Real Analysis.
Instructor: Dmitry Ryabogin
Assignment VI.

1. Problem 1.
 a) Let \(\mu \) be a measure on \(X \), \(f : X \to [0, \infty] \) be measurable, \(\int_X f(x) d\mu = c \), where \(0 < c < \infty \), and \(\alpha > 0 \) be a constant. Find
 \[
 \lim_{n \to \infty} \int_X \log \left(1 + \left(\frac{f(x)}{n} \right)^\alpha \right)^n d\mu.
 \]

 Hint: If \(\alpha \geq 1 \), the integrands are dominated by \(\alpha f(x) \). If \(0 < \alpha < 1 \), Fatou’s lemma can be applied.

 b) Put \(f_n(x) := 1_A(x) \) if \(n \) is odd, and \(f_n(x) := 1 - 1_A(x) \) if \(n \) is even. Show that strict inequality can occur in Fatou’s lemma.

 c) It is easy to guess the limits of
 \[
 \int_0^n \left(1 - \frac{x}{n} \right)^n e^{x/2} dx, \quad \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-2x} dx
 \]
as \(n \to \infty \). Prove that your guesses are correct.

 d) Does
 \[
 \lim_{n \to \infty} \frac{1}{n} \int_0^1 \log \left(1 + e^{n f(x)} \right) dx
 \]
eexist for every real \(f \in L([0, 1], dx) \)? If it exists, what is it?

2. Problem 2.
 a) Let \(\mu(X) < \infty \), \((f_n)_{n=1}^\infty \) be a sequence of bounded measurable functions on \(X \). Assume also that \(f_n \to f \) uniformly as \(n \to \infty \). Prove that
 \[
 \lim_{n \to \infty} \int_X f_n(x) d\mu = \int_X f(x) d\mu,
 \]
and show that the hypothesis “\(\mu(X) < \infty \)” can not be omitted.

 Hint: Take \(X = \mathbb{R} \), \(\mu \) - Lebesgue measure, \(f_n(x) = 1_{[-n^2,n^2]}(x)/n \).
Definition. Let μ be a measure on X. We say that a sequence of integrable functions $(f_n)_{n=1}^{\infty}$ converges to integrable f in $L^1(X, \mu)$-sense, if for any $\epsilon > 0$ there exist a natural $N = N(\epsilon)$, such that $\forall n > N$ we have

$$\int_X |f_n(x) - f(x)| d\mu < \epsilon.$$

b) Construct a sequence of integrable on $[0, 1]$ functions $(f_n)_{n=1}^{\infty}$ satisfying

$$\lim_{n \to \infty} f_n(x) = 0 \; \forall x \in [0, 1], \quad \int_{[0,1]} |f_n(x)| dx \leq C \; \forall n,$$

but such that the sequence does not converge in $L^1([0, 1], dx)$.

Hint: Consider $f_n(x) := n 1_{(0,1/n]}(x)$.

c) Construct a sequence $(f_k)_{k=1}^{\infty}$ of continuous on $[0, 1]$ functions, such that

$$0 \leq f_k(x) \leq 1, \quad \lim_{k \to \infty} \int_{[0,1]} f_k(x) dx = 0,$$

but such that the sequence converges for no $x \in [0, 1]$.

Hint: Consider $f_k(x)$ defined in Assignment IV, Problem 4, b).

3. **Problem 3.** Let E_i, $i = 1, \ldots, n$ be measurable subsets of $[0, 1]$ such that every point $x \in [0, 1]$ belongs to at least q sets E_i, $q \leq n$. Prove that there exists i such that $m(E_i) \geq q/n$.

4. **Problem 4.** Let $f(x)$ be bounded on $[0, 1]$. Prove that $\int_{0}^{c} f(x) dx = 0 \; \forall c \in [0, 1]$ implies $f(x) = 0$ almost everywhere.

Hint:

a) Observe that for any open interval $(a, b) \subset [0, 1]$ we have

$$\int_{0}^{b} f(x) dx - \int_{a}^{b} f(x) dx = 0,$$

and the same is true for any open set.

b) Prove that the same is true for any closed subset of $[0, 1]$.

c) Prove that the same is true for any subset $X := \cup_{i=1}^{\infty} F_i \subset [0, 1]$ of type F_r (a set X is called of type F_r if it is a union of countably many closed sets). To do this, assume at first that $F_i \subset F_{i+1}$ (otherwise put $F_2 = F_1 \cup F_2$, $F_3 = F_1 \cup F_2 \cup F_3$, ..., $F_i = \cup_{k=1}^{i} F_k$). Then observe that

$$X = F_1 \cup (F_2 \setminus F_1) \cup (F_3 \setminus F_2) \cup \ldots \cup (F_{i+1} \setminus F_i) \cup \ldots$$