Math 12002	Analytic Geometry and Calc I		Fall 2016
November 15, 2016	Exam 4		Matt Alexander
Name:		Score:	/100
Please show all you	ır work! Answers without supporting work wi	ll not be giv	ven credit.

1. (6 points) Compute a Riemann sum using left end points and 4 approximating rectangles for the function f(x) = x - 3 on the interval [0, 4]

Write answers in spaces provided. You have 50 minutes to complete this exam.

Answer:_____

2. (4 points) Write the limit definition of the definite integral of the function $f(x) = x^2 - 2$ on the interval [2,5], using the standard test values and regular intervals. Do not compute.

Answer:_____

3. (6 points) Express the area of the shaded region in terms of definite integrals of the function f whose graph is given below.

4. (10 points) Assume $\int_2^6 f(x) dx = 2$ and $\int_2^6 g(x) dx = 10$. Compute the following integrals, if possible. If not enough information is given to compute an integral, indicate this.

(a)
$$\int_2^6 \frac{f(x)}{g(x)} dx =$$

(b)
$$\int_{2}^{6} [f(x) - g(x)] dx =$$

(c)
$$\int_{2}^{6} [3f(x) + 1] dx =$$

(d) $\int_{2}^{6} 4 \left[f(x) \cdot g(x) + f(x) \right] dx =$

Answer:_____

5. (8 points) Find the function f(x) such that $f'(x) = 8x^3 - 10x + 6$ and f(1) = -4.

Answer:_____

Answer:_____

Answer:_____

6. (8 points) The graph of a function f on the interval [-1, 5] is given below

Let g be the function defined by $g(x) = \int_{-1}^{x} f(t) dt$. Compute the following values: [Hint: Write out what g(x) is] (a) g(5) =

(b) g(-1) =

(c) g'(1) =

(d) g'(2) =

A	Answer:
^	Answer:
P	Inswer:
A	Answer:
A	Answer:

7. (4 points) Let h be the function defined by $h(x) = \int_{-x}^{x} f(t) dt$. Find h'(x). [Hint: Note the bounds of integration.]

8. (26 points) Compute the following indefinite integrals.

(a)
$$\int \left[\frac{1}{\sqrt{x}} + x^{-4} + 2\cos x - 9\right] dx$$

Answer:____

(b)
$$\int 5(x^4 + 2x)(x^5 + 5x^2 + 7)^6 dx$$

Answer:_____

(c) $\int (\sin x)\sqrt{3+4\cos x} \, dx$

Answer:_____

(d) $\int \frac{1}{x^3} \sin\left(\frac{1}{x^2}\right) dx$

9. (12 points) Compute the following definite integrals.

(a)
$$\int_{1}^{3} (4x+2) dx$$

Answer:_____

(b)
$$\int_0^{\pi/2} \sin^7(x) \cos(x) \, dx$$

Answer:_____

10. (8 points) A particle is moving in a straight line with velocity $v(t) = 2t + 3\sqrt{t}$. Find the average velocity of the particle between time t = 1 and time t = 9.

Answer:_____

11. (8 points) Find the area of the region bounded by the curves $y = 1 - x^2$ and y = x and the lines x = 0 and x = 2.