Real Analysis

Instructor: Dmitry Ryabogin

Assignment XI.

1. **Problem 1.**
 a) Let μ be a complex measure on a σ-algebra Σ, and let $E \in \Sigma$. Define $\lambda(E) := \sup \sum |\mu(E_i)|$, the supremum being taken over all finite partitions \{E_i\} of E. Does it follow that $\lambda = |\mu|$?

 b) Define a measure λ on Lebesgue measurable subsets of \mathbb{R}^2 as follows
 \[
 \lambda(A) := \int_{A \cap \mathbb{R}} f(x, 0) \, dx, \quad A \subset \mathbb{R}^2, \tag{closed and bounded}
 \]
 Here $f(x, 0)$ is a continuous function having a compact support on $\mathbb{R} = \{(x, y) : y = 0\}$. Prove that λ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}, but is singular with respect to the Lebesgue measure on \mathbb{R}^2.

2. **Problem 2.**
 Definition. We say that two measures λ_1, λ_2, defined on a σ-algebra Σ are mutually singular, $(\lambda_1 \perp \lambda_2)$, if there exists a pair of disjoint sets A, B such that λ_1 is concentrated on A, and λ_2 is concentrated on B.
 \[B = \text{supp}(\lambda_2) \]
 Suppose that $\mu, \lambda, \lambda_1, \lambda_2$ are measures on a σ-algebra Σ, and μ is positive. Prove the following chain of statements.
 a) If λ is concentrated on A, so is $|\lambda|$.
 b) If $\lambda_1 \perp \lambda_2$, then $|\lambda_1| \perp |\lambda_2|$.
 c) If $\lambda_1 \perp \mu$, and $\lambda_2 \perp \mu$, then $(\lambda_1 + \lambda_2) \perp \mu$.
 d) If $\lambda_1 \ll \mu$ and $\lambda_2 \ll \mu$, then $(\lambda_1 + \lambda_2) \ll \mu$.
 e) If $\lambda \ll \mu$, then $|\lambda| \ll \mu$.
 f) If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$, then $\lambda_1 \perp \lambda_2$.
 g) If $\lambda \ll \mu$ and $\lambda \perp \mu$, then $\lambda = 0$.

3. **Problem 3.** Suppose μ and λ are measures on a σ-algebra Σ, μ is positive, λ is complex. Prove that the following two conditions are equivalent:
 \(\nabla \) $\lambda \ll \mu$.

 a) For every $\epsilon > 0$ there exists a $\delta > 0$ such that $|\lambda(E)| < \epsilon$ for all $E \in \Sigma$ with $\mu(E) < \delta$.
 Hint. To show that ∇ implies ∇), assume that ∇ is false. Then there exists $\epsilon > 0$ and $E_n \in \Sigma$ such that $\mu(E_n) < 2^{-n}$, but $|\lambda(E_n)| \geq \epsilon$. Put $A_n := \cup_{i=n}^{\infty} E_i$, $A := \cup_{n=1}^{\infty} A_n$. Prove that $\mu(A) = 0$, but $|\lambda|(A) > 0$. Use Problem 2, e), to get a contradiction.
4. **Problem 4.** Suppose \(\mu \) is a positive measure on \(\Sigma \), \(g \in L(X, \mu) \), and \(\lambda(E) = \int_E f d\mu \), \(E \in \Sigma \). Prove that \(|\lambda|(E) = \int_E |f|d\mu \).

Hint. Observe that \(|\lambda|(E) \leq \int_E |f|d\mu \). To show the opposite inequality, construct a sequence \((g_n(x))_{n=1}^{\infty}\) of measurable simple functions such that \(|g_n(x)| = 1 \), and \(\lim_{n \to \infty} g_n(x) f(x) = |f(x)| \). Check that

\[
|\int_A g_n f d\mu| = \left| \sum_j a_{n,j} \int_{A \cap A_{n,j}} f d\mu \right| = \left| \sum_j a_{n,j} \lambda(A \cap A_{n,j}) \right| \leq \sum_j |\lambda(A \cap A_{n,j})| \leq |\lambda(A)|,
\]

where \(a_{n,j} \) are the values of \(g_n \), attained on the sets \(A_{n,j} \).

5. **Problem 5.** Let \((r_n)_{n=1}^{\infty}\) be an enumeration of the rational numbers, and for each positive integer \(n \), let \(f_n : \mathbb{R} \to \mathbb{R} \) be defined as \(f_n(x) = 2^{n+1}, x \in [r_n - 2^{-n}, r_n + 2^{-n}] \), and zero otherwise. Define a measure \(\lambda \) on Borel subsets of \(\mathbb{R} \) by

\[
\lambda(A) := \int_A f(x) dx, \quad f(x) := \sum_{n=1}^{\infty} f_n(x).
\]

a) Show that \(f(x) \) is finite almost everywhere with respect to \(m \), the Lebesgue measure on \(\mathbb{R} \).

Hint. Define \(A_k := \{ x \in \mathbb{R} : f(x) \geq 2^k \} \), \(k \) is a nonnegative integer. To show that \(m(\cap_{k=1}^{\infty} A_k) = 0 \) observe that \(\sum_{k=1}^{\infty} m(A_k) < \infty \).

b) Show that \(\lambda \) is \(\sigma \)-finite. In other words find a partition of \(\mathbb{R} \) into disjoint sets \(B_k \), such that \(\mathbb{R} = \cup_{k=1}^{\infty} B_k \), and \(\lambda(B_k) < \infty \).

Hint. One can take

\[
B_1 := A_1^c, \quad B_k := A_k^c \setminus (\cup_{l=1}^{k-1} A_l^c).
\]

c) Show that \(\lambda \ll m \).

d) Show that each non-empty open subset of \(\mathbb{R} \) has infinite measure under \(\lambda \).

Hint. Observe that \(f(x) \geq \sum_{k=1}^{\infty} f_{n_k}(x) \), where a subsequence \(n_k \) is chosen such that segments \([r_{n_k} - 2^{-n_k}, r_{n_k} + 2^{-n_k}]\), \([r_{n_l} - 2^{-n_l}, r_{n_l} + 2^{-n_l}]\) are disjoint (for \(k \neq l \)) and belong to the given open interval. Use \(\int f_n(x) dx = 1 \).