The Final Exam consists of 22 multiple-choice questions and 10 long-answer and graphing problems. *Multiple-choice* problems can be done in a few steps. Some examples are:

- 1. Find the exact value in radians: sin^{-1}
- 2. If $\sin\theta > 0$ and $\tan\theta < 0$, in what guadrant does θ terminate?
- 3. Determine the period (or domain, range, amplitude, phase shift) of the function $y = -4\sin(3x + \pi)$

Other examples could include questions on fundamental identities, the unit circle, triangle notation, vector notation For the *long-answer* and *graphing* problems, work must be shown and complete solutions given. Some examples are:

- 1. Sketch the graph of the function $y = 3\cos 2x$ over a two-period interval. Identify the domain, range, amplitude, period, and phase shift. Identify any maximum/minimum point(s) and x-intercept(s).
- 2. Find all exact real solutions, in radians: $\sin 4x + 2 = 3$
- 3. Verify the identity: $\tan x + \cot x = \sec x \csc x$

In general, expect

- 2 3 graphs: 1 sine, 1 cosine, 1 other
- 1 2 identities to verify
- 1-2 trig equations to solve
- 1 2 Right triangle applications
- 1 Law of Sines/Law of Cosines application
- 1 2 Vector questions

The final exam will cover the sections from the eBook which are listed. A sampling of exercises from the chapter reviews and chapter tests is included for practice. (In our EWA course, choose eBook, then Chapter 1 (or 2 or 3). The Review Exercises and Chapter Test are listed there. Answers can be found starting on p. A-25 in the eBook.)

Chapter 1: Trigonometry - Sections 1.1 - 1.8

Important:

- Know how to find coterminal angles; convert from radians to degrees and back; arc length; definitions of Trig functions
- . Know the unit circle
- Be able to graph Trig functions and transformations without a calculator .
- Given the graph, be able to write the equation for a Trig function .
- Know the domains and ranges for $f(x) = \sin^{-1}(x)$, $f(x) = \cos^{-1}(x)$, $f(x) = \tan^{-1}(x)$.
- Know how to solve applications involving right triangles .

p. 202 – Chapter 1 Review

- 1, 9, 15, 19, 23, 27, 33, 39, 43, 49, 53, 56, 63, 67, 71, 77, 78, 87, 91, 93, 95, 97, 98
- p. 205 Chapter 1 Test
 - 1, 4 13, 16, 17

Chapter 2: Analytic Trigonometry - Sections 2.1 - 2.5

Important:

- Know the identities: Fundamental (p. 210), Sum & Difference (p. 236)
- Be able to use the identities (provided): Double-Angle, Power-Reducing, Half-Angle, Product-to-Sum, Sum-to-Product
- Use identities listed to simplify expressions, evaluate expressions, verify identities, and solve equations, both all solutions and solutions in $[0, 2\pi)$.

p. 253 – Chapter 2 Review

- 7, 10, 13, 17, 20, 23, 27, 33, 34, 38, 41, 43, 49, 51, 53, 57, 62, 63, 70, 72, 75, 77, 81, 82
- p. 255 Chapter 2 Test
 - 1 4, 7 10, 14 20, 23, 24

Chapter 3: Additional Topics in Trigonometry - Sections 3.1 - 3.3 Important:

- Know the equations for the Law of Sines (p. 262) and Law of Cosines (p. 271); use them to solve obligue triangles
- Know vector notation, component form, linear combination of i and j
- Be able to perform operations with vectors; find resultant, magnitude and direction angle

p. 302 – Chapter 3 Review

1 - 19 odd, 21 - 37 odd, 38, 39, 43 - 75 odd, 107, 108

```
p. 306 – Chapter 3 Test
```

1 - 16

Here are some "sample" multiple-choice questions, along with the review sheet reference problem in ().

1. (Ch 1 Review, #1) Name a positive angle and a negative angle that are coterminal with $\theta = \frac{13\pi}{5}$

A)
$$\frac{3\pi}{5}$$
, $-\frac{7\pi}{5}$ B) $\frac{23\pi}{5}$, $-\frac{14\pi}{5}$ C) $\frac{\pi}{5}$, $-\frac{17\pi}{5}$ D) All of these

2. (Ch 1 Review, #27) Determine the exact value of $\cos\left(\frac{11\pi}{4}\right)$ A) $-\frac{\sqrt{3}}{2}$ B) $\frac{\sqrt{3}}{2}$ C) $\frac{\sqrt{2}}{2}$ D) $-\frac{\sqrt{2}}{2}$

3. (Ch 1 Review, #49) Given that $\sin \alpha = -\frac{5}{13}$ and α 's terminal side is in quadrant III, determine the exact value of $\cos \alpha$. A) $\frac{12}{13}$ B) $\frac{8}{13}$ C) $-\frac{12}{13}$ D) $-\frac{8}{13}$

4. (Ch 1 Review, #87) . Find the exact value of $tan\left(sin^{-1}\frac{4}{5}\right)$							
A)	$\frac{3}{4}$	B)	$\frac{4}{3}$	C)	$\frac{3}{5}$	D)	5 3

5. (Ch 1 Review, #12) Which of the following is the equation of the sine graph with amplitude 2 and period π ?

A) $y = 2\sin(x - \pi)$ B) $y = \frac{1}{2}\sin(4x)$ C) $y = 2\sin(\pi x)$ D) $y = 2\sin(2x)$

6. (Ch 2 Review, #51) Find the exact value of $\cos\left(\frac{11\pi}{16}\right)\cos\left(\frac{7\pi}{16}\right) + \sin\left(\frac{11\pi}{16}\right)\sin\left(\frac{7\pi}{16}\right)$

A)
$$\frac{\sqrt{3}}{2}$$
 B) $\frac{1}{2}$ C) $\frac{\sqrt{2}}{2}$ D) 1

7. (Ch 3 Review, #71) Find the magnitude of vector $\,t=\left\langle -3,4\right\rangle$

A) 25 B) 5 C) 1 D) 7