Math 45021
 Proof writing example from informal to formal

Suppose we are given the following theorem and asked to prove it.
Theorem 1. If $\triangle A B C$ and $\triangle D E F$ are such that $\angle A \cong \angle D, \angle B \cong \angle E$, and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.

Least formal proof:

Statement	Reasoning
$\angle A \cong \angle D, \angle B \cong \angle E, \& \overline{B C} \cong \overline{E F}$	Given
$A B>D E$	Assumption
$\exists G$ on $\overline{A B}$ with $\overline{B G \cong \overline{E D}}$	$A B>D E$
$\triangle G B C \cong \triangle D E F$	By SAS
$\angle B G C \cong \angle D \cong \angle A$	Since $\triangle G B C \cong \triangle D E F$ and given
$\angle B G C>\angle A$	By exterior angle theorem
Contradiction	$\angle B G C>\angle A$ and $\angle B G C \cong \angle A$
$A B \leq D E$	Contradiction found in assumption
$A B=D E$	Symmetry of argument
$\triangle A B C \cong \triangle D E F$	ASA
We have shown what was desired.	

Construct sentences:

1. It is given that $\angle A \cong \angle D, \angle B \cong \angle E, \& \overline{B C} \cong \overline{E F}$.
2. Let's assume that $A B>D E$.
3. There exists G on $\overline{A B}$ with $\overline{B G} \cong \overline{E D}$.
4. By SAS we have $\triangle G B C \cong \triangle D E F$.
5. This gives $\angle B G C \cong \angle D \cong \angle A$.
6. By Exterior Angle Theorem $\angle B G C>\angle A$.
7. This is a contradiction since $\angle B G C=\angle A$ and $\angle B G C>\angle A$.
8. $A B=D E$ since our argument is symmetric for $A B<D E$.
9. By ASA $\triangle A B C \cong \triangle D E F$

Construct paragraphs:

We are given two triangles, $\triangle A B C$ and $\triangle D E F$, with $\angle A \cong \angle D, \angle B \cong \angle E$, and $\overline{B C} \cong$ $\overline{E F}$. From this we want to show that $\triangle A B C \cong \triangle D E F$.

Suppose $A B \not \not \equiv D E$. Then without loss of generality we may assume $A B>D E$. We can then say there exists G on $B A$ such that $B G \cong E D$. By SAS $\triangle G B C \cong \triangle D E F$. Thus $\angle B G C \cong \angle D \cong \angle A$, but by the exterior angle theorem $\angle B G C>\angle A$.

Hence we contradict our assumption that $A B \not \approx D E$. So $A B=D E$ and by ASA $\triangle A B C \cong \triangle D E F$ as desired.

