-cycle for solving the partially subassembled problem (4) will be
related to subdomain computations that can be carried out in parallel.

Level 2

Level 3

Level 1

Fig. 1. Three nested meshes for the partially subassembled problem.

In order to show that the condition number bound of the preconditioned oper-
ator M−1

3 A is as strong as that of M−1
2 A, we need assume that the convergence

rates of the multigrid solvers is independent of the problem size, i.e., we assume

Assumption 2 There is a positive constant η∗ < 1, which is independent of
H, h, and the number of subdomains, such that, ‖Mi‖A

(i)
II

≤ η∗ and ‖M̃‖
Ã
≤

η∗.

The bound ‖Mi‖A
(i)
II

≤ η∗ is known for the subdomain Dirichlet problems, cf.

[2] and [3]. A result of Assumption 2 is that the bilinear forms corresponding to
the multigrid approximation are spectrally equivalent to the original bilinear
forms, cf. [13], i.e., there are positive constants c and C, which are independent
of H, h, and the number of subdomains, such that,

cu
(i)T

I A
(i)
IIV

u
(i)
I ≤ u

(i)T

I A
(i)
II u

(i)
I ≤ Cu

(i)T

I A
(i)
IIV

u
(i)
I , i = 1, 2, ..., N, (20)
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cuT ÃV u ≤ uT Ãu ≤ CuT ÃV u. (21)

Using equations (20) and (21), Assumption 1 is also valid for the average
operator defined by R̃(R̃T

D − HV JD) with the same function Φ2(H, h) as for
ED,2 with exact solvers. With a small modification in the proof of Theorem 2,
we can also prove a similar condition number bound for the preconditioned
operator M−1

3 A.

Theorem 3 Let Assumptions 1 and 2 hold. The preconditioned operator M−1
3 A

= (R̃T
D−HV JD)Ã−1

V (R̃D−JT
DHT

V )A, is symmetric, positive definite with respect
to the bilinear from 〈·, ·〉A and

c 〈u, u〉A ≤
〈
M−1

3 Au, u
〉

A
≤ CΦ2(H, h) 〈u, u〉A , ∀u ∈ Ŵ ,

where c and C are positive constants independent of H, h, and the number of
subdomains.

Another approach to solving the partially subassembled problem (4) inexactly,
would be to construct submatrices Â(i) which are spectrally equivalent to A(i).
Such ideas have proven very successful in the design of many primal iterative
substructuring algorithms; see Chapter 5 and in particular Section 5.2 of [27].
We note that all the matrices A(i) corresponding to interior subdomains will be
singular and that therefore any such a pair of A(i) and Â(i) must have a common
null space. Another requirement is that there exists a fast algorithm for solving
the linear systems with the submatrices Â(i)

rr . If the pairs of subdomain matrices
are spectrally equivalent, it can be easily shown that the matrix obtained
by partially subassembling the Â(i) will be spectrally equivalent to Ã. This
then straightforwardly leads to a strong overall result if the inexact Dirichlet
solvers also are of good quality. Algorithmically, an algorithm based on such
a preconditioner would closely resemble the algorithm with exact subdomain
solvers; an approximation of S̃Π in (5) would be computed and then factored
replacing, in the algorithm, the A(i) by the Â(i).

8 Numerical experiments

In our numerical experiments, a Poisson equation on a square domain with
Dirichlet boundary conditions is discretized using bilinear elements on a uni-
form square mesh. The FETI–DP algorithm with a lumped preconditioner,
the standard BDDC algorithm, and the preconditioners M−1

1 , M−1
2 , and M−1

3

are used to solve the discrete problem. We implement the standard BDDC
algorithm in terms of R̃T

D,ΓS̃−1
Γ R̃D,ΓSΓ for solving the interface problem. The

preconditioned conjugate gradient method is always used in the iterations, and
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it is stopped when the L2−norm of the residual has been reduced by a factor
10−6. In all the tables below, the condition number bounds are estimated by
using the smallest and largest eigenvalues obtained from the tridiagonal Lanc-
zos matrix generated by the preconditioned conjugate gradient iterations.

In Tables 1 and 2, we compare the condition number bounds and iteration
counts of M−1

1 A and M−1
2 A with those of the FETI–DP algorithm with a

lumped preconditioner and those of the BDDC algorithm, respectively. Two
different sets of coarse level primal variables are used, either only the subdo-
main corner variables or both the subdomain corner and edge average vari-
ables. We see that both condition number bounds and iteration counts match
very well for M−1

1 A and the FETI–DP algorithm with a lumped precondi-
tioner, and for M−1

2 A and the BDDC algorithm. The convergence rates are
always independent of the number of subdomains. With an increase of the
subdomain problem size, the condition number bounds of M−1

1 A and of the
lumped FETI–DP algorithm grow quickly, especially for the case when only
subdomain corner variables are used as coarse level primal variables. Better
condition number bounds are obtained for M−1

2 A and the BDDC algorithm,
where the subdomain Dirichlet problems are solved directly; we see from Table
2 that the growth of the condition numbers is then slow with an increase of
the subdomain problem size.

Tables 3 and 4 show the condition number bounds and iteration counts of
M−1

3 A, where inexact solvers are used, and they are also compared with those
of M−1

2 A. We have chosen three different sets of coarse level primal variables:

• the case with subdomain corner variables only;
• the case with corner variables, variables at the middle points of the edges,

and variables at the subdomain centers;
• the case with edge average variables and the subdomain corner and center

variables.

On each level of the V-cycle and W-cycle, two Gauss-Seidel iterations were
used for both the pre- and the post-smoothing steps, as represented by V22 and
W22 in Tables 3 and 4. One V-cycle is always used for solving the subdomain
Dirichlet problems. The 3W22, 2V22, and 1V22 in the tables, represent the use
of three W-cycles, two V-cycles, and one V-cycle, respectively, for solving the
partially subassembled problem in the algorithm. Table 3 shows that when
3W22 is used to solve the partially subassembled problem, the condition num-
ber bounds and iteration counts are the same as for the algorithm using exact
solutions. If only one or two V-cycles are used, we can see from Table 4 that
the changes of the condition number bounds and iteration counts are very
small, for the cases where the coarse level degrees of freedom does not involve
any edge averages. In fact better convergence rates are obtained when 1V22

was used to solve the partially subassembled problem than when it is solved
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Table 1
Condition number bounds (κ) and iteration counts (it.) of FETI–DP (lumped) and
M−1

1 A

With Edge Aver. Corners only

FETIDP M−1
1 A FETIDP M−1

1 A

H/h # of Sub. κ it. κ it. κ it. κ it.

4× 4 1.9 8 1.9 7 8.3 12 8.8 12

8× 8 2.0 8 2.0 7 10.8 19 11.3 17

8 12× 12 2.0 8 2.0 7 11.2 19 11.8 17

16× 16 2.0 8 2.0 7 11.3 19 11.6 17

20× 20 2.0 8 2.0 7 11.3 19 11.7 17

4 1.1 5 1.1 4 3.3 9 3.5 9

8 4× 4 1.9 8 1.9 7 8.3 12 8.8 12

16 3.8 12 3.9 9 19.6 16 21.4 16

32 8.0 17 8.2 13 56.7 22 63.5 20

Table 2
Condition number bounds and iteration counts of BDDC and M−1

2 A

With Edge Aver. Corners only

BDDC M−1
2 A BDDC M−1

2 A

H/h # of Sub. κ it. κ it. κ it. κ it.

4× 4 1.2 5 1.2 5 2.7 8 2.7 8

8× 8 1.2 5 1.2 5 3.0 10 3.0 9

8 12× 12 1.2 5 1.2 5 3.1 10 3.1 10

16× 16 1.2 5 1.2 5 3.1 10 3.1 10

20× 20 1.2 5 1.2 5 3.1 10 3.1 10

4 1.1 4 1.1 4 2.0 7 2.0 7

8 4× 4 1.2 5 1.2 5 2.7 8 2.7 8

16 1.4 5 1.4 5 3.6 9 3.6 9

32 1.7 6 1.7 6 4.6 10 4.6 9

exactly. For the case where the edge average degrees of freedom were part of
the primal variable set, the use of 2V22 is sufficient to guarantee small changes
in the convergence rates in all the experiments.

The CPU time used for running the algorithms with multigrid has not been
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Table 3
Condition number bounds and iteration counts of M−1

2 A and M−1
3 A with three

W-cycles

With Edge Aver. With Edge Mid. Corners only

M−1
2 A 3W22 M−1

2 A 3W22 M−1
2 A 3W22

H/h # of Sub. κ it. κ it. κ it. κ it. κ it. κ it.

4× 4 1.2 5 1.2 5 1.7 6 1.7 6 2.7 8 2.7 8

8× 8 1.2 5 1.2 5 1.8 7 1.8 7 3.0 9 3.0 9

8 12× 12 1.2 5 1.2 5 1.8 7 1.8 7 3.1 10 3.0 9

16× 16 1.2 5 1.2 5 1.8 7 1.8 7 3.1 10 3.0 9

20× 20 1.2 5 1.2 5 1.8 7 1.8 7 3.1 10 3.0 9

4 1.1 4 1.1 4 1.3 5 1.3 5 2.0 7 2.0 7

8 4× 4 1.2 5 1.2 5 1.7 6 1.7 6 2.7 8 2.7 8

16 1.4 5 1.4 5 2.2 7 2.2 7 3.6 9 3.5 9

32 1.7 6 1.6 6 2.8 8 2.7 8 4.6 9 4.5 10

compared with those of the algorithms using direct solvers. Here we only con-
sider the floating point operation counts (flops) required by the algorithms
and show that, for problems of large size, using multigrid V-cycles in the al-
gorithms will be less expensive than using exact solvers. Let us denote the
size of the subdomain problems by N . When using a direct solver for solving
the subdomain level problems, the factorization step is only implemented once
in a preprocessing step of the algorithm reducing the rest of the work of an
iteration to forward eliminations and backward substitutions. The best pos-
sible bounds for a two dimensional discrete Laplacian is given in [12, Section
8.1] and best possible bounds are also known for three dimensions, see [7].
(In our discussion, we will assume that an optimal ordering is used for the
exact solvers.) In each iteration step, the forward and backward substitutions
asymptotically require more flops, O(N log N) in two dimensions and O(N4/3)
in three dimensions, than O(N) required by one multigrid V-cycle. In addi-
tion, the factorization step of a direct solver also requires O(N3/2) flops in 2D
and O(N2) in 3D. This shows that replacing the exact solvers in the BDDC
algorithms by multigrid V-cycles, where essentially the same iteration count
can be retained, will be more effective.
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