September 13, 2016 Exam 1 Matt Alexander
Name: \quad Score: \quad /100

Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided. You have 50 minutes to complete this exam.

1. (6 pts) Using complete sentences (and possibly some ϵ 's and δ 's), define the phrase "the limit of f as x approaches a is L."
2. (6 pts ea.) Determine the following limits if they exist or are $\pm \infty$. Justify your answers, and if a limit does not exist, explain why.
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x^{2}-25}$

Answer:

\qquad
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+25-5}}{x}$

Answer: \qquad
(c) $\lim _{x \rightarrow 1} f(x)$ where $f(x)= \begin{cases}3 x+2 & \text { if } x<1 \\ x^{5}+2 x^{2} & \text { if } x \geq 1\end{cases}$
\qquad
3. (22 pts) The function f is depicted below.

(a) Determine the following limits or state "does not exist" ("dne").
(b) For each of the following answer yes or no. If no, explain.
i. Is f continuous at $x=1$?
ii. Is f continuous at $x=3$?
(c) Find each of the following limits.

$$
\lim _{x \rightarrow \infty} f(x)=
$$

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

4. (6 pts) Suppose that $\lim _{x \rightarrow 2} f(x)=-1$ and $\lim _{x \rightarrow 2} g(x)=2$. Find $\lim _{x \rightarrow 2} \frac{2 f(x)-g(x)^{2}}{f(x)+f(x) g(x)}$. Remember to show work.
\qquad
5. (6 pts) Suppose we have a function $f(x)$ such that $-|x| \leq f(x) \leq x^{2}$ for all x between -1 and 1 . Find $\lim _{x \rightarrow 0} f(x)$ and justify using the appropriate theorem.

Answer:

\qquad
6. (6 pts ea.) Determine the following limits if they exist or are $\pm \infty$. Justify your answers, and if a limit does not exist, explain why.
(a) $\lim _{x \rightarrow 4^{+}} \frac{x+3}{(x-4)(x-2)}$

Answer:

(b) $\lim _{x \rightarrow+\infty} \frac{3 x^{8}-2 x^{2}+5}{7-5 x^{5}+4 x^{8}}$

Answer:
7. (10 pts) Find all horizontal and vertical asymptotes of $f(x)=\frac{x^{2}-5 x+6}{x^{2}-2 x}$. Justify your answers.

Answer:

Cont.
8. (2 pts) Spell the word "asymptote."

Answer:

\qquad
9. (6 pts ea.) State whether the following functions are continuous at the given points. Justify your answers using either a theorem or the definition of continuity at a point.
(a) $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-2 x-8}{x^{2}-7 x+12} & \text { if } x \neq 4 \\ 6 & \text { if } x=4\end{array}\right.$ at the point $x=4$.

Answer:

(b) $f(x)=\left\{\begin{array}{ll}3 x^{2}-4 x+2 & \text { if } x<-1 \\ 5 x^{3}-6 x^{2}+3 & \text { if } x \geq-1\end{array}\right.$ at the point $x=-1$.

Answer:

10. (6 pts) Use the intermediate value theorem to explain why there is a solution to the equation $\sin (\theta)=\cos (\theta)$ between $\theta=0$ and $\theta=\frac{\pi}{2}$.
