SECTION 2.1
Graphing linear equations

Graph the following linear equations using at least 3 points.
1. \(2x - 3y = 7\)
2. \(10x + 2y - 9 = 0\)
3. \(-3x - 5y = 10\)
4. \(4x + 3y = 12\)
5. \(-5x + 7y = 9\)
6. \(\frac{1}{2}x - 2y = 5\)
7. \(x + \frac{2}{3}y = 9\)
8. \(\frac{1}{2}x - 4y = 2\)
9. \(0.4x - 0.2y = 1\)
10. \(-1.2y - 2.4x = 3\)

SECTION 2.1
Graphing linear equations using intercepts

Graph the following linear equations using the x- and y- intercepts.
1. \(2x - 3y = 6\)
2. \(3y - 5x = 10\)
3. \(-x + 4y - 8 = 0\)
4. \(2x - 5y = 7\)
5. \(9 = 6x - y\)
6. \(\frac{1}{2}x - y = 2\)
7. \(2x + \frac{1}{3}y + 3 = 0\)
8. \(\frac{2}{3}x - \frac{1}{4}y = 2\)
9. \(-0.5x - 0.3y - 1.2 = 0\)
10. \(3.2x - y = 1.6\)

SECTION 2.2
Slope

Determine the slope of the line passing through the two points.
1. \((-3, 2)\) and \((5, -5)\)
2. \((6, 1)\) and \((3, -2)\)
3. \((1, -\frac{1}{3})\) and \((2\frac{1}{2}, -3)\)
4. \((\frac{1}{2}, 4)\) and \((3, -\frac{1}{4})\)
5. \((0.5, 1.75)\) and \((-0.25, 3.5)\)
6. \((1.6, -2.3)\) and \((-5.2, 6.2)\)

7. Determine the slope of the lines graphed below.
 a. [Graph]
 b. [Graph]
 c. [Graph]
 d. [Graph]
Determine the slope of the line with the equation below using 2 points on the line.

8. \(-2x + 4y = 6\)
9. \(3x - 2y - 4 = 0\)
10. \(\frac{1}{2}y + 3x = 10\)

Draw a line through the given point having the given slope:

11. \((-2, -4)\) and \(m = 1\)
12. \((0, 3)\) and \(m = -\frac{3}{4}\)
13. \((-\frac{1}{2}, 4)\) and \(m = -\frac{1}{3}\)
14. \((-3, -2)\) and \(m = 4\)

Match the graph of the lines with the slopes.

15. \(m = -3\)
16. \(m = -\frac{1}{2}\)
17. \(m = 0\)
18. \(m = 1\)
19. \(m = 4\)
20. \(m = \text{undefined}\)

a.
b.

c.

d.
21. Use slope to determine if the points (1, 0), (2, 1) and (−5, −4) are on the same line (collinear).

22. Use slope to determine if the points (−1, 3), (0, 6) and (−3, −3) are on the same line.
23. The value of a laptop decreases with time. If a laptop cost $1300 in 2004 and sells used in 2008 for $700, what was the rate of depreciation of the laptop with respect to time in years?

24. The y-coordinate of a line decreases by 3 for each time the x-coordinate increases by 2. If $(3, -2)$ is a point on this line what point is on the line when x increases by 6?

SECTION 2.2
Horizontal and Vertical lines
1. Write an equation of the horizontal line through the point $(-3, 4)$.
2. Write an equation of the vertical line through the point $(-5, \frac{1}{3})$.
3. Write an equation of the line through the point $(8, \sqrt{2})$ which is parallel to the x-axis.
4. Write an equation of the line through the point $(-12, 6)$ which is perpendicular to the y-axis.
5. What are the equations of the x- and y-axes?
6. Write equations for lines parallel to $x = -5$ which are 6 units away?

SECTION 2.3
The Point Slope Form of a Line
1. Determine the equation of the line that has slope $\frac{1}{2}$ and passes through the point $(-3, 5)$ in the form $y =$
2. Determine the equation of the line that has slope 4 and passes through the point $(6, 10)$ in the form $y =$
3. Determine the equation of the line that has slope $\frac{2}{3}$ and passes through the point $(-1, -1)$ in the form $y =$
4. Determine the equation of the line that has slope $\sqrt{2}$ and passes through the point $(-\sqrt{2}, 5)$ in the form $y =$
5. Determine the equation of the line that passes through the points $(-2, -1)$ and $(3, -4)$ in the form $y =$
6. Determine the equation of the line that passes through the points $(5, 0)$ and $(-\frac{1}{2}, 3)$ in the form $y =$
7. Determine the equation of the line that passes through the points $(0.2, -2.4)$ and $(-3.2, 4.4)$ in the form $y =$
8. Determine the equation of the line that crosses the x-axis at -6 and the y-axis at $2 \frac{2}{3}$ in the form $y =$
9. A classroom is normally 70°C. The temperature rises one-fifth of a degree for every student in the room.
 a) Write a linear equation to represent the temperature (y) of the room in terms of the number of students (x) present in the classroom.
b) How many students would be in the classroom if the temperature is 76°F.

10. The grass is 2 1/4 inches 6 days after the last mowing. It is 3 1/2 inches 12 days after the last mowing.
 a) Write a linear equation to represent the height of the grass \(y \) in terms of the number of days \(x \) after the last mowing.
 b) How tall will the grass be if the lawn is not mown for a month (30 days)?

SECTION 2.4
Writing equations and determine the slope given an equation.

1. Write the equation of the line with slope \(-\frac{2}{3}\) and \(y\)-intercept \((0, \frac{3}{2})\) in slope-intercept form.
2. Write the equation of the line with slope \(-0.8\) which crosses the \(y\)-intercept at \((-3.7\) in the form \(y =
3. Write the equation in slope-intercept form of the horizontal line with \(y\)-intercept \((0, -7)\).
4. Write the equation of the vertical line with \(y\)-intercept \((0, -1.5)\).
5. Determine the slope and \(y\)-intercept of the graph of \(12x - 14y + 30 = 0\).
6. Determine the slope and \(y\)-intercept of the graph of \(-6x - 3y = 8\).
7. What is the slope of the line with equation \(\frac{1}{2}x - 5y - 7 = 0\)?
8. What is the slope of the line with equation \(2.1x + 3.6y = 8.2\)?

SECTION 2.4
The General and Slope Intercept Forms
1. Write the equation \(y = -3x + 7\) in general form.
2. Write the equation \(y = \frac{3}{4}x - \frac{1}{2}\) in general form.
3. Write the equation \(\frac{1}{3}y - \frac{2}{5}x - 3 = 0\) in general form.
4. Write the equation \(y = 3.3x - 7.5\) in general form.

SECTION 2.4.
Graph Linear Functions
1. Graph the linear function \(f(x) = -4x + 2.5\)
2. Graph the linear function \(g(x) = \frac{2}{3}x - 2\)
3. Graph the linear function \(h(x) = x - \sqrt{2}\)
4. Graph the linear function \(i(x) = -\frac{1}{4}x + 1 \)

SECTION 2.4
Parallel and Perpendicular lines

Determine whether the lines \(\ell_1 \) and \(\ell_2 \) through the pairs of points are parallel, perpendicular, or neither.

1. \(\ell_1: (-2, 5) \) and \((-4, 9)\)
 \(\ell_2: (4, -1) \) and \((3, 1)\)

2. \(\ell_1: (5, 6) \) and \((4, 3)\)
 \(\ell_2: (-5, -2) \) and \((4, 1)\)

3. \(\ell_1: (2, -2) \) and \((5, 2)\)
 \(\ell_2: (-2, 7) \) and \((6, 1)\)

4. \(\ell_1: (5, 0) \) and \((-5, 2)\)
 \(\ell_2: (-2, -4) \) and \((3, -3)\)

Determine whether the lines with equations below are parallel, perpendicular, or neither.

5. \(-4x + 7y + 8 = 0\) and \(5x + 8y = 10\)

6. \(2x + 3y = 3\) and \(3x - 2y = 4\)

7. \(\frac{4}{5}x - 2y = \frac{2}{5}\) and \(x - 5y = 10\)

8. \(4.5x - 3y = 6.8\) and \(\frac{3}{2}x + y = \frac{1}{6}\)

9. Determine the equation of a line which passes through the point \(6, -2\) which is parallel to the line \(5x - 3y = 15\).

10. Determine the equation of a line which passes through the point \((-4, \frac{1}{2})\) which is perpendicular to the line \(4x = 12 - 3y\).

11. Determine the equation of a line which is perpendicular to the line \(-2x - 4y + 6 = 0\) and has the same y-intercept.

12. Determine the equation of a line which is parallel to the line \(6.4x + 2.4y = 8.5\) which crosses the x-axis at \(-1.8\).

13. Determine whether the quadrilateral with vertices \((-2, 3), (4, 2), (-3, -1),\) and \((3, -3)\) is a
14. Determine whether the quadrilateral with vertices \((-4,-1), (4,3), (-1,-4),\) and \((3,-2)\) is a trapezoid.

15. Determine whether the triangle with vertices \((-2,3), (1,-4),\) and \((7,-1)\) is a right triangle.

16. Show that the diagonals of the square with vertices \((-a,a), (-a,-a), (a,a),\) and \((a,-a)\) are perpendicular.
1. \(2x - 3y = 7\), Solution is: \(y = \frac{2}{3}x - \frac{7}{3}\)

2. \(10x + 2y - 9 = 0\), Solution is: \(y = -5x + \frac{9}{2}\)

3. \(-3x - 5y = 10\), Solution is: \(y = -\frac{3}{5}x - 2\)

4. \(4x + 3y = 12\), Solution is: \(y = -\frac{4}{3}x + 4\)
5. \(-5x + 7y = 9\), Solution is: \(y = \frac{5}{7}x + \frac{9}{7}\)

6. \(\frac{1}{2}x - 2y = 5\), Solution is: \(y = \frac{1}{4}x - \frac{5}{2}\)

7. \(x + \frac{2}{3}y = 9\), Solution is: \(y = -\frac{3}{2}x + \frac{27}{2}\)
8. $\frac{1}{3}x - 4y = 2$, Solution is: $\{y = \frac{1}{12}x - \frac{1}{2}\}$

9. $0.4x - 0.2y = 1$, Solution is: $\{y = 2.0x - 5.0\}$

10. $-1.2y - 2.4x = 3$, Solution is: $\{y = -2.0x - 2.5\}$
SECTION 2.1
ANSWERS — Graphing linear equations using intercepts

1. \(2x - 3y = 6\), Solution is: \(\{y = \frac{2}{3}x - 2\}\)

2. \(3y - 5x = 10\), Solution is: \(\{y = \frac{5}{3}x + \frac{10}{3}\}\)

3. \(-x + 4y - 8 = 0\), Solution is: \(\{y = \frac{1}{4}x + 2\}\)
4. $2x - 5y = 7$, Solution is: $\{y = \frac{2}{5}x - \frac{7}{5}\}$

5. $9 = 6x - y$, Solution is: $\{y = -9 + 6x\}$

6. $\frac{1}{2}x - y = 2$, Solution is: $\{y = \frac{1}{2}x - 2\}$
7. \(2x + \frac{1}{4}y + 3 = 0\), Solution is: \(y = -8x - 12\)

8. \(\frac{2}{3}x - \frac{1}{4}y = 2\), Solution is: \(y = \frac{8}{3}x - 8\)

9. \(-0.5x - 0.3y - 1.2 = 0\), Solution is: \(y = -1.667x - 4.0\)
10. $3.2x - y = 1.6$, Solution is: \(y = 3.2x - 1.6 \)

SECTION 2.2
ANSWERS — Slope

1. $-\frac{7}{8}$
2. 1
3. $-\frac{16}{9}$
4. $-\frac{17}{10}$
5. $-\frac{2}{3}$
6. $-\frac{5}{4}$
7.
 a. $m = \frac{1}{3}$
 b. $m = -\frac{4}{3}$
 c. $m = \frac{1}{2}$
 d. $m = -\frac{4}{3}$
8. $m = \frac{1}{2}$
9. $m = \frac{3}{2}$

10. $m = -6$

11.

12.

13.
14. [Diagram showing a line graph]

15. d.
16. b.
17. c.
18. a.
19. f.
20. e.
21. No
22. Yes
23. -$150 per year
24. (9,7)

SECTION 2.2
ANSWERS — Horizontal and Vertical lines
1. $y = 4$
2. $x = -5$
3. $y = \sqrt{2}$
4. $y = 6$
5. $x-axis: y = 0$
 $y-axis: x = 0$
6. $x = 1$ and $x = -11$

SECTION 2.3
ANSWERS – The Point Slope Form of a Line

1. $y = -\frac{3}{2}x + \frac{7}{2}$
2. $y = 4x - 14$
3. \(y = \frac{2}{3}x - \frac{4}{3} \)
4. \(y = \sqrt{2}x + 7 \)
5. \(y = -\frac{3}{2}x - \frac{11}{3} \)
6. \(y = -\frac{6}{11}x + \frac{30}{11} \)
7. \(y = -2x - 2 \)
8. \(y + \frac{4}{5}x + \frac{8}{3} \)
9. a) \(y = \frac{1}{5}x + 70 \)
 b) 30
10. a) \(y = \frac{5}{54}x + 1 \)
 b) \(7 \frac{1}{4} \)

SECTION 2.4
ANSWERS — Writing equations and determine the slope given an equation.

1. \(y = -\frac{2}{3}x + \frac{3}{2} \)
2. \(y = -0.8x - 3.7 \)
3. \(y = -7 \)
4. \(x = 0 \)
5. \(m = \frac{6}{7} , (0, 2\frac{1}{3}) \)
6. \(m = -2, (0, -2\frac{2}{3}) \)
7. \(m = \frac{1}{10} \)
8. \(m = -\frac{7}{12} \)

SECTION 2.4
ANSWERS — The General and Slope Intercept Forms

1. \(3x + y = 7 \)
2. \(3x - 4y = 2 \)
3. \(6x - 5y = -45 \)
4. \(33x - 10y = 75 \)

SECTION 2.4
ANSWERS — Graph Linear Functions

1. \(f(x) = -4x + 2.5 \)
2. \(g(x) = \frac{3}{5}x - 2 \)

3. \(h(x) = x - \sqrt{2} \)

4. \(i(x) = -\frac{1}{4}x + 1 \)
SECTION 2.4
ANSWERS — Parallel and Perpendicular lines

1. Parallel
2. Neither
3. Perpendicular
4. Neither
5. Neither
6. Perpendicular
7. Parallel
8. Neither
9. \(y = \frac{5}{3} x - 12 \)
10. \(y = \frac{4}{3} x + \frac{7}{2} \)
11. \(y = 2x + \frac{5}{2} \)
12. \(y = -\frac{8}{3} x - \frac{24}{5} \)
13. No
14. Yes
15. No
16. The slopes are negative reciprocals (their product is negative one), specifically 1 and -1