
RESEARCH STATEMENT

MATTHEW ALEXANDER

1. Introduction

The main topics of my research interests are Convex and Discrete Geometry. I am inter-
ested in finding versions of classical facts from Convex Geometry and Geometric Tomogra-
phy in discrete and non-linear settings. My interest in this area began during my time as
an undergraduate in a summer REU where we explored a discrete version of Aleksandrov’s
uniqueness theorem. Our exploration followed a call by Gardner, Gronchi, and Zong in
[GGZ] to begin bringing the theory of discrete tomography in line with the fuller theory of
continuous geometric tomography.

Geometric Tomography concerns the reconstruction of objects from incomplete data such
as projections or sections. The objects of interest are often taken to be convex bodies so
that the tools of convex geometry may be applied. There is a rich theory for continuous
convex bodies in Rn, however, much less has been done for discrete convex lattice sets in Zn.
Here, a convex body is a compact convex set with non-empty interior, and a convex lattice
set is a set of points equal to the intersection of Zn with a convex body. A large reason
for this current disparity is that many of the basic results for continuous convex bodies fail
in the discrete setting. For example, for two convex bodies in Rn their Minkowski sum is
convex. However, in the discrete case this does not remain true. Another example is Brunn’s
theorem which says that for any origin-symmetric convex body and given any unit vector
the section of largest volume perpendicular to the unit vector passes through the origin. We
can formulate this theorem by taking volume to be the cardinality of a discrete set, but we
again find that the theorem does not hold.

In [AHZ] we explored a discrete question that follows from questions relating to the isomor-
phic Busemann-Petty problem. In particular we found that for a convex origin symmetric
body K the discrete volume of the largest slice of K is larger than the discrete volume of K
up to a constant depending only on the dimension. We also found the best possible bound
in the case of unconditional bodies still depends on the dimension, and we generalized the
result to slices of higher codimension.

Another well known open problem is the conjecture of Mahler related to the extreme values
of the volume product of a convex body. In [AFZ2] we investigated several cases for the class
of polytopes with less than a certain number of vertices. In particular, we independently
verified a result from [MR2] that the regularN -gon is the polygon of maximal volume product
for all polygons with N vertices. We also study the maximal bodies in the class of convex
polytopes with n + 2 vertices, and symmetric poltyopes with 2n + 4 vertices. In [AFZ1]
we explore a more discrete version of the volume product that comes from embedding the
space of Lipschitz functions over a metrics space as a symmetric polytope with conditions
on its vertices, called the Lipschitz-free space. We study the maximal body in this setting
in dimension two, and the minimal body in dimension three.
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2. Inequalities in Discrete Tomography

Let us denote by voln(K) the n-dimensional volume of a body K ⊂ Rn. For a unit
vector ξ ∈ Rn will denote by ξ⊥ = {ξ ∈ Rn : ξ · x = 0} a hyperplane orthogonal to ξ.
The famous Radon theorem tells us that a convex, symmetric body is uniquely defined by
the function voln−1(K ∩ ξ⊥) (see [Ga]). The analogous question in the discrete settings
was considered in [GGZ] and turned out to have a trivially affirmative answer. What we
are interested in are inequalities comparing the volumes of convex bodies and inequalities
involving the size of section of convex symmetric bodies. The original Busemann-Petty
problem was posed in 1956 (see [BP]). Let K and L be the origin-symmetric convex bodies
in Rn such that voln−1(K ∩ ξ⊥) ≤ voln−1(L ∩ ξ⊥) for every ξ ∈ Sn−1. Does it necessarily
follow that voln(K) ≤ voln(L)? This problem was solved at the end of the 1990’s; we refer to
[Zh, GKS, Ko1] for the solution and historical details. The answer is affirmative if n ≤ 4 and
negative if n ≥ 5. The fact that the answer is negative in the high dimensional case naturally
leads to the question if the situation can be saved with the help of an absolute constant.
More precisely, does there exist a constant C > 1 such that for any n ≥ 2 and any origin-
symmetric convex bodies K,L ⊂ Rn such that voln−1(K ∩ ξ⊥) ≤ voln−1(L ∩ ξ⊥) for every
ξ ∈ Sn−1 we get voln(K) ≤ Cvoln(L)? The above is called the Isomorphic Busemann-Petty
problem and is considered one of the most exciting open problems in Convex Geometry.
Using the F. John theorem (see [MS]) it is not hard to show that C can be chosen as small
as
√
n, the best known estimate is due to Klartag [Kl], who proved that C can be chosen

of the order of n1/4 (which improves the previous estimate of Bourgain [Bo1, Bo2]). This
problem is equivalent to the so called “slicing problem”, which asks if a symmetric convex
body of volume 1 must have a central slice of large enough volume. More precisely, does
there exists an absolute constant c > 0 such that for any convex symmetric body K ⊂ Rn

with voln(K) = 1, maxξ∈Sn−1 voln−1(K ∩ ξ⊥) > c? Again the best known constant follows
from the work of Klartag and is of order n−1/4.

We note that the discrete version of the Busemann-Petty problem has a trivially affirmative
solution in all dimensions. Indeed, let K and L be the origin-symmetric convex bodies
Rn such that #(K ∩ ξ⊥ ∩ Zn) ≤ #(L ∩ ξ⊥ ∩ Zn) for every ξ ∈ Sn−1, where #K is the
cardinality of the set. Then we can always select a hyperplane ξ⊥ which intersects Zn just
by a line (i.e. a subspace of dimension 1) and thus the inequality on hyperplanes gives
immediately an inequality on all lines through the origin, which results in the fact that
#(K ∩ Zn) ≤ #(L ∩ Zn).

The situation is completely different for the slicing problem. It was noticed in [KoZ] that
the equivalence of slicing problem to the Busemann-Petty problem requires the measure (vol-
ume) to be a homogeneous and the cardinally of K∩Zn is not a homogeneous measurement.
Recently, Koldobsky [Ko2, Ko3, Ko4, Ko5, Ko6] developed an approach to the slicing prob-
lem for general measures via stability results and Zvavitch’s solution of the Busemann-Petty
problem for general measures [Z1, Z2]. Koldobsky was able to prove that if µ is a measure
with a strictly positive even density on Rn, then for any convex symmetric body K ⊂ Rn

µ(K) ≤ Cn1/2 max
ξ∈Sn−1

µ(K ∩ ξ⊥) voln(K)
1
n

where C is an absolute constant. It is an open question if the dependence on n can be
improved in the above inequality. However, Koldobsky also proposed a discrete version of
the slicing problem:
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Problem: Does there exists an absolute constant C > 0 such that for any convex symmetric
body K ⊂ Rn

#(K ∩ Zn) ≤ C max
ξ∈Sn−1

#(K ∩ ξ⊥ ∩ Zn) voln(K)
1
n .

It is essential to note that the problem does not follow from the standard slicing inequality
or slicing inequality for general measures. Both of these inequalities turn out to be trivial in
dimension 2, but the discrete version is non-trivial even in two dimensional case. In dimension
two one may obtain an estimate based on the well known Minkowski’s First theorem and
Pick’s theorem. However, for higher dimensions, a discrete version of Brunn’s theorem is
needed. Thus we showed in [AHZ] the following theorems.

Theorem 1. Consider a convex, origin-symmetric body K ⊂ Rd and a lattice Γ ⊂ Rd of
rank d, then

#(K ∩ ξ⊥ ∩ Γ) ≥ 9−(d−1)#(K ∩ (ξ⊥ + tξ) ∩ Γ), for all t ∈ R and ξ ∈ Sd−1.

From this discrete versions of Brunn’s theorem, we were then able to answer the general
question for maximal slices of any codimension.

Theorem 2. Let K ⊂ Rd be an origin-symmetric convex body with dim(K ∩Zd) = d. Then

(1) #K ≤ O(1)d dd−m max{#(K ∩H) : H ∈ GZ(m, d)} vold(K)
d−m

d .

Then, for m = d− 1 we obtain the estimate for hyperplane slices

(2) #K ≤ O(1)d max
ξ∈Sd−1

(
#(K ∩ ξ⊥)

)
vold(K)

1
d .

It is not clear if this bound may be improved in general. However, for the special class of
unconditional bodies, we are able to get the following sharper estimate whose equality comes
from the cross-polytope.

Theorem 3. Let K ⊂ Rd be an unconditional convex body with dim(K ∩ Zd) = d. Then

#K ≤ O(d) max
i=1,...,d

(
#(K ∩ e⊥i )

)
vold(K)

1
d ,

where e1, . . . , ed are the standard basis vectors in Rd. Moreover, this bound is the best
possible.

2.1. Future Work. There are many future directions possible for work in this area. First,
as stated above, is studying whether it is possible to improve the bound in theorem 2. One
likely area to begin improving is in the bound given in theorem 1. Another question is if the
continuous volume of the body, needed to preserve homogeneity, can be eliminated from the
estimate. There are also questions what can be said when restricting the size of the body
to be either large or small. In [R] the constant is improved for bodies with volume less than

Cd2 .
Further, there are many unanswered questions still open from [GGZ]. For example, the

problem that I worked on as an undergraduate of a discrete version of Aleksandrov’s unique-
ness theorem is still open with recent results on related questions in [RYZ] about determining
the convex lattice set uniquely via the surface area of projections. It would also be possible
to examine similar questions regarding the surface area of slices.
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3. Special Cases for Volume Product

Let K be convex body in Rn, symmetric with respect to the origin. One of the hardest
open problems in convex geometry is to understand the connection between the volumes of
K and K∗ (the polar body of K, K∗ := {x ∈ Rn : x ·y ≤ 1 ∀y ∈ K}). The Mahler conjecture
is related to this problem and it asks for the minimum of the volume product

P(K) = voln(K)voln(K∗).

One may notice P(K) is invariant under the action of nonsingular linear transformations.
Thus it makes sense to consider the quantities maxK P(K), minK P(K), where the maximum
and minimum is taken over all symmetric, convex bodies in Rn. In 1939 Santaló [Sa] proved
that the maximum of P(K) is attained on the Euclidean ball. About the same time Mahler
conjectured that the minimum should be attained on the unit cube Q, (the above inequality
is sometimes called the reverse Santaló inequality).

Mahler [Ma2] himself proved the conjectured inequality in R2, but the question is still
open even in the three-dimensional case. In the n-dimensional case, the conjecture has
been verified for some special classes of bodies such as unconditional bodies [Me, Re2, SR],
convex bodies having hyperplane symmetries which fix only one common point [BF], zonoids
[KBH, GMR, Re1], bodies of revolution [MR3], and bodies with some positive curvature
assumption [GM, RSW, S]. Bourgain and Milman, [BM], proved the isomorphic version of
the conjecture. That is, there exists an absolute constant c such that P(K) ≥ cnP(Q),
for all convex bodies K. See [Mak, RZ, T1, T2, T3] for detailed discussions of the Mahler
problem and properties of the dual volume.

3.1. Duality on Lipshitz-free Banach spaces. Following ideas from [GK], in [AFZ1]
we consider a discrete version of the volume product. Consider a metric space M =
{a1, . . . , an+1}, with metric d. We create a version of duality for metric spaces using Lip-
shitz functions on M . Note that the standard definition of duality is via the scalar product
and thus based on the linear structure, which is not necessary available in a metric space
and clearly not available in M . More precisely, consider the linear space M ] of Lipschitz
functions f on M , with the restriction that f(an+1) = 0, equipped with a norm

‖f‖Lip = max
ai 6=aj

f(ai)− f(aj)

d(ai, aj)
.

Note that each function f on M is just a set of n values f(an), and thus we can identify
M ] with Rn by assigning to a function f ∈ M ] a vector f = (f(a1), . . . , f(an)) ∈ Rn. This
allows us to embed the space into a polytope to better understand the geometry of M ] by
visualizing the unit ball of ‖f‖Lip (denote it by BLip). In fact, we can derive an exact formula
for the norm functional ‖f‖BLip

, corresponding to BLip on Rn. Let us denote di,j = d(ai, aj),
then

‖f‖BLip
= max

i 6=j

fi − fj
di,j

= max
k
f · Vk, for f ∈ Rn,

Where Vk are the vectors ± ei
di,n+1

for i = 1, . . . n, j = n+1 , and
ei − ej
di,j

for i 6= j ∈ {1, . . . n},

where e1, . . . , en is a standard basis of Rn. Thus we have a very clear picture of B∗Lip: it is just
the convex hull of the points Vk described above. Notice that there are 2n+n(n−1) = n(n+1)
vectors in Vk, and the vectors have a very specific form. Thus, we can define the volume
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product for the metric space as P(M) = P(BLip) and examine the extreme values for the
restricted class of polytopes defined in this way.

It is interesting to note that the maximum for the volume product in this space does not
follow from the Santaló result on the maximality of the Euclidean ball. For a fixed number
of points in a metric space M we always get a polytope with a bounded number of vertices,
thus the Euclidean ball is never one of them. However, if we consider B∗Lip for the metric

space M = {0, 1, 2, . . . , n + 1} where d(i, j) = |i − j|, then P(M) = P(Bn
1 ) = 4n

n!
. So it is

reasonable to conjecture that the minimal product volume possible coincides with Mahler’s
conjecture.

Let’s consider another finite metric space M where the distance between any two points
is constant. Then call B∗Lip = K for this metric space. We conjecture the following:
Conjecture: For fixed number of points in M , P(Bn

1 ) ≤ P(M) ≤ P(K) .
Utilizing the techniques of Symmetrizations and Shadow systems introduced by Rogers

and Shephard [RS], further developed and applied to to the case of volume product by Campi
and Gronchi [CG], with the more recent developments by Meyer and Reisner [MR1], and by
Fradelizi, Meyer, and Zvavitch [FMZ], we were able to show the following in [AFZ1].

Theorem 4. The maximum volume product for a metric space of three points is 9.

Theorem 5. The minimum volume product for a metric space of four points is P(B3
1).

3.2. Future work. Currently, the conjecture is open starting from the case of 6 elements
and, clearly, the most interesting results correspond to the case of metric spaces with a large
number of components (i.e. to large data structures). I am also working on a number of
particular cases of the conjecture studying metric spaces containing just a few points or when
the metric space has a special additional geometric structure, such as being a tree.

3.3. Volume product on Polytopes. In [AFZ2] we examine the volume product for classes
of restricted polytopes extending the ideas above and work done in [MR1]. In particular, we
found another proof of the following theorem first proven in [MR2].

Theorem 6. The regular N-gon has maximal volume product among all origin symmetric
polygons with N vertices.

We then explore natural extensions from [MR1] where they studied bodies with few vertices
compared to the dimension. Define Pnk be the set of all polytopes of dimension n with at
least k vertices. We use shadow systems and computations to find the following

Theorem 7. The maximal volume product in P3
5 occurs for the the bi-pyramid with an

equilateral triangular base.

Theorem 8. Let K be an origin symmetric body in P3
8. Then the maximal volume product

of such bodies is the double cone with line segments for the apex in a regular orientation.

3.4. Future Work. I am currently attempting to extend these results for dimension n.
That is, we conjecture that maximal bodies in Pnn+2 are double cones with maximal base in
Pn−1n . For symmetric bodies in Pn2n+4 we conjecture the maximum is a double cone whose
base is maximal in Pn−12n and whose apex are line segments in a regular orientation. It may
also be possible to increase the number of points in either R3 or in general.
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[RSW] S. Reisner, C. Schütt, and E. M. Werner, Mahler’s conjecture and curvature, Int. Math. Res.

Not. IMRN 1 (2012), 1–16.
[RS] C.A. Rogers and G.C. Shephard, Some external problems for convex bodies, Mathematika 5 (1958),

93–102.
[RYZ] D. Ryabogin, V. Yaskin, and N. Zhang Unique determination of convex lattice sets, Discrete and

Comp. Geometry, to appear
[RZ] D. Ryabogin and A. Zvavitch, Analytic methods in convex geometry, in Analytical and Probabilistic

Methods in the Geometry of Convex Bodies, IMPAN Lecture Notes, vol. 2, Warsaw (2014), 87-183.
[SR] J. Saint-Raymond, Sur le volume des corps convexes symetriques, Sem. d’Initiation a l’Analyse, 1980-

1981, no.11.
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