Math 11022 Spring 2015 Final Exam Review List

The Final Exam consists of $\mathbf{2 2}$ multiple-choice questions and $\mathbf{1 0}$ long-answer and graphing problems.
Multiple-choice problems can be done in a few steps. Some examples are:

1. Find the exact value in radians: $\sin ^{-1}\left(\frac{1}{2}\right)$
2. If $\sin \theta>0$ and $\tan \theta<0$, in what quadrant does θ terminate?
3. Determine the period (or domain, range, amplitude, phase shift) of the function $y=-4 \sin (3 x+\pi)$

Other examples could include questions on fundamental identities, the unit circle, triangle notation, vector notation
For the long-answer and graphing problems, work must be shown and complete solutions given. Some examples are:

1. Sketch the graph of the function $y=3 \cos 2 x$ over a two-period interval. Identify the domain, range, amplitude, period, and phase shift. Identify any maximum/minimum point(s) and x-intercept(s).
2. Find all exact real solutions, in radians: $\sin 4 x+2=3$
3. Verify the identity: $\tan x+\cot x=\sec x \csc x$

In general, expect
2-3 graphs: 1 sine, 1 cosine, 1 other
$1-2$ identities to verify
1-2 trig equations to solve
1-2 Right triangle applications
1 Law of Sines/Law of Cosines application
1 - 2 Vector questions
The final exam will cover the sections from the eBook which are listed. A sampling of exercises from the chapter reviews and chapter tests is included for practice. (In our EWA course, choose eBook, then Chapter 1 (or 2 or 3). The Review Exercises and Chapter Test are listed there. Answers can be found starting on p. A-25 in the eBook.)

Chapter 1: Trigonometry - Sections 1.1-1.8

Important:

- Know how to find coterminal angles; convert from radians to degrees and back; arc length; definitions of Trig functions
- Know the unit circle
- Be able to graph Trig functions and transformations without a calculator
- Given the graph, be able to write the equation for a Trig function
- Know the domains and ranges for $f(x)=\sin ^{-1}(x), f(x)=\cos ^{-1}(x), f(x)=\tan ^{-1}(x)$
- Know how to solve applications involving right triangles

p. 202 - Chapter 1 Review

$1,9,15,19,23,27,33,39,43,49,53,56,63,67,71,77,78,87,91,93,95,97,98$
p. 205 - Chapter 1 Test

1, 4-13, 16, 17

Chapter 2: Analytic Trigonometry - Sections 2.1-2.5

Important:

- Know the identities: Fundamental (p. 210), Sum \& Difference (p. 236)
- Be able to use the identities (provided): Double-Angle, Power-Reducing, Half-Angle, Product-to-Sum, Sum-to-Product
- Use identities listed to simplify expressions, evaluate expressions, verify identities, and solve equations, both all solutions and solutions in $[0,2 \pi)$.

p. 253 - Chapter 2 Review

$7,10,13,17,20,23,27,33,34,38,41,43,49,51,53,57,62,63,70,72,75,77,81,82$
p. 255 - Chapter 2 Test
$1-4,7-10,14-20,23,24$

Chapter 3: Additional Topics in Trigonometry - Sections 3.1-3.3
 Important:

- Know the equations for the Law of Sines (p. 262) and Law of Cosines (p. 271); use them to solve oblique triangles
- Know vector notation, component form, linear combination of \mathbf{i} and \mathbf{j}
- Be able to perform operations with vectors; find resultant, magnitude and direction angle
p. 302 - Chapter 3 Review 1 - 19 odd, 21 - 37 odd, 38, 39, $43-75$ odd, 107, 108
p. 306 - Chapter 3 Test

1-16

Here are some "sample" multiple-choice questions, along with the review sheet reference problem in ().

1. (Ch 1 Review, \#1) Name a positive angle and a negative angle that are coterminal with $\theta=\frac{13 \pi}{5}$
A) $\frac{3 \pi}{5},-\frac{7 \pi}{5}$
B) $\frac{23 \pi}{5},-\frac{14 \pi}{5}$
C) $\frac{\pi}{5},-\frac{17 \pi}{5}$
D) All of these
2. (Ch 1 Review, \#27) Determine the exact value of $\cos \left(\frac{11 \pi}{4}\right)$
A) $-\frac{\sqrt{3}}{2}$
B) $\frac{\sqrt{3}}{2}$
C) $\frac{\sqrt{2}}{2}$
D) $-\frac{\sqrt{2}}{2}$
3. (Ch 1 Review, \#49) Given that $\sin \alpha=-\frac{5}{13}$ and α 's terminal side is in quadrant III, determine the exact value of $\cos \alpha$.
A) $\frac{12}{13}$
B) $\frac{8}{13}$
C) $-\frac{12}{13}$
D) $-\frac{8}{13}$
4. (Ch 1 Review, \#87) . Find the exact value of $\tan \left(\sin ^{-1} \frac{4}{5}\right)$
A) $\frac{3}{4}$
B) $\frac{4}{3}$
C) $\frac{3}{5}$
D) $\frac{5}{3}$
5. (Ch 1 Review, \#12) Which of the following is the equation of the sine graph with amplitude 2 and period π ?
A) $y=2 \sin (x-\pi)$
B) $y=\frac{1}{2} \sin (4 x)$
C) $y=2 \sin (\pi x)$
D) $y=2 \sin (2 x)$
6. (Ch 2 Review, \#51) Find the exact value of $\cos \left(\frac{11 \pi}{16}\right) \cos \left(\frac{7 \pi}{16}\right)+\sin \left(\frac{11 \pi}{16}\right) \sin \left(\frac{7 \pi}{16}\right)$
A) $\frac{\sqrt{3}}{2}$
B) $\frac{1}{2}$
C) $\frac{\sqrt{2}}{2}$
D) 1
7. (Ch 3 Review, \#71) Find the magnitude of vector $\mathbf{t}=\langle-3,4\rangle$
A) 25
B) 5
C) 1
D) 7
