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Abstract

We define and study a class of summable processes,called additive
summable processes, that is larger than the class used by Dinculeanu
and Brooks [D–B].

We relax the definition of a summable processes X : Ω×R+ → E ⊂
L(F,G) by asking for the associated measure IX to have just an addi-
tive extension to the predictable σ−algebra P, such that each of the
measures (IX)z , for z ∈ (Lp

G)∗, being σ−additive, rather than having
a σ−additive extension. We define a stochastic integral with respect
to such a process and we prove several properties of the integral. Af-
ter that we show that this class of summable processes contains all
processes X : Ω×R+ → E ⊂ L(F,G) with integrable semivariation if
c0 6∈ G.

Introduction

We study the stochastic integral in the case of Banach-valued processes, from
a measure-theoretical point of view.

The classical stochastic integration (for real-valued processes) refers only
to integrals with respect to semimartingale (Dellacherie and Meyer [DM78]).
A similar technique has also been applied by Kunita [Kun70], for Hilbert
valued processes, making use of the inner product. A number of technical
difficulties emerge for Banach spaces, since the Banach space lacks an inner
product.



Vector integration using different approaches were presented in several
books by Dinculeanu [Din00], Diestel and Uhl [DU77], and Kussmaul [Kus77].
Brooks and Dinculeanu [BD76] were the first to present a version of integra-
tion with respect to a vector measure with finite semivariation. Later, the
same authors [BD90] presented a stochastic integral with respect to so-called
summable Banach-valued processes.

A Banach-valued process X is called summable if the Doleans-Dade mea-
sure IX defined on the ring generated by the predictable rectangles can be
extended to a σ-additive measure with finite semivariation on the corre-
sponding σ-algebra P. The summable process X plays the role of the square
integrable martingale in the classical theory: a stochastic integral H · X

can be defined with respect to X as a cadlag modification of the process
(

∫

[o,t]
H dIX

)

t≥0
of integrals with respect to IX such that

∫

[0,t]
HdIX ∈ L

p
G

for every t ∈ R+.
In [Din00] Dinculeanu presents a detailed account of the integration the-

ory with respect to these summable processes, from a measure-theoretical
point of view.

Our attention turned to a further generalization of the stochastic inte-
gral. Besides the processes considered in the classical theory (Hilbert-valued
square-integrable martingales and processes with integrable variation), the
class of summable processes also includes processes with integrable semivari-
ation, as long as the Banach space E satisfies some restrictions. To get rid
of some of these restrictions, we redefine, in Section 2, the notion of summa-
bility: now we only require that IX can be extended to an additive measure
on P, but such that each of the measures (IX)z, for z ∈ Z a norming space
for L

p
G, is σ-additive. With this new notion of summability, called additive

summability, the stochastic integral is then defined, in Section 5.1, as before.
The rest of Chapter 5 is dedicated to proving the same type of properties of
the stochastic integral as in Dinculeanu [Din00], namely measure theoretical
properties.

In Section we will prove that there are more additive summable processes
than summable processes by reducing the restrictions imposed on the space
E.
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1 Notations and definitions

Throughout this paper we consider S to be a set and R, D, Σ respectively a
ring, a δ−ring, a σ−ring, and a σ−algebra of subsets of S, E, F, G Banach
spaces with E ⊂ L(F, G) continuously, that is, |x(y)| ≤ |x||y| for x ∈ E and
y ∈ F ; for example, E = L(R, E). If M is any Banach space, we denote by
|x| the norm of an element x ∈ M , by M1 its unit ball of M and by M ∗ the
dual of M . A space Z ⊂ G∗ is called a norming space for G, if for every
x ∈ G we have

|x| = sup
z∈Z1

|〈x, z〉|.

If m : R → E ⊂ L(F, G) is an additive measure for every set A ⊂ S the
semivariation of m on A relative to the embedding E ⊂ L(F, G) (or relative
to the pair (F, G)) is denoted by m̃F,G(A) and defined by the equality

m̃F,G(A) = sup |
∑

i∈I

m(Ai)xi|,

where the supremum is taken for all finite families (Ai)i∈I of disjoint sets
from R contained in A and all families (xi)i∈I of elements from F1.

2 Additive summable processes

The framework for this section is a cadlag, adapted process X : R+ × Ω →
E ⊂ L(F, G), such that Xt ∈ L

p
E for every t ≥ 0 and 1 ≤ p < ∞.

2.1 The Measures IX and (IX)z

Let S be the semiring of predictable rectangles and IX : S → L
p
E the stochas-

tic measure defined by

IX({0} × A) = 1AX0, for A ∈ F0

and
IX((s, t] × A) = 1A(Xt − Xs), for A ∈ Fs.

Note that IX is finitely additive on S therefore it can be extended uniquely
to a finitely additive measure on the ring R generated by S. We obtain a
finitely additive measure IX : R → L

p
E verifying the previous equalities.
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Let Z ⊂ (Lp
G)∗ be a norming space for L

p
G. For each z ∈ Z we define a

measure (IX)z, (IX)z : R → F ∗ by

〈y, (IX)z(A)〉 = 〈IX(A)y, z〉 =

∫

〈IX(A)(ω)y, z(ω)〉dP (ω), for A ∈ P and y ∈ F

where the bracket in the integral represents the duality between G and G∗.
Since L

p
E ⊂ L(F, L

p
G), we can consider the semivariation of IX relative to

the pair (F, L
p
G). To simplify the notation, we shall write (ĨX)F,G instead of

(ĨX)F,L
p
G

and we shall call it the semivariation of IX relative to (F, G):

2.2 Additive Summable Processes

Definition 1. We say that X is p-additive summable relative to the pair
(F, G) if IX has an additive extension IX : P → L

p
E with finite semivariation

relative to (F, G) and such that the measure (IX)z is σ-additive for each
z ∈ (Lp

G)∗.
If p = 1, we say, simply, that X is additive summable relative to (F, G).

Remark. 1) This definition is weaker that the definition of summable pro-
cesses since here we don’t require the measure IX to have a σ−additive
extension to P.

2) The problems that might appear if (IX) is not σ−additive are conver-
gence problems (most of the convergence theorem are stated for σ−additive
measures and extension problems (the uniqueness of extensions of measures
usually requires σ−additivity).

3) Note that in the paper “The Riesz representation theorem and exten-
sion of vector valued additive measures” N. Dinculeanu and B. Bongiorno
[BD01] (Theorem 3.7 II) proved that if each of the measures (IX)z is σ-
additive and if IX : R → L

p
E has finite semivariation relative to (F, G) then

IX has canonical additive extension IX : P → (Lp
E)∗∗ with finite semivaria-

tion relative to (F, (Lp
E)∗∗) such that for each z ∈ (Lp

G)∗, the measure (IX)z

is σ−additive on P and has finite variation |(IX)z|.

Proposition 2. If X is p−additive summable relative to (R, E) then X is
p−summable relative to (R, E).

Proof. If X is p−additive summable relative to (R, E) then the measure IX

has an additive extension IX : P → L
p
E with finite semivariation relative

to (R, E). Moreover for each z ∈ (Lp
E)∗ the measure (IX)z is σ-additive.
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By Pettis Theorem, the measure IX is σ−additive. Hence, the process X is
p−summable.

2.3 The Integral
∫

HdIX

Let X be a p-additive summable process relative to (F, G).
Consider the additive measure IX : P → L

p
E ⊂ L(F, L

p
G) with bounded

semivariation ĨF,G relative to (F, L
p
G) for which each measure (IX)z is σ-

additive for every z ∈ Z.
Then we have

(ĨX)F,L
p
G

= sup{|mz| : z ∈ Z, ‖z‖ ≤ 1, z ∈ (Lp
F )∗},

(See Corollary 23, Section 1.5 [?].)
If p is fixed, to simplify the notation, we can write ĨF,G = ĨF,L

p
G
.

For any Banach space D we denote by FD(ĨF,G) or FD(ĨF,L
p
G
) the space

of predictable processes H : R+ × Ω → D such that

ĨF,G(H) = sup{

∫

|H|d|(IX)z| : ‖z‖q ≤ 1} < ∞.

Definition 3. Let D = F . For any H ∈ FF (ĨF,G) We define the integral
∫

HdIX to be the mapping z 7→
∫

Hd(IX)z.

Observe that if H ∈ FF,G(X) := FF (ĨF,G) the integral
∫

Hd(IX)z is
defined and is a scalar for each z ∈ Z, hence the mapping z 7→

∫

Hd(IX)z is
a continuous linear functional on (Lp

G)∗ Therefore,
∫

HdIX ∈ (Lp
G)∗∗

〈

∫

HdIX, z〉 =

∫

Hd(IX)z, for z ∈ Z

and

|

∫

HdIX | ≤ ĨF,G(H).

Theorem 4. Let (Hn)0≤n<∞ be a sequence of elements from FF,G(X) such
that |Hn| ≤ |H0| for each n and Hn → H pointwise. Assume that
(i)

∫

HndIX ∈ L
p
G for every n ≥ 1

and
(ii) The sequence (

∫

HndIX)n converges pointwise on Ω, weakly in G.
Then
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a)
∫

HdIX ∈ L
p
G

and
b)

∫

HndIX →
∫

HdIX, in the weak topology of L
p
G, as well as pointwise,

weakly in G.
c) If (

∫

HndIX)n converges pointwise on Ω, strongly in G, then

∫

HndIX →

∫

HdIX ,

strongly in L1
G.

Proof. This theorem was proved in [Din00] under the assumtion that IX is
σ−additive. But, in fact, only the σ-additivity of each of the measures (IX)z

was used. hence the same proof remains valid in our case.

2.4 The Stochastic Integral H · X

In this section we define the stochastic integral and we prove that the stochas-
tic integral is a cadlag adapted process.

Let H ∈ FF,G(X). Then, for every t ≥ 0 we have 1[0,t]H ∈ FF,G(X). We
denote by

∫

[0,t]
HdIX the integral

∫

1[0,t]HdIX. We define

∫

[0,∞]

HdIX :=

∫

[0,∞)

HdIX =

∫

HdIX.

Taking Z = (Lp
G)∗, for each H ∈ FF,G(X) we obtain a family (

∫

[0,t]
HdIX)t∈R+

of elements of (Lp
G)∗∗.

We restrict ourselves to processes H for which
∫

[0,t]
HdIX ∈ L

p
G for each

t ≥ 0. Since L
p
G is a set of equivalence classes,

∫

[0,t]
HdIX represents an

equivalence class. We use the same notation for any random variable in
its equivalence class. We are interested to see whether or not the process
(
∫

[0,t]
HdIX)t≥0 is adapted and if it admits a cadlag modification.

Theorem 5. Let X : R → E ⊂ L(F, G) be a cadlag, adapted, p-summable
process relative to (F, G) and H ∈ FF,G(X) such that

∫

[0,t]
HdIX ∈ L

p
G for

every t ≥ 0.
Then the process (

∫

[0,t]
HdIX)t≥0 is adapted.
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Proof. This is the equivalent of Theorem 10.4 in [Din00] and since in the proof
was used the σ-additivity of the measures (IX)z rather than σ-additivity of
the measure IX that proof will work for our case too.

It is not clear that there is a cadlag modification of the previously defined
process (

∫

[0,t]
HdIX)t. Therefore we use the following definition

Definition 6. We define L1
F,G(X) to be the set of processes H ∈ FF,G(IX)

that satisfy the following two conditions:
a)

∫

[0,t]
HdIX ∈ L

p
G for every t ∈ R+;

b) The process (
∫

[0,t]
HdIX)t≥0 has a cadlag modification.

The processes H ∈ L1
F,G(X) are said to be integrable with respect to X.

If H ∈ L1
F,G(X), then any cadlag modification of the process (

∫

[0,t]
HdIX)t≥0

is called the stochastic integral of H with respect to X and is denoted by
H · X or

∫

HdX:

(H · X)t(ω) = (

∫

HdX)t(ω) = (

∫

[0,t]

HdIX)(ω), a.s.

Therefore the stochastic integral is defined up to an evanescent process. For
t = ∞ we have

(H · X)∞ =

∫

[0,∞]

HdIX =

∫

[0,∞)

HdIX =

∫

HdIX.

Note that if H : R+ × Ω → F is an R-step process then we have

(H · X)t(ω) =

∫

[0,t]

Hs(ω)dXs(ω),

that is, the stochastic integral can be computed pathwise.
The next theorem shows that the stochastic integral H · X is a cadlag

process and it is cadlag in L
p
G.

Theorem 7. If X : R+×Ω → E ⊂ L(F, G) is a p-additive summable process
relative to (F, G) and if H ∈ L1

F,G(X), then: a) The stochastic integral H ·X
is a cadlag, adapted process.
b) For every t ∈ [0,∞) we have (H · X)t− ∈ L

p
G and

(H · X)t− =

∫

[0,t)

HdIX, a.s.
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If (H · X)∞−(ω) exists for each ω ∈ Ω, then

(H · X)∞− = (H · X)∞ =

∫

HdIX , a.s.

c) The mapping t 7→ (H · X)t is cadlag in L1
G.

Proof. a) Follows from the previous theorem and definition. b) and c) are
proved as in theorem 10.7 in [Din00] since there was not used the σ-additivity
of IX but rather of (IX)z.

2.5 The Stochastic Integral and Stopping Times

Let T be a stopping time. If A ∈ FT , then the stopping time TA is defined
by TA(ω) = T (ω) if ω ∈ A and TA(ω) = ∞ if ω 6∈ A. With this notation the
predictable rectangles (s, t] × A with A ∈ Fs could be written as stochastic
intervals (sA, tA]. Another notation we will use is IX [0, T ] for IX([0, T ] × Ω.

Let X : R+ × Ω → E ⊂ L(F, G) be an additive summable process

Proposition 8. For any stopping time T we have XT ∈ L
p
E and IX [0, T ] =

XT for T simple. For any decreasing sequence (Tn) of simple stopping times
such that Tn ↓ T , and for every z ∈ (Lp

G)∗ we have

〈IX([0, T ])y, z〉 = lim
n
〈XTn

y, z〉, (1)

where the bracket represents the duality between L
p
G and (Lp

G)∗.

Proof. Assume first that T is a simple stopping time of the form

T =
∑

1≤i≤n

1Ai
ti,

with 0 < ti ≤ ∞, ti 6= tj for i 6= j, Ai ∈ Fti are mutually disjoint and
⋃

1≤i≤n Ai = Ω. Then [0, T ] =
⋃

1≤i≤n[0, ti] × Ai is a disjoint union. Hence
IX([0, T ]) =

∑

i IX([0, ti] × Ai) =
∑

i 1Ai
Xti = XT . Since IX : P → L

p
E, we

conclude that XT ∈ L
p
E.

Next, assume that (Tn) is a sequence of simple stopping times such that
Tn ↓ T . Then [0, Tn] ↓ [0, T ]. Since (IX)z is σ-additive in F ∗, for any y ∈ F

and z ∈ (Lp
G)∗, we have

〈IX([0, T ])y, z〉 = 〈(IX)z([0, T ]), y〉 = lim
n→∞

〈(IX)z([0, Tn]), y〉
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= lim
n→∞

〈IX([0, Tn]y, z〉 = lim
n→∞

〈XTn
y, z〉.

and the relation (4.1) is proven. It remains to prove that XT ∈ L
p
E. Since

XTn
(ω) → XT (ω) it follows that XT is F−measurable. We will prove that

|XTn
| ∈ Lp to deduce that XTn

∈ L
p
G.

We saw before that for y ∈ F and z ∈ (Lp
G)∗ the sequence 〈(IX)([0, Tn])y, z〉

is convergent hence bounded, i.e.

sup
n

|〈(IX)([0, Tn])y, z〉| < ∞, for y ∈ F, z ∈ (Lp
G)∗.

By the Banach-Steinhauss Theorem, we have

sup
n

‖IX([0, Tn]y‖L
p
G

< ∞, for y ∈ F

hence
sup

n

‖IX([0, Tn]‖L
p
E

< ∞.

or supn ‖XTn
]‖L

p
E

< ∞, which is equivalent to supn

∫

|XTn
|pdP < ∞. Now

|XT |
p = lim |XTn

|p = lim inf |XTn
|p. If we apply Fatou Lemma we get:

∫

|XT |
pdP =

∫

lim inf |XTn
|p ≤ lim inf

∫

|XTn
|pdP ≤ sup

∫

|XTn
|pdP < ∞.

therefore XT ∈ L
p
G.

Proposition 9. Let S ≤ T be stopping times and h : Ω → F be an FS-
measurable, simple random variable. Then for any pair (T n)n, (Sn)n of se-
quences of simple stopping times, with T n ↓ T, Sn ↓ S, such that Sn ≤ T n

for each n, we have

〈

∫

h1(S,T ] dIX , z〉 = lim
n
〈h(XT n − XSn), z〉, for z ∈ (Lp

G)∗, (2)

where the bracket represents the duality between L
p
G and (Lp

G)∗.

Proof. First we prove that there are two sequences (T n) and (Sn) of simple
stopping times such that T n ↓ T, Sn ↓ S and Sn ≤ T n. In fact, there are two
sequences of simple stopping times T n and P n such that P n ↓ S and T n ↓ T .
Consider, now, Sn = P n ∧ T n. Since P n and T n are stopping times, Sn is a
stopping time and Sn ≤ T n. On the other hand, observe that S ≤ Sn ≤ P n
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and lim P n = S. Therefore limn→∞Sn = S too. So we have Sn ↓ S and
Sn ≤ T n.

Now we want to prove (4.2). Assume first h = 1Ay with A ∈ FS and
y ∈ F . Then

∫

h1(S,T ] dIX =

∫

1Ay1(S,T ] dIX =

∫

1(SA,TA]y dIX = IX((SA, TA])y.

For any sequence of simple stopping times (T n) and (Sn) with T n ↓ T , Sn ↓ S

and Sn ≤ T n, we have T n
A ↓ TA and Sn

A ↓ SA. Therefore, applying Proposition
8 for every z ∈ (Lp

G)∗, we get

〈

∫

h1(S,T ] dIX , z〉 = 〈IX((SA, TA])y, z〉 = 〈[IX([0, TA]) − IX([0, SA])]y, z〉

= lim
n→∞

〈XT n
A
y, z〉 − lim

n→∞
〈XSn

A
y, z〉 = lim

n→∞
〈(XT n

A
− XSn

A
)y, z〉

= lim
n→∞

〈1A(XT n − SXn)y, z〉 = lim
n→∞

〈h(XT n − XSn), z〉

Then the equality holds for any FS-step function h.

Proposition 10. Let S ≤ T be stopping times and assume that either
(i) h : Ω → R is a simple, FS-measurable function and H ∈ L1

F,G(X),
or
(ii) The measure IX is σ−additive, h : Ω → F is a simple, FS-measurable
function and H ∈ L1

R,E(X).
If

∫

1(S,T ]H dIX ∈ L
p
G in case (i) and

∫

1(S,T ]H dIX ∈ L
p
E in case (ii) then

∫

h1(S,T ]H dIX = h

∫

1(S,T ]H dIX .

Proof. Assume first hypothesis (i). Let (T n) and (Sn) be two sequences of
simple stopping times such that T n ↓ T , Sn ↓ S and Sn ≤ T n. Assume
H = 1(s,t]×Ay with A ∈ Fs and y ∈ F . Then T n ∧ t ↓ T ∧ t, Sn ∧ s ↓ S ∧ s.
Let z ∈ (Lp

G)∗. Then

〈

∫

h1(S,T ]H dIX , z〉 = 〈

∫

h1Ay1(S∨s,T∧t] dIX , z〉,

where the bracket represents the duality between L
p
G and (Lp

G)∗. By (4.2), for
the simple FS∨s-measurable function h1Ay and the stopping times (S ∨ s) ≤
(T ∧ t) we have

〈h

∫

1(S,T ]H dIX , z〉 = 〈

∫

1(S,T ]HdIX , hz〉 = 〈

∫

1(S∨s,T∧t]1AydIX, hz〉
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= lim〈1Ay(XT n∧t − XSn∨s), hz〉

= lim〈h1Ay(XT n∧t − XSn∨s), z〉 = 〈

∫

h1Ay1(S∨s,T∧t]dIX , z〉

= 〈

∫

h1Ay1(s,t]1(S,T ]dIX , z〉 = 〈

∫

hH1(S,T ]dIX , z〉

If H = 1{0}×Ay with A ∈ F0 and y ∈ F , since 1(S,T ]1{0}×A = 0 we have

〈h

∫

1(S,T ]H dIX , z〉 = 0 = 〈

∫

hH1(S,T ]dIX , z〉.

It follows that for any B ∈ R we have

〈

∫

h1(S,T ]1By dIX , z〉 = 〈h

∫

1(S,T ]1By dIX , z〉. (*)

The class M of sets B ∈ P for which the above equality holds for all z ∈
(Lp

G)∗ is a monotone class: in fact, let Bn be a monotone sequence of sets
from M and let B = lim Bn. For each n we have

∫

h1(S,T ]1Bn
yd(IX)z = 〈h

∫

1(S,T ]1Bn
ydIX , z〉.

Since h1(S,T ]1Bn
y is a sequence of bounded functions converging to h1(S,T ]1By

(h is a step-function) with |h1(S,T ]1Bn
y| ≤ |h||y|, we can apply Lebesgue The-

orem and conclude that
∫

h1(S,T ]1Bn
yd(IX)z →

∫

h1(S,T ]1Byd(IX)z. Using the
same reasoning we can conclude that

∫

1(S,T ]1Bn
yd(IX)hz →

∫

1(S,T ]1Byd(IX)hz.

hence we have

〈

∫

h1(S,T ]1By dIX , z〉 = lim
n
〈

∫

h1(S,T ]1Bn
y dIX , z〉 = lim

n
〈h

∫

1(S,T ]1Bn
y dIX , z〉

= 〈h lim
n

∫

1(S,T ]1Bn
y dIX , z〉 = 〈h

∫

1(S,T ]1By dIX , z〉

Since the class M of sets satisfying equality (*) is a monotone class containing
R we conclude that the equality (*) is satisfied by all B ∈ P.

It follows that for any predictable, simple process H and for each z ∈
(Lp

G)∗ we have

〈

∫

h1(S,T ]H dIX , z〉 = 〈h

∫

1(S,T ]H dIX , z〉 (**)
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Consider now the general case. If H ∈ L1
F,G(X), then there is a sequence

(Hn) of simple, predictable processes such that Hn → H and |Hn| ≤ |H|.
We apply Lebesgue’s Theorem and deduce that

∫

h1(S,T ]H
n d(IX)z →

∫

h1(S,T ]H d(IX)z, (1)

and
∫

1(S,T ]H
n d(IX)hz →

∫

1(S,T ]H d(IX)hz. (2)

By equality (**) for each n we have

∫

h1(S,T ]H
n d(IX)z = 〈

∫

h1(S,T ]H
n dIX , z〉 = 〈h

∫

1(S,T ]H
n dIX , z〉

=〈

∫

1(S,T ]H
n dIX , hz〉 =

∫

1(S,T ]H
n d(IX)hz

By (1) and (2) we deduce that

∫

h1(S,T ]H d(IX)z =

∫

1(S,T ]H d(IX)hz,

which is equivalent to

〈

∫

h1(S,T ]H dIX , z〉 = 〈

∫

1(S,T ]H dIX , hz〉.

We conclude that
∫

h1(S,T ]H dIX = h

∫

1(X,T ]H dIX , a.e.

Assume now hypothesis (ii). Since the measure IX is σ−additive the process
X is summable. Then observe that the assumptions of (ii) are the same as
the assumptions in Proposition 11.5 (ii) of [Din00]. Hence

∫

h1(S,T ]H dIX = h

∫

1(X,T ]H dIX ,

which concludes our proof.

12



Proposition 11. Let X : R × Ω → E ⊂ L(F, G) be a p-additive summable
process relative to (F, G) and T a stopping time.
a) For every z ∈ (Lp

G)∗ and every B ∈ P we have:

(IXT )z(B) = (IX)z(B ∩ [0, T ]).

b) The measure IXT : R → L
p
E has finite semivariation relative to (F, L

p
G)

c) If T is a simple stopping time then the process XT is summable.

Proof. a) First we prove that if T and S are simple stopping times then we
have IX((S, T ]) = XT − XS.

Assume that T is a simple stopping time of the form

T =
∑

1≤i≤n

1Ai
ti,

with 0 < ti ≤ ∞, ti 6= tj for i 6= j, Ai ∈ Fti are mutually disjoint and
⋃

1≤i≤n Ai = Ω. Then [0, T ] =
⋃

1≤i≤n[0, ti] × Ai is a disjoint union. Hence
IX([0, T ]) =

∑

i IX([0, ti] × Ai) =
∑

i 1Ai
Xti = XT . Since (S, T ] = [0, T ] −

[0, S] and IX is an additive measure, we have IX((S, T ]) = IX([0, T ]) −
IX([0, S]) = XT − XS.

Next observe that if T is a simple stopping time then T ∧t is also a simple
stopping time. In fact, if T =

∑

1≤i≤n 1Ai
ti then T ∧ t =

∑

i:ti<t 1Ai
ti +

∑

i:ti≥t 1Ai
t which is a simple stopping time.

Now we prove that for B ∈ R we have

IXT (B) = IX([0, T ] ∩ B).

In fact, for A ∈ F0 we have

IXT ({0} × A) = 1AX0 = IX({0} × A) = IX([0, T ] ∩ ({0} × A)).

For s < t and A ∈ Fs we have,

IXT ((s, t] × A) = 1A(XT
t − XT

s ) = 1A(XT∧t − XT∧s)

=1A(IX((T ∧ s, T ∧ t]) = 1A

∫

1(s,t]1[0,T ]dIX

=

∫

1A1(s,t]1[0,T ]dIX = IX([0, T ] ∩ ((s, t] × A)). (*)

We used the above Proposition 10 with h = 1A, (S, T ] = (s, t] and H = 1[0,T ].
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Next we consider the general case, with T a stopping time.
For A ∈ F0 we have

IXT ({0} × A) = 1AX0 = IX({0} × A) = IX([0, T ] ∩ ({0} × A)).

Let y ∈ F and z ∈ (Lp
G)∗. We have

〈(IXT )z({0} × A), y〉 = 〈IXT ({0} × A)y, z〉

=〈IX([0, T ] ∩ ({0} × A))y, z〉 = 〈(IX)z([0, T ] ∩ ({0} × A)), y〉 (1)

For s < t and A ∈ Fs we have,

IXT ((s, t] × A) = 1A(XT
t − XT

s ) = 1A(XT∧t − XT∧s) (2)

Let Tn be a sequence of simple stopping times such that Tn ↓ T . Let y ∈ F

and z ∈ (Lp
G)∗. We have by (2):

〈(IXT )z((s, t] × A), y〉 = 〈IXT ((s, t] × A)y, z〉 = 〈1A(XT∧t − XT∧s)y, z〉

= lim
n→∞

〈1A(XTn∧t − XTn∧s)y, z〉.

By (*) we have:

lim
n→∞

〈1A(XTn∧t − XTn∧s)y, z〉 = lim
n→∞

〈IX([0, Tn] ∩ ((s, t] × A))y, z〉

= lim
n→∞

〈(IX)z([0, Tn] ∩ ((s, t] × A)), y〉 = 〈(IX)z([0, T ] ∩ ((s, t] × A)), y〉 (3)

since (IX)z is σ-additive. By (1) and (3) and the fact that (IXT )z is σ-additive
we deduce that

(IXT )z(B) = (IX)z(B ∩ [0, T ]), for all B ∈ R (4)

Since (IX)z is σ-additive we deduce that (IXT )z is σ-additive, hence it can be
extended to a σ-additive measure on P. Since (IXT )z(B) = (IX)z(B ∩ [0, T ])
for all B ∈ R we deduce that

(IXT )z(B) = (IX)z(B ∩ [0, T ]), for all B ∈ P,

b) Let A be a set in R. By Proposition 4.15 in [Din00] we have svarF,L
p
G
IXT (A) <

∞ if and only if var(IXT )z(A) < ∞ for each z ∈ (Lp
G)∗. But

sup
z∈((Lp

G
)∗)1

var(IXT )z(A) = sup
z∈((Lp

G
)∗)1

var(IX)z(A ∩ [0, T ])

14



= svarF,L
p
G
IX(A ∩ [0, T ]) < ∞,

and Assertion b) is proved.
c) Assume T is a simple stopping time. By the equality (*) we have

IXT (B) = IX([0, T ] ∩ B), for B ∈ R.

Since X is p-additive summable relative to (F, G), IX has a canonical additive
extension IX : P → L

p
G. The equality

IXT (A) = IX([0, T ] ∩ A), for A ∈ P,

defines an additive extension of IXT to P. Since the measure IX has finite
semivariation relative to (F, L

p
G) (X is additive summable), the measure IXT

has finite semivariation relative to (F, L
p
G) also. Moreover, for each z ∈ (Lp

G)∗,
by Assertion a), the measure (IXT )z defined on P is σ−additive. Therefore
XT is additive summable. We have |(IXT )z|(A) = |(IX)z|([0, T ] ∩ A) for
A ∈ P since |(IX)z| is the canonical extension of its restriction on R. Then
|(IXT )z| is the canonical extension of its restriction to R. it follows that IXT

is the canonical extension of its restriction to R.

The next theorem gives the relationship between the stopped stochastic
integral and the integral of the process 1[0,T ]H. The same type of relation
was proved in Theorem 11.6 in [Din00].

Theorem 12. Let H ∈ L1
F,G(X) and let T be a stopping time. Then

1[0,T ]H ∈ L1
F,G(X) and

(1[0,T ]H) · X = (H · X)T .

Proof. Suppose first that T is a simple stopping time of the form

T =
∑

1≤i≤n

1Ai
ti

with 0 ≤ t1 ≤ t2 ≤ . . . tn ≤ +∞, Ai ∈ Fti mutually disjoint and with union
Ω. Then for t ≥ 0 we have

(H · X)T
t (ω) =

∑

1≤i≤n

(H · X)ti∧t(ω)1Ai
(ω).

15



In fact, for ω ∈ Ω there is 1 ≤ i ≤ n such that ω ∈ Ai. Then T (ω) = ti,
hence

(H · X)T
t (ω) = (H · X)ti∧t(ω).

On the other hand

(1[0,T ]H) · X)t(ω) =
∑

1≤i≤n

(H · X)ti∧t(ω)1Ai
(ω).

In fact,

(

∫

[0,t]

1[0,T ]HdIX)(ω) = (

∫

[0,t]

∑

1≤i≤n

1[0,ti]1Ai
HdIX)(ω) =

∑

1≤i≤n

(

∫

[0,ti∧t]

1Ai
HdIX)(ω)

=
∑

1≤i≤n

(

∫

[0,∞]

H1Ai
dIX)(ω) −

∑

1≤i≤n

(

∫

(ti∧t,∞]

1Ai
HdIX)(ω)

= (

∫

[0,∞]

HdIX)(ω) −
∑

1≤i≤n

1Ai
(ω)(

∫

(ti ,∞]

HdIX)(ω)

=
∑

1≤i≤n

1Ai
(ω)(

∫

[0,∞]

HdIX)(ω) −
∑

1≤i≤n

1Ai
(ω)(

∫

(ti,∞]

HdIX)(ω)

=
∑

1≤i≤n

1Ai
(ω)(

∫

[0,ti∧t]

HdIX)(ω) =
∑

1≤i≤n

(H · X)ti∧t(ω)1Ai
(ω),

where the 4th equality is obtained by applying Proposition 10, with h = 1Ai
.

Hence, for T simple, we have1[0,T ]H ∈ L1
F,G(X) and

(1[0,T ]H) · X = (H · X)T .

Now choose T arbitrary. Then there is a decreasing sequence (Tn) of
simple stopping times, such that Tn ↓ T .

Note first that since (H · X) is cadlag we have

(H · X)Tn → (H · X)T . (1)

Moreover for t ≥ 0 we have 1[0,Tn∧t]H ↓ 1[0,Tn∧t]H pointwise. Since 1[0,Tn∧t]H ∈
L1

F,G(X), for each (z ∈ L
p
G)∗ we have 1[0,Tn∧t]H ∈ L1

F (|(IX)z|), hence

〈

∫

1[0,Tn∧t]HdIX, z〉 =

∫

1[0,Tn∧t]Hd(IX)z →

∫

1[0,T∧t]Hd(IX)z = 〈

∫

1[0,T∧t]HdIX , z〉.
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By Theorem 4 we conclude that
∫

1[0,T∧t]HdIX =
∫

[0,t]
1[0,T ]HdIX ∈ L

p
G and

∫

1[0,Tn∧t]HdIX →

∫

1[0,T∧t]HdIX,

or
∫

[0,t]

1[0,Tn]HdIX →

∫

[0,t]

1[0,T ]HdIX.

Since for each n we have (1[0,Tn]H · X)t = (H · X)Tn

t , by (1) we deduce
that

∫

[0,t]
1[0,T ]HdIX = (H · X)T

t . Hence the mapping t 7→
∫

[0,t]
1[0,T ]HdIX is

cadlag, from which we conclude that 1[0,T ]H ∈ L1
F,G(X). Moreover

(1[0,T ]H · X)t = (H · X)T∧t = (H · X)T
t .

The next corollary is a useful particular case of the previous theorem:

Corollary 13. For every stopping time T we have

1[0,T ] · X = XT .

Proof. Taking H = 1 ∈ L1
F,G(X) and applying Theorem 12 we conclude that

1[0,T ] · X = XT .

The following theorem gives the same type of results as Theorem 11.8
in[Din00].

Theorem 14. Let S ≤ T be stopping times and assume that either
(i) h : Ω → R is a simple, FS-measurable function and H ∈ L1

F,G(X),
or
(ii) The measure IX is σ−additive, h : Ω → F is a simple, FS-measurable
function and H ∈ L1

R,E(X).
Then 1(S,T ]H and h1(S,T ]H are integrable with respect to X and

(h1(S,T ]H) · X = h[(1(S,T ]H) · X].

Proof. Note that
1(S,T ]H = 1[0,T ]H − 1[0,S]H

Assume first the case (i). Applying Theorem 12 for 1[0,T ]H and 1[0,S]H we
conclude that 1(S,T ]H ∈ L1

F,G(X).
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If for each t ≥ 0 we apply Proposition 10, we obtain

∫

[0,t]

h1(S,T ]HdIX = h

∫

[0,t]

1(S,T ]HdIX .

Since 1(S,T ]H ∈ L1
F,G(X) we deduce that h1(S,T ]H ∈ L1

F,G(X) and

((h1(S,T ]H) · X)t = h((1(S,T ]H) · X)t,

which concludeds the proof of case (i). Case (ii) is treated similarly.

2.6 The Integral
∫

HdIXT

In this section we define the set of processes integrable with respect to the
measure IXT with finite semivariation relative to the pair (F, L

p
G).

Let X : R+×Ω → E ⊂ L(F, G) be a cadlag, adapted process and assume
X is p-additive summable relative to (F, G).

Consider the additive measure IX : P → L
p
E ⊂ L(F, L

p
G) with bounded

semivariation ĨF,G relative to (F, L
p
G), such that each of the measures (IX)z

with z ∈ (Lp
G)∗ is σ-additive.

To simplify the notations denote m = IXT . We proved in the previous
proposition that the measure m : R → L

p
E ⊂ L(F, L

p
G) has bounded semivari-

ation relative to (F, L
p
G), on R, and for each z ∈ (Lp

G)∗ the measures mz, is
σ-additive. In order for the process XT to be additive summable we need the
measure m : R → L

p
E to have an extension m : P → L

p
E with finite semivari-

ation and such that each of the measures mz with z ∈ (Lp
G)∗ is σ−additive.

Applying Theorem 7 from Bongiorno–Dinculeanu, citeBD2001, the measure
m has a unique canonical extension m : P → (Lp

E)∗∗, with bounded semi-
variation such that for each z ∈ (Lp

G)∗ the measure mz, is σ-additive and has
bounded variation |mz|, therefore XT is summable.

Then we have

m̃F,L
p
G

= sup{|mz| : z ∈ (Lp
G)∗, ‖z‖q ≤ 1}.

We denote by FF,G(XT ) the space of predictable processes H : R+×Ω →
F such that

m̃F,G(H) = m̃F,L
p
G
(H) = sup{

∫

|H|d|mz| : ‖z‖ ≤ 1} < ∞.
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Let H ∈ FF,G(XT ); then H ∈ L1
F (|mz|) for every z ∈ (Lp

G)∗, hence the
integral

∫

Hdmz is defined and is a scalar. The mapping z 7→
∫

Hdmz is a
linear continuous functional on (Lp

G)∗, denoted
∫

Hdm. Therefore,
∫

Hdm ∈
(Lp

G)∗∗,

〈

∫

Hdm, z〉 =

∫

Hdmz, for z ∈ (Lp
G)∗.

We denote by L1
F,G(XT ) the set of processes H ∈ FF,G(IT

X) satisfying the
following two conditions:
a)

∫

[0,t]
Hdm ∈ L

p
G for every t ∈ R+;

b) The process (
∫

[0,t]
Hdm)t≥0 has a cadlag modification.

Theorem 15. Let X : R → E ⊂ L(F, G) be a p-additive summable process
relative to (F, G) and T a stopping time.
a) We have H ∈ FF,G(XT ) iff 1[0,T ]H ∈ FF,G(X) and in this case we have:

∫

HdIXT =

∫

1[0,T ]HdIX .

b) We have H ∈ L1
F,G(XT ) iff 1[0,T ]H ∈ L1

F,G(X) and in this case we have:

H · XT = (1[0,T ]H) · X.

If H ∈ L1
F,G(X), then H ∈ L1

F,G(XT ), 1[0,T ]H ∈ L1
F,G(X) and

(H · X)T = H · XT = (1[0,T ]H) · X.

Proof. a) Define m : R → E by m(B) = IXT (B) for B ∈ R. We proved in
Theorem 11 (a) that for every z ∈ (Lp

G)∗ we have

mz(B) = (IX)z(B ∩ [0, T ]), for all B ∈ R. (*)

Since (IX)z((·) ∩ [0, T ]) is a σ−additive measure, with bounded variation
on P satisfying (*) and since P is the σ−algebra generated by R, by the
uniqueness theorem 7.4 in [Din00] we conclude that

mz(B) = (IX)z(B ∩ [0, T ]), for all B ∈ P.

Let H ∈ FF,G(XT ) =
⋂

‖z‖q≤1, z∈(Lp
G

)∗ L1
F (mz). From the previous equality we

deduce that
∫

Hdmz =

∫

1[0,T ]Hd(IX)z,
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therefore
∫

HdIXT =

∫

1[0,T ]HdIX ,

and this is the equality in Assertion a).
b) To prove Assertion b) we replace H with 1[0,t]H in the previous assertion
and deduce that 1[0,t]H ∈ FF,G(XT ) iff 1[0,t]1[0,T ]H ∈ FF,G(X) and in this
case we have

∫

[0,t]

HdIXT =

∫

[0,t]

1[0,T ]HdIX.

It follows that H ∈ L1
F,G(XT ) iff 1[0,T ]H ∈ L1

F,G(X) and in this case we have

(H · XT )t = ((1[0,T ]H) · X)t.

If now H ∈ L1
F,G(X), then, from Theorem 12 we deduce that

1[0,T ]H ∈ L1
F,G(X) and

(1[0,T ]H) · X = (H · X)T .

2.7 Convergence Theorems

Assume X is p-additive summable relative to (F, G). In this section we shall
present several convergence theorems.

Lemma 16. Let (Hn) be a sequence in L1
F,G(X) and assume that Hn → H

in FF,G(X).Then there is a subsequence (rn) such that

(Hrn · X)t → (H · X)t =

∫

[0,t]

HdIX , a.s., as n → ∞,

uniformly on every bounded time interval.

Proof. Since Hn is a convergent sequence in FF,G(X) there is a subsequence
Hrn of (Hn) such that

ĨF,G(Hrn − Hrn+1) ≤ 4−n, for each n.

Let t0 > 0. Define the stopping time

un = inf{t : |(Hrn · X)t − (Hrn+1 · X)t| > 2−n} ∧ t0.
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By Theorem 12 applied to the stopping time un, we obtain

(Hrn · X)un
= (Hrn · X)un

∞ = ((1[0,un]H
rn) · X)∞ =

∫

[0,un]

HrndIX ,

hence

E(|(Hrn · X)un
− (Hrn+1 · X)un

|) = E(|

∫

[0,un]

HrndIX −

∫

[0,un]

Hrn+1dIX |)

= E(|

∫

[0,un]

((Hrn − Hrn+1)dIX |) = (‖

∫

[0,un]

(Hrn − Hrn+1)dIX‖L1
G

≤ ‖

∫

[0,un]

(Hrn − Hrn+1)dIX‖L
p
G
≤ ĨF,G(Hrn − Hrn+1) ≤ 4−n. (*)

Using inequality (*) and following the same techniques as in Theorem 12.1
a) in [Din00] one could show first that the sequence (H rn · X)t is a Cauchy
sequence in L

p
G uniformly for t < t0 and then conclude that

(Hrn · X)t →

∫

[0,t]

HdIX ,

uniformly on every bounded time interval.

Theorem 17. Let (Hn) be a sequence from L1
F,G(X) and assume that

Hn → H in FF,G(X). Then:
a) H ∈ L1

F,G(X).
b) (Hn · X)t → (H · X)t, in L

p
G, for t ∈ [0,∞].

c) There is a subsequence (rn) such that

(Hrn · X)t → (H · X)t, a.s., as n → ∞,

uniformly on every bounded time interval.

Proof. For every t ≥ 0 we have 1[0,t]H
n → 1[0,t]H in FF,G(X). Since the

integral is continuous, we deduce that

(Hn · X)t =

∫

[0,t]

HndIX →

∫

[0,t]

HdIX, in (Lp
G∗)

∗.

Since Hn ∈ L1
F,G(X) we have

∫

[0,t]
HndIX ∈ L

p
G and

(Hn · X)t →

∫

[0,t]

HdIX, in L
p
G.
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From the previous lemma we deduce that there is a subsequence (H rn) such
that

(Hrn · X)t → (H · X)t, a.s., as n → ∞,

uniformly on every bounded time interval. Since (Hrn · X) are cadlag it
follows that the limit is also cadlag, hence H ∈ L1

F,G(X) which is Assertion
a). Hence

(H · X)t =

∫

[0,t]

HdIX , a.s.

and therefore (Hn ·X)t → (H ·X)t, in L
p
G, which is Assertion b). Also observe

that for the above susequence (Hrn) we have

(Hrn · X)t → (H · X)t, a.s., as n → ∞,

uniformly on every bounded time interval.

We can restate Theorem 17 as:

Corollary 18. L1
F,G(X) is complete.

Next we state an uniform convergence theorem. Uniform convergence
implies convergence in L1

F,G(X).

Theorem 19. Let (Hn) be a sequence from FF,G(X). If Hn → H pointwise
uniformly then H ∈ FF,G(X) and Hn → H in FF,G(X).

If, in addition, for each n, Hn is integrable, i.e. Hn ∈ L1
F,G(X) then

a) H ∈ L1
F,G(X) and Hn → H in L1

F,G(X);
b) For every t ∈ [0,∞] we have (Hn · X)t → (H · X)t, in L

p
G.

c) There is a subsequence (rn) such that (Hrn · X)t → (H · X)t, a.s. as
n → ∞, uniformly on any bounded interval.

Proof. Assertion a) is immediate. Assertions b), c) and d) follow from The-
orem 17.

Now we shall state Vitali and Lebesgue-type Convergence Theorems.
They are direct consequences of the convergence Theorem 17 and of the
uniform convergence Theorem 19.

Theorem 20. (Vitali). Let (Hn) be a sequence from FF,G(X) and let H be
an F -valued, predictable process. Assume that
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(i) ĨF,G(Hn1A) → 0 as ĨF,G(A) → 0, uniformly in n

and that any one of the conditions (ii) or (iii) below is true:
(ii) Hn → H in ĨF,G-measure;
(iii) Hn → H pointwise and IF,(Lp

G
)∗ is uniformly σ-additive (this is the case

if Hn are real-valued, i.e., F = R).
Then:

a) H ∈ FF,G(X) and Hn → H in FF,G(X).
Conversely, if Hn, H ∈ FF,G(B, X) and Hn → H in FF,G(X), then con-

ditions (i) and (ii) are satisfied.
Under the hypotheses (i) and (ii) or (iii), assume, in addition, that

Hn ∈ L1
F,G(X) for each n. Then

b) H ∈ L1
F,G(X) and Hn → H in L1

F,G(X);
c) For every t ∈ [0,∞] we have (Hn · X)t → (H · X)t, in L

p
G;

d) There is a subsequence (rn) such that (Hrn · X)t → (H · X)t, a.s., as
n → ∞, uniformly on any bounded interval.

Theorem 21. (Lebesgue). Let (Hn) be a sequence from FF,G(X) and let
H be an F -valued predictable process. Assume that
(i) There is a process φ ∈ FR(B, IF,G) such that

|Hn| ≤ φ for each n;

and that any one of the conditions (ii) or (iii) below is true:
(ii) Hn → H in ĨF,G-measure;
(iii) Hn → H pointwise and IF,L

q

G∗
is uniformly σ-additive (this is the case

if Hn are real valued, i.e., F = R).
Then:

a) H ∈ FF,G(B, X) and Hn → H in FF,G(X).
Assume, in addition that Hn ∈ L1

F,G(X) for each n. Then
b) H ∈ L1

F,G(X) and Hn → H in L1
F,G(X);

c) For every t ∈ [0,∞] we have (Hn · X)t → (H · X)t, in L
p
G;

d) There is a subsequence (rn) such that (Hrn · X)t → (H · X)t, a.s., as
n → ∞, uniformly on any bounded interval.

2.8 Summability of the Stochastic Integral

Assume X is p-additive summable relative to (F, G). In this section we
are studying the additive summability of the stochastic integral H · X for
F−valued processes H.
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If H is a real valued processes then in order for the stochastic integral
H · X to be defined we need each of the measure (IX)z, for z ∈ (LP

E)∗, to
be σ−additve, hence the measure IX would be σ−additive. Therefore the
process X would be summable. In this case the summability of the stochastic
integral is proved in Theorem 13.1 of [Din00].

The next theorem shows that if H is F−valued then the measure IH·X is
σ−additive even if IX is just additive.

Theorem 22. Let H ∈ L1
F,G(X) be such that

∫

A
HdIX ∈ L

p
G for A ∈ P.

Then the measure IH·X : R → L
p
G has a σ−additive extension IH·X : P → L

p
G

to P.

Proof. We first note that H ·X : R+×Ω → G = L(R, G) is a cadlag adapted
process with (H · X)t ∈ L

p
G for t ≥ 0 ( by the definition of H · X).

Since
∫

A
HdIX ∈ L

p
G for every A ∈ P, by Proposition ??, with m = IX

and g = H, we deduce that HIX is σ−additive on P.
Next we prove that for any predictable rectangle A ∈ R we have

IH·X(A) =

∫

A

HdIX . (1)

In fact, consider first A = {0} × B with B ∈ F0. Using Proposition 10 for
h = 1B we have

IH·X({0} × B) = 1B((H · X)0) = 1B

∫

{0}

HdIX

=

∫

{0}

1BHdIX =

∫

{0}×B

HdIX;

Let now A = (s, t] × B with B ∈ Fs. Using Proposition 10 for h = 1B and
(S, T ] = (s, t] we have

IH·X((s, t] × B) = 1B((H · X)t − (H · X)s)

=1B(

∫

[0,t]

HdIX −

∫

[0,s]

HdIX) = 1B

∫

(s,t]

HdIX

=

∫

(s,t]

1BHdIX =

∫

(s,t]×B

HdIX ;

and the desired equality is proved.
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Since the measure A 7→
∫

A
HdIX is σ−additive for A ∈ P it will follow

that IH·X can be extended to a σ-additive measure on P by the same equality

IH·X(A) =

∫

A

HdIX, for A ∈ P. (2)

The next theorem states the summability of the stochastic integral.

Theorem 23. Let H ∈ L1
F,G(X) be such that

∫

A
HdIX ∈ L

p
G for A ∈ P.

Then:
a) H · X is p-summable, hence p-additive summable relative to (R, G) and

dIH·X = d(HIX).

b) For any predictable process K ≥ 0 we have

(ĨH·X)R,G(K) ≤ (ĨX)F,G(KH).

c) If K is a real-valued predictable process and if KH ∈ L1
F,G(X), then

K ∈ L1
R,G(H · X) and we have

K · (H · X) = (KH) · X.

Proof. By Theorem 22 we know that the measure IH·X is σ−additive. There-
fore To prove (a) we only need to show that the extension of IH·X to P has
finite semivariation relative to (R, L

p
G).

Let z ∈ (Lp
G)∗. From the equality (2) in Theorem 22 we deduce that for

every A ∈ P, and we have

(IH·X)z(A)〉 = 〈IH·X(A), z〉 = 〈

∫

A

HdIX , z〉 =

∫

A

Hd(IX)z.

From this we deduce the inequality

|(IH·X)z|(A) ≤

∫

A

|H|d|(IX)z|, for A ∈ P. (*)

Taking the supremum for z ∈ (LP
G)∗1 we obtain

sup{|(IH·X)z|(A), z ∈ (LP
G)∗1} ≤ sup{

∫

A

|H|d|(IX)z|, z ∈ (LP
G)∗1}
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≤ sup{

∫

|1AH|d|(IX)z|, z ∈ (LP
G)∗1}, for A ∈ P.

Therefore

(ĨH·X)R,G(A) ≤ (ĨX)F,G(1AH) < ∞, for A ∈ P.

It follows that H ·X is p-summable, hence p−additive summable, relative
to (R, G) and this proves Assertion a).

Since the extension to ¶ of the measure IX·H is σ−additive and has finite
semivariation b) and c) follow from Theorem 13.1 of [Din00].

2.9 Summability Criterion

Let Z ⊂ L
q
E∗ be any closed subspace norming for L

p
E. The next theorem dif-

fers from the summability criterion in [Din00] by the fact that the restrictive
condition c0 6∈ E was not imposed. Also note that this theorem does not
give us necessary and sufficient conditions for the sumability of the precess.

Theorem 24. Let X : R+ ×Ω → E be an adapted, cadlag process such that
Xt ∈ L

p
E for every t ≥ 0. Then the Assertions a)–d) below are equivalent.

a) IX : R → L
p
E has an additive extension IX : P → Z∗ such that for

each g ∈ Z, the real valued measure 〈IX , g〉 is a σ−additive on P.
b) IX is bounded on R;
c) For every g ∈ Z, the real valued measure 〈IX , g〉 is bounded on R;
d) For every g ∈ Z, the real valued measure 〈IX , g〉 is σ−additive and

bounded on R.

Proof. The proof will be done as follows: b) ⇐⇒ c) ⇐⇒ d) and a) ⇐⇒ d).
b) =⇒ c) and c) =⇒ b) can be proven in the same fashion as in [Din00].
c) =⇒ d) Assume c), and let g ∈ Z. The real valued measure 〈IX , g〉 is

defined on R by

〈IX , g〉(A) = 〈IX(A), g〉 =

∫

〈IX(A), g〉dP, for A ∈ R.

By assumption, 〈IX , g〉 is bounded on R. We need to prove that the measure
〈IX , g〉 is σ− additive. For that consider, as in [Din00], the real-valued
process XG = (〈Xt, Gt〉)t≥0, where Gt = E(g|Ft) for t ≥ 0. Then XG :
R+ × Ω → R is a cadlag, adapted process and it can be proven, using the
same techniques as in [Din00] that it is a quasimartingale.
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Now, for each n, define the stopping time

Tn(ω) = inf{t : |Xt| > n}.

Then Tn ↑ ∞ and |Xt| ≤ n on [0, Tn). Since XG is a quasimartingale
on (0,∞], we know that (XG)Tn

∈ L1 (Proposition A 3.5 in [BD87]: XG

is a quasimartingale on (0,∞] iff XG is a quasimartingale on (0,∞) and
supt ‖XG‖1 < ∞.)

Moreover,

|(XG)Tn

t | = |(XG)t|1{t<Tn} + |(XG)Tn
|1{t≥Tn} (2)

≤ |Xt||Gt|1{t<Tn} + |(XG)Tn
|1{t≥Tn}

≤ n|Gt|1{t<Tn} + |(XG)Tn
|1{t≥Tn}.

Besides, since Gt = E(g|Ft) it follows that G is a uniformly integrable mar-
tingale.

Next we prove that the family {(XG)Tn

T , T simple stopping time} is uni-
formly integrable.

In fact, note that by inequality (2) we have

∫

{|(XG)Tn
T

|>p}

|(XG)Tn

T |dP

≤

∫

{|(XG)Tn
T

|>p}∩{T<Tn}

n|(XG)Tn

T |dP +

∫

{|(XG)Tn
T

|>p}∩{T≥Tn}

|(XG)Tn
|dP (3)

Now observe that

{|(XG)T | > p} ∩ {T < Tn} = {|〈XT , GT 〉| > p} ∩ {T < Tn}

⊂ {|X|T |G|T > p} ∩ {T < Tn} ⊂ {p < n|GT |} ∩ {T < Tn} ⊂ {p < nGT}

Since G is a uniformly integrable martingale, it is a martingale of class D;
from n|Gt|1{t<Tn} ≤ n|Gt| we deduce that n|Gt|1{t<Tn} is a martingale of class
(D):

lim
p→∞

∫

{n|Gt|1{t<Tn}>p}

n|Gt|1{t<Tn}dP ≤ lim
p→∞

∫

{n|Gt|>p}

n|Gt|dP

= n lim
p→∞

∫

{|Gt|>
p

n
}

n|Gt|dP = lim
p

n
→∞

∫

{n|Gt|>p}

n|Gt|dP = 0.
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Hence there is a p1ε such that for any p ≥ p1ε and any simple stopping
time T we have

∫

{|(XG)Tn
T

|>p}∩{T<Tn}

n|(XG)Tn

T |dP ≤

∫

{n|Gt|>p}

n|Gt|dP <
ε

2
(4)

We look now at the second term of the right hand side of the inequality
(3).

∫

{|(XG)Tn
T

|>p}∩{T≥Tn}

|(XG)Tn
|dP ≤

∫

{|(XG)Tn |>p}

|(XG)Tn
|dP

Since (XG)Tn
∈ L1, for every ε > 0 there is a p2ε > 0 such that for every

p ≥ p2ε we have

∫

{|(XG)Tn
T

|>p}

|(XG)Tn
|dP <

ε

2
(5)

If we put (4) and (5) together we deduce that for every ε > 0 there is a
pε = max(p1ε, p2ε) such that for any p > pε and any T simple stopping time
we have

∫

{|(XG)Tn
T

|>p}

|(XG)Tn

T |dP <
ε

2
+

ε

2
= ε,

which proves the fact that (XG)Tn is a quasimartingale of class (D). From
Theorem 14.2 of [Din00] we deduce that the Doléans measure µ(XG)Tn associ-
ated to the process (XG)Tn is σ−additive and has bounded variation on R,
hence it can be extended to a σ-additive measure with bounded variations
on P (Theorem 7.4 b) of [Din00]).

Next we show that for any B ∈ P we have

µ(XG)Tn (B) = µXG(B ∩ [0, Tn]).

In fact, for A ∈ F0 we have

µ(XG)Tn ({0} × A) = µXG(({0} × A) ∩ [0, Tn]).

and for (s, t] × A with A ∈ Fs we have

µ(XG)Tn ((s, t]×A) = E(1A((XG)Tn

t − (XG)Tn

s )) = µXG(((s, t]×A)∩ [0, Tn]),
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which proves our equality. Hence the measure µXG is σ-additive on the σ-ring
P ∩ [0, Tn] for each n, hence it is σ-additive on the ring

B =
⋃

1≤n<∞

P ∩ [0, Tn].

Next we observe that µXG is bounded on R, therefore it has bounded vari-
ation on R which implies that the measure defined on B ∩ R is σ−additive
and has bounded variation. Since B ∩ R generates P, by Theorem 7.4 b) of
[Din00], µXG can be extended to a σ-additive measure with bounded varia-
tion on P.

Since 〈IX , g〉 = µXG, it follows that 〈IX , g〉 is bounded and σ-additive on
R, thus d) holds. The implication d)=⇒c) is evident.

a) =⇒ d) is evident since for each g ∈ Z, the measure 〈IX , g〉 is σ-
additive on P and since any σ−additive measure on a σ−algebra is bounded
we conclude that for g ∈ Z, the measure 〈IX , g〉 is bounded on P hence on
R.

Next we prove d)=⇒a). Assume d) is true. Then the real valued measure
〈IX , g〉 is σ−additive and bounded on R. Since we proved that b) ⇐⇒ c)
⇐⇒ d) we deduce from (1) that

|〈IX, g〉(A)| ≤ M‖g‖ for all A ∈ R

where M = sup{|IX(A)| : A ∈ R}. By Proposition 2.16 of [Din00] it follows
that

the measure 〈IX(·), g〉 has bounded variation |〈IX , g〉|(·) satisfying

|〈IX, g〉|(A) ≤ 2M‖g‖, for A ∈ R.

Applying Proposition 4.15 in [Din00] we deduce that ĨXR,E is bounded. By
Theorem 3.7 b) of [BD01] we conclude that the measure IX : R → L

p
E has

an additive extension IX : P → Z∗∗ to P such that for each g ∈ Z, the real
valued measure 〈IX , g〉 is a σ−additive on P which is Assertion a).

3 Examples of Additive Summable Processes

Definition 25. Let X : R+×Ω → E be an E-valued process. We say that X

has finite variation, if for each ω ∈ Ω, the path t 7→ Xt(ω) has finite variation
on each interval [0, t]. If 1 ≤ p < ∞, the process X has p-integrable variation
if the total variation |X|∞ = var(X, R+) is p-integrable.

29



Definition 26. We define the variation process |X| by

|X|t(ω) = var(X.(ω), (−∞, t]), for t ∈ R and ω ∈ Ω,

where Xt = 0 for t < 0.

Noting that if m : D → E ⊂ L(F, G) is a σ-additive measure then for
each z ∈ G∗, the measure mz : D → F ∗ is σ−additive, we deduce that, if
the process X is summable, then it is also additive summable. Hence the
following theorem is a direct consequence of Theorem 19.13 in [Din00]

Theorem 27. Let X : R+ × Ω → E be a cadlag, adapted process with
integrable variation |X|. Then X is 1–additive summable relative to any
embedding E ⊂ L(F, G).

Proof. If m : D → E ⊂ L(F, G) is a σ-additive measure then for each z ∈ G∗,
the measure mz : D → F ∗ is σ−additive. We deduce that, if the process X

is summable, then it is additive summable. Hence applying Theorem 19.13
b) in [Din00] we conclude our proof.

3.1 Processes with Integrable Semivariation

Definition 28. We define the semivariation process of X relative to (F, G)
by

X̃t(ω) = svarF,G(X.(ω), (−∞, t]), for t ∈ R and ω ∈ Ω,

where Xt = 0 for t < 0.

Definition 29. The total semivariation of X is defined by

X̃∞(ω) = sup
t≥0

X̃t(ω) = svarF,G(X.(ω), R), for ω ∈ Ω.

Definition 30. Let X : R+ × Ω → E ⊂ L(F, G). The process X is said
to have finite semivariation relative to (F, G), if for every ω ∈ Ω, the path
t 7→ Xt(ω) has finite semivariation relative to (F, G) on each interval (−∞, t].
The process X is said to have p-integrable semivariation X̃F,G if the total
semivariation (X̃F,G)∞ belongs to Lp.

Remark: If X : R+ × Ω → E ⊂ L(F, G) is a process and z ∈ G∗ we
define, the process Xz : R+ × Ω → F ∗ by

〈x, (Xz)t(ω)〉 = 〈Xt(ω)x, z〉, for x ∈ F, t ∈ R+ and ω ∈ Ω.
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For fixed t ≥ 0, we consider the function Xt : ω 7→ Xt(ω) from Ω into
E ⊂ L(F, G) and for z ∈ G∗ we define (Xt)z : Ω → F ∗ by the equality

〈x, (Xt)z(ω)〉 = 〈Xt(ω)x, z〉, for ω ∈ Ω, and x ∈ F.

It follows that

(Xt)z(ω) = (Xz)t(ω), for t ∈ R+ and ω ∈ Ω.

The semivariation X̃ can be computed in terms of the variation of the
processes Xz:

X̃t(ω) = sup
z∈G∗

1

|Xz|t(ω).

If X has finite semivariation X̃, then each Xz has finite variation |Xz|.
The following theorem is an improvement over the Theorem 21.12 in

[Din00], where it was supposed that c0 6∈ E and c0 6∈ G.

Theorem 31. Assume c0 6⊂ G. Let X : R+×Ω → E ⊂ L(F, G) be a cadlag,
adapted process with p-integrable semivariation relative to (R, E) and relative
to (F, G). Then X is p-additive summable relative to (F, G)

Proof. First we present the sketch of the proof, after which we prove all the
details.

The prove goes as follows:
1) First we will show that

IX(A)(ω) = mX(ω)(A(ω)), for A ∈ R and ω ∈ Ω, (*)

where A(ω) = {t; (t, ω) ∈ A} and X(ω) is X·(ω). For the definition of the
measure mX(ω) see Section 2.2.
2) Then we will prove that the measure mX(ω) has an additive extension to
B(R+), with bounded semivariation relative to (F, G) and such that for every
g ∈ G∗ the measure (mX(ω))g is σ−additive.
3) Next we prove that the function ω 7→ mX(ω)(M(ω)) belongs to L

p
E for all

M ∈ P.
4) Then we show that the extension of the measure IX to P has bounded
semivariation relative to (F, L

p
G).

5) Finally we show that for each z ∈ (Lp
G)∗ the measure (IX)z : P → F ∗ is

σ−additive.
6) We conclude that the process X is p−additive summable.
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Now we prove each step in detail.
1) First we prove (*) for predictable rectangles. Let A = {0} × B with

B ∈ F0. Then we have

IX({0} × B)(ω) = 1B(ω)X0(ω) =

∫

1{0}×B(s, ω)dXs(ω) = mX(ω)(A(ω)).

Now let A = (s, t] × B with B ∈ Fs. In this case we also obtain

IX((s, t]×B)(ω) = 1B(ω)(Xt(ω)−Xs(ω)) =

∫

1(s,t]×B(p, ω)dXp(ω) = mX(ω)(A(ω)).

Since both IX(A)(ω) and mX(ω)(A(ω)) are additive we conclude that the
equality (*) is true for A ∈ R.

2) Since X has p-integrable semivariation relative to (F, G) we infer that
(X̃F,G)∞(ω) < ∞ a.s. If we redefine Xt(ω) = 0 for those ω for which
(X̃F,G)∞(ω) = ∞ we obtain a process still denoted X with bounded semivari-
ation. In this case for each ω ∈ Ω the function t 7→ Xt(ω) is right continuous
and with bounded semivariation. By Theorem ?? we deduce that the mea-
sure mX(ω) can be extended to an additive measure mX(ω) : B(R+) → E ⊂
L(F, G), with bounded semivariation relative to (F, G) and such that for
every g ∈ G∗ the measure (mX(ω))g : B(R+) → F ∗ is σ−additive.

3) Since X has p-integrable semivariation relative to (F, G), for each t ≥ 0
we have Xt ∈ L

p
E. Hence, by step 1, the function ω 7→ mX(ω)(M(ω)) belongs

to L
p
E for all M ∈ R. To prove that ω 7→ mX(ω)(M(ω)) belongs to L

p
E for all

M ∈ P we will use the Monotone Class Theorem. We will prove that the set
P0 of all sets M ∈ P for which the affirmation is true is a monotone class, con-
taining R, hence equal to P. In fact, let Mn be a monotone sequence from P0

converging to M . By assumption, for each n the function ω 7→ mX(ω)(Mn(ω))
belongs to L

p
E and for each ω the sequence (Mn(ω)) is monotone in B(R+)

and has limit M(ω). Moreover |mX(ω)(Mn(ω))| ≤ m̃X(ω)(R+ ×Ω) = X̃∞(ω),
which is p-integrable. By Lebesgue’s Theorem we deduce that the mapping
ω 7→ mX(ω)(M(ω)) belongs to L

p
E, hence M ∈ P0. Therefore P0 is a mono-

tone class.
4) We use the equality (*) to extend IX to the whole P, by

IX(A)(ω) = mX(ω)(A(ω)), for A ∈ P.

Let A ∈ P, (Ai)i∈I be a finite family of disjoint sets from P contained in A,
and (xi)i∈I a family of elements from F with |xi| ≤ 1. Then we have

‖
∑

IX(Ai)xi‖
p
p = E(|

∑

IX(Ai)(ω)xi|
p)
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= E(|
∑

mX(ω)(Ai(ω))xi|
p) ≤ E(|(m̃X(ω))F,G(A(ω))|p)

= ‖(m̃X(ω))F,G(A(ω))‖p
p = ‖X̃F,G(A(ω))‖p

p ≤ ‖(X̃F,G)∞‖p
p < ∞.

Taking the supremum over all the families (Ai) and (xi) as above, we deduce
(ĨX)F,L

p
G
≤ ‖(X̃F,G)‖p < ∞.

5) Let z ∈ (Lp
G)∗ and x ∈ F . Then z(ω) ∈ G∗ and for each set M ∈ P we

have

〈(IX)z(M), x〉 = 〈IX(M)x, z〉 = E(〈IX(M)(ω)x, z(ω)〉)

= E(〈mX(ω)(M(ω))x, z(ω)〉) = E(〈(mX(ω))z(ω)(M(ω)), x〉).
(3)

By step we conclude that the measure (IX)z is σ−additive for each z ∈ (Lp
G)∗.

6) By the definition in step 4,

IX(A)(ω) = mX(ω)(A(ω)), for A ∈ P and ω ∈ Ω,

and by steps 2 and 3 we conclude that the measure IX has an additive
extension IX : P → L

p
E. By step 5 the measure (IX)z is σ−additive for each

z ∈ (Lp
G)∗. By step 4 this extension has bounded semivariation. Therefore

the process X is p-additive summable.

The following theorem gives sufficient conditions for two processes to be
indistinguishable. For the proof see [Din00], Corollary 21.10 b’).

Theorem 32. ([Din00]21.10b’)) Assume c0 6⊂ E and let A, B : R+×Ω → E

be two predictable processes with integrable semivariation relative to (R, E).
If for every stopping time T we have E(A∞ − AT ) = E(B∞ − BT ), then A

and B are indistinguishable.

The next theorem gives examples of processes with locally integrable vari-
ation or semivariation. For the proof see [Din00], Theorems 22.15 and 22.16.

Theorem 33. ([Din00]22.15,16) Assume X is right continuous and has fi-
nite variation |X| (resp. finite semivariation X̃F,G). If X is either predictable
or a local martingale, then X has locally integrable variation |X| (resp. locally
integrable semivariation X̃F,G).

Proposition 34. Let X : R+ × Ω → E be a process with finite variation.
If X has locally integrable semivariation X̃R,E, then X has locally integrable
variation.
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Proof. Assume X has locally integrable semivariation X̃ relative to (R, E).
Then there is an increasing sequence Sn of stopping times with Sn ↑ ∞
such that E(X̃Sn

) < ∞ for each n. For each n define the stopping times
Tn by Tn = Sn ∧ inf{t| |X|t ≥ n}. It follows that |X|Tn− ≤ n. Since X has
finite variation, by Proposition 6 we have ∆|XTn

| = |∆XTn
| ≤ X̃Tn

. From
∆|X|Tn

= |X|Tn
−|X|Tn− we deduce that |X|Tn

= |X|Tn−+∆|XTn
| ≤ n+X̃Tn

;
Therefore E(|X|Tn

) ≤ n + E(X̃Tn
) < ∞; hence X has locally integrable

variation.
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