Solution to 12.1

Suppose Q is a point on ℓ but not on π. Then there is a unique line (projection) through Q perpendicular to π. Call the point of intersection of π with this line Q^{\prime}. Then since $P F$ and $Q Q^{\prime}$ are perpendicular to the same plane, they are parallel. Call the plane they live in π^{\prime}. In $\pi^{\prime} P F Q^{\prime} Q$ forms a quadrilateral. By our assumption on $\ell \angle Q F P=90^{\circ}$, but $Q^{\prime} F$ is a line in π and so $\angle P F Q^{\prime}$ is 90 degrees as well. This is a contradiction since Q is interior to $\angle P F Q^{\prime}$ (unless Q is Q^{\prime}. Thus ℓ is in π.

Solution to 12.2

Clearly π has more than one point. Let π^{\prime} be the plane through A perpendicular to the line $A B$. We want to show $\pi^{\prime}=\pi$. Let C be in π^{\prime} then by the definition of orthogonality to the plane $A C \perp A B$ so C is in π. Let C be in π, then the line $C A$ perpendicular to the line $B A$ and so by previous problem $C A$ lies in π^{\prime} and so C is in π^{\prime}. So by double inclusion $\pi=\pi^{\prime}$.

Solution to 12.12

Let ℓ_{1} and ℓ_{2} be parallel in the plane π_{2}. Let π_{1} be another plane not orthogonal to π_{2}. Take the orthogonal projections of the lines onto the plane π_{1}, call the projected lines p_{1} and p_{2}. Suppose p_{1} and p_{2} are not parallel. Then they intersect at a point, A say. Now consider the planes $\omega_{1}=\pi\left(\ell_{1}, p_{1}\right)$ and $\omega_{2}=$ $\pi\left(\ell_{2}, p_{2}\right)$. Notice that since our projections are orthogonal, the dihedral angles between ω_{1}, ω_{2} and π_{1} are 90°. Since p_{1} and p_{2} intersect and are in ω_{1} and ω_{2} the two planes must also intersect in a line ℓ_{3} orthogonal to π_{1} at A. But since ℓ_{3} is the orthogonal line through $A \in p_{1} \cap p_{2}$ it must intersect both ℓ_{1} and ℓ_{2} at the points B and C say. If $B=C$ then we have a contradiction to our original lines being parallel. If B and C are distinct in π_{2} then ℓ_{3} is in π_{2} and orthogonal to π_{1} and so we contradict our assumption of π_{1} not being orthogonal to π_{2}.

Solution to 12.13

Consider the triangles formed by the extended lines of the segments and their projections. That is, let $\ell_{1}=\overleftrightarrow{A B}$ and $\ell_{2}=\overleftrightarrow{C D}$. Let p_{1} and p_{2} be their respective projections. Call the respective projected points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}, and call the intersection of ℓ_{1} and $p_{1} O_{1}$ and the intersection of ℓ_{2} and $p_{2} O_{2}$ With the additional assumption given to you, you know that $\angle A O_{1} A^{\prime} \cong \angle C O_{2} C^{\prime}$. This holds in general. So then $\triangle B O_{1} B^{\prime} \sim \triangle D O_{2} D^{\prime} \sim \triangle A O_{1} A^{\prime} \sim \triangle C O_{2} C^{\prime}$. For the simple case, we can assume $A=A^{\prime}=O_{1}$ and $C=C^{\prime}=O_{2}$. Then the result follows directly. For the general case, apply the ratios of the sides of the triangle twice.

