Additive Summable Processes and their Stochastic Integral

August 19, 2005

Abstract

We define and study a class of summable processes,called additive summable processes, that is larger than the class used by Dinculeanu and Brooks [D-B].

We relax the definition of a summable processes $X: \Omega \times \mathbb{R}_{+} \rightarrow E \subset$ $L(F, G)$ by asking for the associated measure I_{X} to have just an additive extension to the predictable σ-algebra \mathcal{P}, such that each of the measures $\left(I_{X}\right)_{z}$, for $z \in\left(L_{G}^{p}\right)^{*}$, being σ-additive, rather than having a σ-additive extension. We define a stochastic integral with respect to such a process and we prove several properties of the integral. After that we show that this class of summable processes contains all processes $X: \Omega \times \mathbb{R}_{+} \rightarrow E \subset L(F, G)$ with integrable semivariation if $c_{0} \notin G$.

Introduction

We study the stochastic integral in the case of Banach-valued processes, from a measure-theoretical point of view.

The classical stochastic integration (for real-valued processes) refers only to integrals with respect to semimartingale (Dellacherie and Meyer [DM78]). A similar technique has also been applied by Kunita [Kun70], for Hilbert valued processes, making use of the inner product. A number of technical difficulties emerge for Banach spaces, since the Banach space lacks an inner product.

Vector integration using different approaches were presented in several books by Dinculeanu [Din00], Diestel and Uhl [DU77], and Kussmaul [Kus77]. Brooks and Dinculeanu [BD76] were the first to present a version of integration with respect to a vector measure with finite semivariation. Later, the same authors [BD90] presented a stochastic integral with respect to so-called summable Banach-valued processes.

A Banach-valued process X is called summable if the Doleans-Dade measure I_{X} defined on the ring generated by the predictable rectangles can be extended to a σ-additive measure with finite semivariation on the corresponding σ-algebra \mathcal{P}. The summable process X plays the role of the square integrable martingale in the classical theory: a stochastic integral $H \cdot X$ can be defined with respect to X as a cadlag modification of the process $\left(\int_{[o, t]} H d I_{X}\right)_{t \geq 0}$ of integrals with respect to I_{X} such that $\int_{[0, t]} H d I_{X} \in L_{G}^{p}$ for every $t \in \mathbb{R}_{+}$.

In [Din00] Dinculeanu presents a detailed account of the integration theory with respect to these summable processes, from a measure-theoretical point of view.

Our attention turned to a further generalization of the stochastic integral. Besides the processes considered in the classical theory (Hilbert-valued square-integrable martingales and processes with integrable variation), the class of summable processes also includes processes with integrable semivariation, as long as the Banach space E satisfies some restrictions. To get rid of some of these restrictions, we redefine, in Section 2, the notion of summability: now we only require that I_{X} can be extended to an additive measure on \mathcal{P}, but such that each of the measures $\left(I_{X}\right)_{z}$, for $z \in Z$ a norming space for L_{G}^{p}, is σ-additive. With this new notion of summability, called additive summability, the stochastic integral is then defined, in Section 5.1, as before. The rest of Chapter 5 is dedicated to proving the same type of properties of the stochastic integral as in Dinculeanu [Din00], namely measure theoretical properties.

In Section we will prove that there are more additive summable processes than summable processes by reducing the restrictions imposed on the space E.

1 Notations and definitions

Throughout this paper we consider S to be a set and $\mathcal{R}, \mathcal{D}, \Sigma$ respectively a ring, a δ-ring, a σ-ring, and a σ-algebra of subsets of S, E, F, G Banach spaces with $E \subset L(F, G)$ continuously, that is, $|x(y)| \leq|x||y|$ for $x \in E$ and $y \in F$; for example, $E=L(\mathbb{R}, E)$. If M is any Banach space, we denote by $|x|$ the norm of an element $x \in M$, by M_{1} its unit ball of M and by M^{*} the dual of M. A space $Z \subset G^{*}$ is called a norming space for G, if for every $x \in G$ we have

$$
|x|=\sup _{z \in Z_{1}}|\langle x, z\rangle| .
$$

If $m: \mathcal{R} \rightarrow E \subset L(F, G)$ is an additive measure for every set $A \subset S$ the semivariation of m on A relative to the embedding $E \subset L(F, G)$ (or relative to the pair $(F, G))$ is denoted by $\tilde{m}_{F, G}(A)$ and defined by the equality

$$
\tilde{m}_{F, G}(A)=\sup \left|\sum_{i \in I} m\left(A_{i}\right) x_{i}\right|,
$$

where the supremum is taken for all finite families $\left(A_{i}\right)_{i \in I}$ of disjoint sets from \mathcal{R} contained in A and all families $\left(x_{i}\right)_{i \in I}$ of elements from F_{1}.

2 Additive summable processes

The framework for this section is a cadlag, adapted process $X: \mathbb{R}_{+} \times \Omega \rightarrow$ $E \subset L(F, G)$, such that $X_{t} \in L_{E}^{p}$ for every $t \geq 0$ and $1 \leq p<\infty$.

2.1 The Measures I_{X} and $\left(I_{X}\right)_{z}$

Let \mathcal{S} be the semiring of predictable rectangles and $I_{X}: \mathcal{S} \rightarrow L_{E}^{p}$ the stochastic measure defined by

$$
I_{X}(\{0\} \times A)=1_{A} X_{0}, \text { for } A \in \mathcal{F}_{0}
$$

and

$$
I_{X}((s, t] \times A)=1_{A}\left(X_{t}-X_{s}\right), \text { for } A \in \mathcal{F}_{s} .
$$

Note that I_{X} is finitely additive on \mathcal{S} therefore it can be extended uniquely to a finitely additive measure on the ring \mathcal{R} generated by \mathcal{S}. We obtain a finitely additive measure $I_{X}: \mathcal{R} \rightarrow L_{E}^{p}$ verifying the previous equalities.

Let $Z \subset\left(L_{G}^{p}\right)^{*}$ be a norming space for L_{G}^{p}. For each $z \in Z$ we define a measure $\left(I_{X}\right)_{z},\left(I_{X}\right)_{z}: \mathcal{R} \rightarrow F^{*}$ by
$\left\langle y,\left(I_{X}\right)_{z}(A)\right\rangle=\left\langle I_{X}(A) y, z\right\rangle=\int\left\langle I_{X}(A)(\omega) y, z(\omega)\right\rangle d P(\omega)$, for $A \in \mathcal{P}$ and $y \in F$
where the bracket in the integral represents the duality between G and G^{*}.
Since $L_{E}^{p} \subset L\left(F, L_{G}^{p}\right)$, we can consider the semivariation of I_{X} relative to the pair $\left(F, L_{G}^{p}\right)$. To simplify the notation, we shall write $\left(\tilde{I}_{X}\right)_{F, G}$ instead of $\left(\tilde{I}_{X}\right)_{F, L_{G}^{p}}$ and we shall call it the semivariation of I_{X} relative to (F, G) :

2.2 Additive Summable Processes

Definition 1. We say that X is p-additive summable relative to the pair (F, G) if I_{X} has an additive extension $I_{X}: \mathcal{P} \rightarrow L_{E}^{p}$ with finite semivariation relative to (F, G) and such that the measure $\left(I_{X}\right)_{z}$ is σ-additive for each $z \in\left(L_{G}^{p}\right)^{*}$.

If $p=1$, we say, simply, that X is additive summable relative to (F, G).
Remark. 1) This definition is weaker that the definition of summable processes since here we don't require the measure I_{X} to have a σ-additive extension to \mathcal{P}.
2) The problems that might appear if $\left(I_{X}\right)$ is not σ-additive are convergence problems (most of the convergence theorem are stated for σ-additive measures and extension problems (the uniqueness of extensions of measures usually requires σ-additivity).
3) Note that in the paper "The Riesz representation theorem and extension of vector valued additive measures" N. Dinculeanu and B. Bongiorno [BD01] (Theorem 3.7 II) proved that if each of the measures $\left(I_{X}\right)_{z}$ is σ additive and if $I_{X}: \mathcal{R} \rightarrow L_{E}^{p}$ has finite semivariation relative to (F, G) then I_{X} has canonical additive extension $I_{X}: \mathcal{P} \rightarrow\left(L_{E}^{p}\right)^{* *}$ with finite semivariation relative to $\left(F,\left(L_{E}^{p}\right)^{* *}\right)$ such that for each $z \in\left(L_{G}^{p}\right)^{*}$, the measure $\left(I_{X}\right)_{z}$ is σ-additive on \mathcal{P} and has finite variation $\left|\left(I_{X}\right)_{z}\right|$.

Proposition 2. If X is p-additive summable relative to (\mathbb{R}, E) then X is p-summable relative to (\mathbb{R}, E).

Proof. If X is p-additive summable relative to (\mathbb{R}, E) then the measure I_{X} has an additive extension $I_{X}: \mathcal{P} \rightarrow L_{E}^{p}$ with finite semivariation relative to (\mathbb{R}, E). Moreover for each $z \in\left(L_{E}^{p}\right)^{*}$ the measure $\left(I_{X}\right)_{z}$ is σ-additive.

By Pettis Theorem, the measure I_{X} is σ-additive. Hence, the process X is p-summable.

2.3 The Integral $\int H d I_{X}$

Let X be a p-additive summable process relative to (F, G).
Consider the additive measure $I_{X}: \mathcal{P} \rightarrow L_{E}^{p} \subset L\left(F, L_{G}^{p}\right)$ with bounded semivariation $\tilde{I}_{F, G}$ relative to $\left(F, L_{G}^{p}\right)$ for which each measure $\left(I_{X}\right)_{z}$ is σ additive for every $z \in Z$.

Then we have

$$
\left(\tilde{I}_{X}\right)_{F, L_{G}^{p}}=\sup \left\{\left|m_{z}\right|: z \in Z,\|z\| \leq 1, z \in\left(L_{F}^{p}\right)^{*}\right\}
$$

(See Corollary 23, Section 1.5 [?].)
If p is fixed, to simplify the notation, we can write $\tilde{I}_{F, G}=\tilde{I}_{F, L_{G}^{p}}$.
For any Banach space D we denote by $\mathcal{F}_{D}\left(\tilde{I}_{F, G}\right)$ or $\mathcal{F}_{D}\left(\tilde{I}_{F, L_{G}^{p}}\right)$ the space of predictable processes $H: \mathbb{R}_{+} \times \Omega \rightarrow D$ such that

$$
\tilde{I}_{F, G}(H)=\sup \left\{\int|H| d\left|\left(I_{X}\right)_{z}\right|:\|z\|_{q} \leq 1\right\}<\infty
$$

Definition 3. Let $D=F$. For any $H \in \mathcal{F}_{F}\left(\tilde{I}_{F, G}\right)$ We define the integral $\int H d I_{X}$ to be the mapping $z \mapsto \int H d\left(I_{X}\right)_{z}$.

Observe that if $H \in \mathcal{F}_{F, G}(X):=\mathcal{F}_{F}\left(\tilde{I}_{F, G}\right)$ the integral $\int H d\left(I_{X}\right)_{z}$ is defined and is a scalar for each $z \in Z$, hence the mapping $z \mapsto \int H d\left(I_{X}\right)_{z}$ is a continuous linear functional on $\left(L_{G}^{p}\right)^{*}$ Therefore, $\int H d I_{X} \in\left(L_{G}^{p}\right)^{* *}$

$$
\left\langle\int H d I_{X}, z\right\rangle=\int H d\left(I_{X}\right)_{z}, \text { for } z \in Z
$$

and

$$
\left|\int H d I_{X}\right| \leq \tilde{I}_{F, G}(H)
$$

Theorem 4. Let $\left(H^{n}\right)_{0 \leq n<\infty}$ be a sequence of elements from $\mathcal{F}_{F, G}(X)$ such that $\left|H^{n}\right| \leq\left|H^{0}\right|$ for each n and $H^{n} \rightarrow H$ pointwise. Assume that
(i) $\int H^{n} d I_{X} \in L_{G}^{p}$ for every $n \geq 1$
and
(ii) The sequence $\left(\int H^{n} d I_{X}\right)_{n}$ converges pointwise on Ω, weakly in G. Then
a) $\int H d I_{X} \in L_{G}^{p}$
and
b) $\int H^{n} d I_{X} \rightarrow \int H d I_{X}$, in the weak topology of L_{G}^{p}, as well as pointwise, weakly in G.
c) If $\left(\int H^{n} d I_{X}\right)_{n}$ converges pointwise on Ω, strongly in G, then

$$
\int H^{n} d I_{X} \rightarrow \int H d I_{X}
$$

strongly in L_{G}^{1}.
Proof. This theorem was proved in [Din00] under the assumtion that I_{X} is σ-additive. But, in fact, only the σ-additivity of each of the measures $\left(I_{X}\right)_{z}$ was used. hence the same proof remains valid in our case.

2.4 The Stochastic Integral $H \cdot X$

In this section we define the stochastic integral and we prove that the stochastic integral is a cadlag adapted process.

Let $H \in \mathcal{F}_{F, G}(X)$. Then, for every $t \geq 0$ we have $1_{[0, t]} H \in \mathcal{F}_{F, G}(X)$. We denote by $\int_{[0, t]} H d I_{X}$ the integral $\int 1_{[0, t]} H d I_{X}$. We define

$$
\int_{[0, \infty]} H d I_{X}:=\int_{[0, \infty)} H d I_{X}=\int H d I_{X} .
$$

Taking $Z=\left(L_{G}^{p}\right)^{*}$, for each $H \in \mathcal{F}_{F, G}(X)$ we obtain a family $\left(\int_{[0, t]} H d I_{X}\right)_{t \in \mathbb{R}_{+}}$ of elements of $\left(L_{G}^{p}\right)^{* *}$.

We restrict ourselves to processes H for which $\int_{[0, t]} H d I_{X} \in L_{G}^{p}$ for each $t \geq 0$. Since L_{G}^{p} is a set of equivalence classes, $\int_{[0, t]} H d I_{X}$ represents an equivalence class. We use the same notation for any random variable in its equivalence class. We are interested to see whether or not the process $\left(\int_{[0, t]} H d I_{X}\right)_{t \geq 0}$ is adapted and if it admits a cadlag modification.

Theorem 5. Let $X: \mathbb{R} \rightarrow E \subset L(F, G)$ be a cadlag, adapted, p-summable process relative to (F, G) and $H \in \mathcal{F}_{F, G}(X)$ such that $\int_{[0, t]} H d I_{X} \in L_{G}^{p}$ for every $t \geq 0$.

Then the process $\left(\int_{[0, t]} H d I_{X}\right)_{t \geq 0}$ is adapted.

Proof. This is the equivalent of Theorem 10.4 in [Din00] and since in the proof was used the σ-additivity of the measures $\left(I_{X}\right)_{z}$ rather than σ-additivity of the measure I_{X} that proof will work for our case too.

It is not clear that there is a cadlag modification of the previously defined process $\left(\int_{[0, t]} H d I_{X}\right)_{t}$. Therefore we use the following definition

Definition 6. We define $L_{F, G}^{1}(X)$ to be the set of processes $H \in \mathcal{F}_{F, G}\left(I_{X}\right)$ that satisfy the following two conditions:
a) $\int_{[0, t]} H d I_{X} \in L_{G}^{p}$ for every $t \in \mathbb{R}_{+}$;
b) The process $\left(\int_{[0, t]} H d I_{X}\right)_{t \geq 0}$ has a cadlag modification.

The processes $H \in L_{F, G}^{1}(X)$ are said to be integrable with respect to X.
If $H \in L_{F, G}^{1}(X)$, then any cadlag modification of the process $\left(\int_{[0, t]} H d I_{X}\right)_{t \geq 0}$ is called the stochastic integral of H with respect to X and is denoted by $H \cdot X$ or $\int H d X$:

$$
(H \cdot X)_{t}(\omega)=\left(\int H d X\right)_{t}(\omega)=\left(\int_{[0, t]} H d I_{X}\right)(\omega), \text { a.s. }
$$

Therefore the stochastic integral is defined up to an evanescent process. For $t=\infty$ we have

$$
(H \cdot X)_{\infty}=\int_{[0, \infty]} H d I_{X}=\int_{[0, \infty)} H d I_{X}=\int H d I_{X}
$$

Note that if $H: \mathbb{R}_{+} \times \Omega \rightarrow F$ is an \mathcal{R}-step process then we have

$$
(H \cdot X)_{t}(\omega)=\int_{[0, t]} H_{s}(\omega) d X_{s}(\omega)
$$

that is, the stochastic integral can be computed pathwise.
The next theorem shows that the stochastic integral $H \cdot X$ is a cadlag process and it is cadlag in L_{G}^{p}.

Theorem 7. If $X: \mathbb{R}_{+} \times \Omega \rightarrow E \subset L(F, G)$ is a p-additive summable process relative to (F, G) and if $H \in L_{F, G}^{1}(X)$, then: a) The stochastic integral $H \cdot X$ is a cadlag, adapted process.
b) For every $t \in[0, \infty)$ we have $(H \cdot X)_{t-} \in L_{G}^{p}$ and

$$
(H \cdot X)_{t-}=\int_{[0, t)} H d I_{X}, \text { a.s. }
$$

If $(H \cdot X)_{\infty-}(\omega)$ exists for each $\omega \in \Omega$, then

$$
(H \cdot X)_{\infty-}=(H \cdot X)_{\infty}=\int H d I_{X}, \text { a.s. }
$$

c) The mapping $t \mapsto(H \cdot X)_{t}$ is cadlag in L_{G}^{1}.

Proof. a) Follows from the previous theorem and definition. b) and c) are proved as in theorem 10.7 in [Din00] since there was not used the σ-additivity of I_{X} but rather of $\left(I_{X}\right)_{z}$.

2.5 The Stochastic Integral and Stopping Times

Let T be a stopping time. If $A \in \mathcal{F}_{T}$, then the stopping time T_{A} is defined by $T_{A}(\omega)=T(\omega)$ if $\omega \in A$ and $T_{A}(\omega)=\infty$ if $\omega \notin A$. With this notation the predictable rectangles $(s, t] \times A$ with $A \in \mathcal{F}_{s}$ could be written as stochastic intervals $\left(s_{A}, t_{A}\right]$. Another notation we will use is $I_{X}[0, T]$ for $I_{X}([0, T] \times \Omega$.

Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E \subset L(F, G)$ be an additive summable process
Proposition 8. For any stopping time T we have $X_{T} \in L_{E}^{p}$ and $I_{X}[0, T]=$ X_{T} for T simple. For any decreasing sequence $\left(T_{n}\right)$ of simple stopping times such that $T_{n} \downarrow T$, and for every $z \in\left(L_{G}^{p}\right)^{*}$ we have

$$
\begin{equation*}
\left\langle I_{X}([0, T]) y, z\right\rangle=\lim _{n}\left\langle X_{T_{n}} y, z\right\rangle \tag{1}
\end{equation*}
$$

where the bracket represents the duality between L_{G}^{p} and $\left(L_{G}^{p}\right)^{*}$.
Proof. Assume first that T is a simple stopping time of the form

$$
T=\sum_{1 \leq i \leq n} 1_{A_{i}} t_{i}
$$

with $0<t_{i} \leq \infty, t_{i} \neq t_{j}$ for $i \neq j, A_{i} \in \mathcal{F}_{t_{i}}$ are mutually disjoint and $\bigcup_{1 \leq i \leq n} A_{i}=\Omega$. Then $[0, T]=\bigcup_{1 \leq i \leq n}\left[0, t_{i}\right] \times A_{i}$ is a disjoint union. Hence $I_{X}([0, T])=\sum_{i} I_{X}\left(\left[0, t_{i}\right] \times A_{i}\right)=\sum_{i} 1_{A_{i}} X_{t_{i}}=X_{T}$. Since $I_{X}: \mathcal{P} \rightarrow L_{E}^{p}$, we conclude that $X_{T} \in L_{E}^{p}$.

Next, assume that $\left(T_{n}\right)$ is a sequence of simple stopping times such that $T_{n} \downarrow T$. Then $\left[0, T_{n}\right] \downarrow[0, T]$. Since $\left(I_{X}\right)_{z}$ is σ-additive in F^{*}, for any $y \in F$ and $z \in\left(L_{G}^{p}\right)^{*}$, we have

$$
\left\langle I_{X}([0, T]) y, z\right\rangle=\left\langle\left(I_{X}\right)_{z}([0, T]), y\right\rangle=\lim _{n \rightarrow \infty}\left\langle\left(I_{X}\right)_{z}\left(\left[0, T_{n}\right]\right), y\right\rangle
$$

$$
=\lim _{n \rightarrow \infty}\left\langle I_{X}\left(\left[0, T_{n}\right] y, z\right\rangle=\lim _{n \rightarrow \infty}\left\langle X_{T_{n}} y, z\right\rangle .\right.
$$

and the relation (4.1) is proven. It remains to prove that $X_{T} \in L_{E}^{p}$. Since $X_{T_{n}}(\omega) \rightarrow X_{T}(\omega)$ it follows that X_{T} is \mathcal{F}-measurable. We will prove that $\left|X_{T_{n}}\right| \in L^{p}$ to deduce that $X_{T_{n}} \in L_{G}^{p}$.

We saw before that for $y \in F$ and $z \in\left(L_{G}^{p}\right)^{*}$ the sequence $\left\langle\left(I_{X}\right)\left(\left[0, T_{n}\right]\right) y, z\right\rangle$ is convergent hence bounded, i.e.

$$
\sup _{n}\left|\left\langle\left(I_{X}\right)\left(\left[0, T_{n}\right]\right) y, z\right\rangle\right|<\infty, \text { for } y \in F, z \in\left(L_{G}^{p}\right)^{*}
$$

By the Banach-Steinhauss Theorem, we have

$$
\sup _{n} \| I_{X}\left(\left[0, T_{n}\right] y \|_{L_{G}^{p}}<\infty, \text { for } y \in F\right.
$$

hence

$$
\sup _{n} \| I_{X}\left(\left[0, T_{n}\right] \|_{L_{E}^{p}}<\infty\right.
$$

or $\left.\sup _{n} \| X_{T_{n}}\right] \|_{L_{F}^{p}}<\infty$, which is equivalent to $\sup _{n} \int\left|X_{T_{n}}\right|^{p} d P<\infty$. Now $\left|X_{T}\right|^{p}=\lim \left|X_{T_{n}}\right|^{p}=\lim \inf \left|X_{T_{n}}\right|^{p}$. If we apply Fatou Lemma we get:
$\int\left|X_{T}\right|^{p} d P=\int \liminf \left|X_{T_{n}}\right|^{p} \leq \liminf \int\left|X_{T_{n}}\right|^{p} d P \leq \sup \int\left|X_{T_{n}}\right|^{p} d P<\infty$. therefore $X_{T} \in L_{G}^{p}$.

Proposition 9. Let $S \leq T$ be stopping times and $h: \Omega \rightarrow F$ be an $\mathcal{F}_{S^{-}}$ measurable, simple random variable. Then for any pair $\left(T^{n}\right)_{n},\left(S^{n}\right)_{n}$ of sequences of simple stopping times, with $T^{n} \downarrow T, S^{n} \downarrow S$, such that $S^{n} \leq T^{n}$ for each n, we have

$$
\begin{equation*}
\left\langle\int h 1_{(S, T]} d I_{X}, z\right\rangle=\lim _{n}\left\langle h\left(X_{T^{n}}-X_{S^{n}}\right), z\right\rangle, \text { for } z \in\left(L_{G}^{p}\right)^{*} \tag{2}
\end{equation*}
$$

where the bracket represents the duality between L_{G}^{p} and $\left(L_{G}^{p}\right)^{*}$.
Proof. First we prove that there are two sequences $\left(T^{n}\right)$ and $\left(S^{n}\right)$ of simple stopping times such that $T^{n} \downarrow T, S^{n} \downarrow S$ and $S^{n} \leq T^{n}$. In fact, there are two sequences of simple stopping times T^{n} and P^{n} such that $P^{n} \downarrow S$ and $T^{n} \downarrow T$. Consider, now, $S^{n}=P^{n} \wedge T^{n}$. Since P^{n} and T^{n} are stopping times, S^{n} is a stopping time and $S^{n} \leq T^{n}$. On the other hand, observe that $S \leq S^{n} \leq P^{n}$
and $\lim P^{n}=S$. Therefore $\lim _{n \rightarrow \infty} S^{n}=S$ too. So we have $S^{n} \downarrow S$ and $S^{n} \leq T^{n}$.

Now we want to prove (4.2). Assume first $h=1_{A} y$ with $A \in \mathcal{F}_{S}$ and $y \in F$. Then

$$
\int h 1_{(S, T]} d I_{X}=\int 1_{A} y 1_{(S, T]} d I_{X}=\int 1_{\left(S_{A}, T_{A}\right]} y d I_{X}=I_{X}\left(\left(S_{A}, T_{A}\right]\right) y
$$

For any sequence of simple stopping times $\left(T^{n}\right)$ and $\left(S^{n}\right)$ with $T^{n} \downarrow T, S^{n} \downarrow S$ and $S^{n} \leq T^{n}$, we have $T_{A}^{n} \downarrow T_{A}$ and $S_{A}^{n} \downarrow S_{A}$. Therefore, applying Proposition 8 for every $z \in\left(L_{G}^{p}\right)^{*}$, we get

$$
\begin{aligned}
\left\langle\int h 1_{(S, T]} d I_{X}, z\right\rangle & =\left\langle I_{X}\left(\left(S_{A}, T_{A}\right]\right) y, z\right\rangle=\left\langle\left[I_{X}\left(\left[0, T_{A}\right]\right)-I_{X}\left(\left[0, S_{A}\right]\right)\right] y, z\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle X_{T_{A}^{n}} y, z\right\rangle-\lim _{n \rightarrow \infty}\left\langle X_{S_{A}^{n}} y, z\right\rangle=\lim _{n \rightarrow \infty}\left\langle\left(X_{T_{A}^{n}}-X_{S_{A}^{n}}\right) y, z\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle 1_{A}\left(X_{T^{n}}-S_{X^{n}}\right) y, z\right\rangle=\lim _{n \rightarrow \infty}\left\langle h\left(X_{T^{n}}-X_{S^{n}}\right), z\right\rangle
\end{aligned}
$$

Then the equality holds for any \mathcal{F}_{S}-step function h.
Proposition 10. Let $S \leq T$ be stopping times and assume that either (i) $h: \Omega \rightarrow \mathbb{R}$ is a simple, \mathcal{F}_{S}-measurable function and $H \in L_{F, G}^{1}(X)$, or
(ii) The measure I_{X} is σ-additive, $h: \Omega \rightarrow F$ is a simple, \mathcal{F}_{S}-measurable function and $H \in L_{\mathbb{R}, E}^{1}(X)$.

If $\int 1_{(S, T]} H d I_{X} \in L_{G}^{p}$ in case (i) and $\int 1_{(S, T]} H d I_{X} \in L_{E}^{p}$ in case (ii) then

$$
\int h 1_{(S, T]} H d I_{X}=h \int 1_{(S, T]} H d I_{X}
$$

Proof. Assume first hypothesis (i). Let $\left(T^{n}\right)$ and $\left(S^{n}\right)$ be two sequences of simple stopping times such that $T^{n} \downarrow T, S^{n} \downarrow S$ and $S^{n} \leq T^{n}$. Assume $H=1_{(s, t] \times A} y$ with $A \in \mathcal{F}_{s}$ and $y \in F$. Then $T^{n} \wedge t \downarrow T \wedge t, S^{n} \wedge s \downarrow S \wedge s$. Let $z \in\left(L_{G}^{p}\right)^{*}$. Then

$$
\left\langle\int h 1_{(S, T]} H d I_{X}, z\right\rangle=\left\langle\int h 1_{A} y 1_{(S \vee s, T \wedge t]} d I_{X}, z\right\rangle,
$$

where the bracket represents the duality between L_{G}^{p} and $\left(L_{G}^{p}\right)^{*}$. By (4.2), for the simple $\mathcal{F}_{S \vee s}$-measurable function $h 1_{A} y$ and the stopping times $(S \vee s) \leq$ ($T \wedge t$) we have

$$
\left\langle h \int 1_{(S, T]} H d I_{X}, z\right\rangle=\left\langle\int 1_{(S, T]} H d I_{X}, h z\right\rangle=\left\langle\int 1_{(S \vee s, T \wedge t]} 1_{A} y d I_{X}, h z\right\rangle
$$

$$
\begin{aligned}
& =\lim \left\langle 1_{A} y\left(X_{T^{n} \wedge t}-X_{S^{n} \vee s}\right), h z\right\rangle \\
& =\lim \left\langle h 1_{A} y\left(X_{T^{n} \wedge t}-X_{S^{n} \vee s}\right), z\right\rangle=\left\langle\int h 1_{A} y 1_{(S \vee s, T \wedge t]} d I_{X}, z\right\rangle \\
& =\left\langle\int h 1_{A} y 1_{(s, t]} 1_{(S, T]} d I_{X}, z\right\rangle=\left\langle\int h H 1_{(S, T]} d I_{X}, z\right\rangle
\end{aligned}
$$

If $H=1_{\{0\} \times A} y$ with $A \in \mathcal{F}_{0}$ and $y \in F$, since $1_{(S, T]} 1_{\{0\} \times A}=0$ we have

$$
\left\langle h \int 1_{(S, T]} H d I_{X}, z\right\rangle=0=\left\langle\int h H 1_{(S, T]} d I_{X}, z\right\rangle .
$$

It follows that for any $B \in \mathcal{R}$ we have

$$
\begin{equation*}
\left\langle\int h 1_{(S, T]} 1_{B} y d I_{X}, z\right\rangle=\left\langle h \int 1_{(S, T]} 1_{B} y d I_{X}, z\right\rangle . \tag{}
\end{equation*}
$$

The class \mathcal{M} of sets $B \in \mathcal{P}$ for which the above equality holds for all $z \in$ $\left(L_{G}^{p}\right)^{*}$ is a monotone class: in fact, let B_{n} be a monotone sequence of sets from \mathcal{M} and let $B=\lim B_{n}$. For each n we have

$$
\int h 1_{(S, T]} 1_{B_{n}} y d\left(I_{X}\right)_{z}=\left\langle h \int 1_{(S, T]} 1_{B_{n}} y d I_{X}, z\right\rangle .
$$

Since $h 1_{(S, T]} 1_{B_{n}} y$ is a sequence of bounded functions converging to $h 1_{(S, T]} 1_{B} y$ (h is a step-function) with $\left|h 1_{(S, T]} 1_{B_{n}} y\right| \leq|h||y|$, we can apply Lebesgue Theorem and conclude that $\int h 1_{(S, T]} 1_{B_{n}} y d\left(I_{X}\right)_{z} \rightarrow \int h 1_{(S, T]} 1_{B} y d\left(I_{X}\right)_{z}$. Using the same reasoning we can conclude that $\int 1_{(S, T]} 1_{B_{n}} y d\left(I_{X}\right)_{h z} \rightarrow \int 1_{(S, T]} 1_{B} y d\left(I_{X}\right)_{h z}$. hence we have

$$
\begin{aligned}
\left\langle\int h 1_{(S, T]} 1_{B} y d I_{X}, z\right\rangle & =\lim _{n}\left\langle\int h 1_{(S, T]} 1_{B_{n}} y d I_{X}, z\right\rangle=\lim _{n}\left\langle h \int 1_{(S, T]} 1_{B_{n}} y d I_{X}, z\right\rangle \\
& =\left\langle h \lim _{n} \int 1_{(S, T]} 1_{B_{n}} y d I_{X}, z\right\rangle=\left\langle h \int 1_{(S, T]} 1_{B} y d I_{X}, z\right\rangle
\end{aligned}
$$

Since the class \mathcal{M} of sets satisfying equality $\left(^{*}\right)$ is a monotone class containing \mathcal{R} we conclude that the equality $\left(^{*}\right)$ is satisfied by all $B \in \mathcal{P}$.

It follows that for any predictable, simple process H and for each $z \in$ $\left(L_{G}^{p}\right)^{*}$ we have

$$
\begin{equation*}
\left\langle\int h 1_{(S, T]} H d I_{X}, z\right\rangle=\left\langle h \int 1_{(S, T]} H d I_{X}, z\right\rangle \tag{**}
\end{equation*}
$$

Consider now the general case. If $H \in L_{F, G}^{1}(X)$, then there is a sequence $\left(H^{n}\right)$ of simple, predictable processes such that $H^{n} \rightarrow H$ and $\left|H^{n}\right| \leq|H|$. We apply Lebesgue's Theorem and deduce that

$$
\begin{equation*}
\int h 1_{(S, T]} H^{n} d\left(I_{X}\right)_{z} \rightarrow \int h 1_{(S, T]} H d\left(I_{X}\right)_{z} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int 1_{(S, T]} H^{n} d\left(I_{X}\right)_{h z} \rightarrow \int 1_{(S, T]} H d\left(I_{X}\right)_{h z} \tag{2}
\end{equation*}
$$

By equality $\left({ }^{* *}\right)$ for each n we have

$$
\begin{aligned}
\int h 1_{(S, T]} H^{n} d\left(I_{X}\right)_{z} & =\left\langle\int h 1_{(S, T]} H^{n} d I_{X}, z\right\rangle=\left\langle h \int 1_{(S, T]} H^{n} d I_{X}, z\right\rangle \\
= & \left\langle\int 1_{(S, T]} H^{n} d I_{X}, h z\right\rangle=\int 1_{(S, T]} H^{n} d\left(I_{X}\right)_{h z}
\end{aligned}
$$

By (1) and (2) we deduce that

$$
\int h 1_{(S, T]} H d\left(I_{X}\right)_{z}=\int 1_{(S, T]} H d\left(I_{X}\right)_{h z}
$$

which is equivalent to

$$
\left\langle\int h 1_{(S, T]} H d I_{X}, z\right\rangle=\left\langle\int 1_{(S, T]} H d I_{X}, h z\right\rangle .
$$

We conclude that

$$
\int h 1_{(S, T]} H d I_{X}=h \int 1_{(X, T]} H d I_{X}, \text { a.e. }
$$

Assume now hypothesis (ii). Since the measure I_{X} is σ-additive the process X is summable. Then observe that the assumptions of (ii) are the same as the assumptions in Proposition 11.5 (ii) of [Din00]. Hence

$$
\int h 1_{(S, T]} H d I_{X}=h \int 1_{(X, T]} H d I_{X}
$$

which concludes our proof.

Proposition 11. Let $X: \mathbb{R} \times \Omega \rightarrow E \subset L(F, G)$ be a p-additive summable process relative to (F, G) and T a stopping time.
a) For every $z \in\left(L_{G}^{p}\right)^{*}$ and every $B \in \mathcal{P}$ we have:

$$
\left(I_{X^{T}}\right)_{z}(B)=\left(I_{X}\right)_{z}(B \cap[0, T])
$$

b) The measure $I_{X^{T}}: \mathcal{R} \rightarrow L_{E}^{p}$ has finite semivariation relative to $\left(F, L_{G}^{p}\right)$
c) If T is a simple stopping time then the process X^{T} is summable.

Proof. a) First we prove that if T and S are simple stopping times then we have $I_{X}((S, T])=X_{T}-X_{S}$.

Assume that T is a simple stopping time of the form

$$
T=\sum_{1 \leq i \leq n} 1_{A_{i}} t_{i},
$$

with $0<t_{i} \leq \infty, t_{i} \neq t_{j}$ for $i \neq j, A_{i} \in \mathcal{F}_{t_{i}}$ are mutually disjoint and $\bigcup_{1 \leq i \leq n} A_{i}=\Omega$. Then $[0, T]=\bigcup_{1 \leq i \leq n}\left[0, t_{i}\right] \times A_{i}$ is a disjoint union. Hence $I_{X}([0, T])=\sum_{i} I_{X}\left(\left[0, t_{i}\right] \times A_{i}\right)=\sum_{i} 1_{A_{i}} X_{t_{i}}=X_{T}$. Since $(S, T]=[0, T]-$ $[0, S]$ and I_{X} is an additive measure, we have $I_{X}((S, T])=I_{X}([0, T])-$ $I_{X}([0, S])=X_{T}-X_{S}$.

Next observe that if T is a simple stopping time then $T \wedge t$ is also a simple stopping time. In fact, if $T=\sum_{1 \leq i \leq n} 1_{A_{i}} t_{i}$ then $T \wedge t=\sum_{i: t_{i}<t} 1_{A_{i}} t_{i}+$ $\sum_{i: t_{i} \geq t} 1_{A_{i}} t$ which is a simple stopping time.

Now we prove that for $B \in \mathcal{R}$ we have

$$
I_{X^{T}}(B)=I_{X}([0, T] \cap B)
$$

In fact, for $A \in \mathcal{F}_{0}$ we have

$$
I_{X^{T}}(\{0\} \times A)=1_{A} X_{0}=I_{X}(\{0\} \times A)=I_{X}([0, T] \cap(\{0\} \times A))
$$

For $s<t$ and $A \in \mathcal{F}_{s}$ we have,

$$
\begin{align*}
& I_{X^{T}}((s, t] \times A)=1_{A}\left(X_{t}^{T}-X_{s}^{T}\right)=1_{A}\left(X_{T \wedge t}-X_{T \wedge s}\right) \\
& \quad=1_{A}\left(I_{X}((T \wedge s, T \wedge t])=1_{A} \int 1_{(s, t]} 1_{[0, T]} d I_{X}\right. \\
& \quad=\int 1_{A} 1_{(s, t]} 1_{[0, T]} d I_{X}=I_{X}([0, T] \cap((s, t] \times A)) . \tag{*}
\end{align*}
$$

We used the above Proposition 10 with $h=1_{A},(S, T]=(s, t]$ and $H=1_{[0, T]}$.

Next we consider the general case, with T a stopping time.
For $A \in \mathcal{F}_{0}$ we have

$$
I_{X^{T}}(\{0\} \times A)=1_{A} X_{0}=I_{X}(\{0\} \times A)=I_{X}([0, T] \cap(\{0\} \times A)) .
$$

Let $y \in F$ and $z \in\left(L_{G}^{p}\right)^{*}$. We have

$$
\begin{align*}
& \left\langle\left(I_{X^{T}}\right)_{z}(\{0\} \times A), y\right\rangle=\left\langle I_{X^{T}}(\{0\} \times A) y, z\right\rangle \\
= & \left\langle I_{X}([0, T] \cap(\{0\} \times A)) y, z\right\rangle=\left\langle\left(I_{X}\right)_{z}([0, T] \cap(\{0\} \times A)), y\right\rangle \tag{1}
\end{align*}
$$

For $s<t$ and $A \in \mathcal{F}_{s}$ we have,

$$
\begin{equation*}
I_{X^{T}}((s, t] \times A)=1_{A}\left(X_{t}^{T}-X_{s}^{T}\right)=1_{A}\left(X_{T \wedge t}-X_{T \wedge s}\right) \tag{2}
\end{equation*}
$$

Let T_{n} be a sequence of simple stopping times such that $T_{n} \downarrow T$. Let $y \in F$ and $z \in\left(L_{G}^{p}\right)^{*}$. We have by (2):

$$
\begin{aligned}
\left\langle\left(I_{X^{T}}\right)_{z}((s, t] \times A), y\right\rangle & =\left\langle I_{X^{T}}((s, t] \times A) y, z\right\rangle=\left\langle 1_{A}\left(X_{T \wedge t}-X_{T \wedge s}\right) y, z\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle 1_{A}\left(X_{T_{n} \wedge t}-X_{T_{n} \wedge s}\right) y, z\right\rangle .
\end{aligned}
$$

By (*) we have:

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\langle 1_{A}\left(X_{T_{n} \wedge t}-X_{T_{n} \wedge s}\right) y, z\right\rangle=\lim _{n \rightarrow \infty}\left\langle I_{X}\left(\left[0, T_{n}\right] \cap((s, t] \times A)\right) y, z\right\rangle \\
= & \lim _{n \rightarrow \infty}\left\langle\left(I_{X}\right)_{z}\left(\left[0, T_{n}\right] \cap((s, t] \times A)\right), y\right\rangle=\left\langle\left(I_{X}\right)_{z}([0, T] \cap((s, t] \times A)), y\right\rangle \tag{3}
\end{align*}
$$

since $\left(I_{X}\right)_{z}$ is σ-additive. By (1) and (3) and the fact that $\left(I_{X^{T}}\right)_{z}$ is σ-additive we deduce that

$$
\begin{equation*}
\left(I_{X^{T}}\right)_{z}(B)=\left(I_{X}\right)_{z}(B \cap[0, T]), \text { for all } B \in \mathcal{R} \tag{4}
\end{equation*}
$$

Since $\left(I_{X}\right)_{z}$ is σ-additive we deduce that $\left(I_{X^{T}}\right)_{z}$ is σ-additive, hence it can be extended to a σ-additive measure on \mathcal{P}. Since $\left(I_{X^{T}}\right)_{z}(B)=\left(I_{X}\right)_{z}(B \cap[0, T])$ for all $B \in \mathcal{R}$ we deduce that

$$
\left(I_{X^{T}}\right)_{z}(B)=\left(I_{X}\right)_{z}(B \cap[0, T]), \text { for all } B \in \mathcal{P}
$$

b) Let A be a set in \mathcal{R}. By Proposition 4.15 in [Din00] we have $\operatorname{svar}_{F, L_{G}^{p}} I_{X^{T}}(A)<$ ∞ if and only if $\operatorname{var}\left(I_{X^{T}}\right)_{z}(A)<\infty$ for each $z \in\left(L_{G}^{p}\right)^{*}$. But

$$
\sup _{z \in\left(\left(L_{G}^{p}\right)^{*}\right)_{1}} \operatorname{var}\left(I_{X^{T}}\right)_{z}(A)=\sup _{z \in\left(\left(L_{G}^{p}\right)^{*}\right)_{1}} \operatorname{var}\left(I_{X}\right)_{z}(A \cap[0, T])
$$

$$
=\operatorname{svar}_{F, L_{G}^{p}} I_{X}(A \cap[0, T])<\infty
$$

and Assertion b) is proved.
c) Assume T is a simple stopping time. By the equality $\left(^{*}\right)$ we have

$$
I_{X^{T}}(B)=I_{X}([0, T] \cap B), \text { for } B \in \mathcal{R} .
$$

Since X is p-additive summable relative to $(F, G), I_{X}$ has a canonical additive extension $I_{X}: \mathcal{P} \rightarrow L_{G}^{p}$. The equality

$$
I_{X^{T}}(A)=I_{X}([0, T] \cap A), \text { for } A \in \mathcal{P},
$$

defines an additive extension of $I_{X^{T}}$ to \mathcal{P}. Since the measure I_{X} has finite semivariation relative to $\left(F, L_{G}^{p}\right)$ (X is additive summable), the measure $I_{X^{T}}$ has finite semivariation relative to $\left(F, L_{G}^{p}\right)$ also. Moreover, for each $z \in\left(L_{G}^{p}\right)^{*}$, by Assertion a), the measure $\left(I_{X^{T}}\right)_{z}$ defined on \mathcal{P} is σ-additive. Therefore X^{T} is additive summable. We have $\left|\left(I_{X^{T}}\right)_{z}\right|(A)=\left|\left(I_{X}\right)_{z}\right|([0, T] \cap A)$ for $A \in \mathcal{P}$ since $\left|\left(I_{X}\right)_{z}\right|$ is the canonical extension of its restriction on \mathcal{R}. Then $\left|\left(I_{X^{T}}\right)_{z}\right|$ is the canonical extension of its restriction to \mathcal{R}. it follows that $I_{X^{T}}$ is the canonical extension of its restriction to \mathcal{R}.

The next theorem gives the relationship between the stopped stochastic integral and the integral of the process $1_{[0, T]} H$. The same type of relation was proved in Theorem 11.6 in [Din00].

Theorem 12. Let $H \in L_{F, G}^{1}(X)$ and let T be a stopping time. Then $1_{[0, T]} H \in L_{F, G}^{1}(X)$ and

$$
\left(1_{[0, T]} H\right) \cdot X=(H \cdot X)^{T} .
$$

Proof. Suppose first that T is a simple stopping time of the form

$$
T=\sum_{1 \leq i \leq n} 1_{A_{i}} t_{i}
$$

with $0 \leq t_{1} \leq t_{2} \leq \ldots t_{n} \leq+\infty, A_{i} \in \mathcal{F}_{t_{i}}$ mutually disjoint and with union Ω. Then for $t \geq 0$ we have

$$
(H \cdot X)_{t}^{T}(\omega)=\sum_{1 \leq i \leq n}(H \cdot X)_{t_{i} \wedge t}(\omega) 1_{A_{i}}(\omega) .
$$

In fact, for $\omega \in \Omega$ there is $1 \leq i \leq n$ such that $\omega \in A_{i}$. Then $T(\omega)=t_{i}$, hence

$$
(H \cdot X)_{t}^{T}(\omega)=(H \cdot X)_{t_{i} \wedge t}(\omega)
$$

On the other hand

$$
\left.\left(1_{[0, T]} H\right) \cdot X\right)_{t}(\omega)=\sum_{1 \leq i \leq n}(H \cdot X)_{t_{i} \wedge t}(\omega) 1_{A_{i}}(\omega) .
$$

In fact,

$$
\begin{aligned}
&\left(\int_{[0, t]} 1_{[0, T]} H d I_{X}\right)(\omega)=\left(\int_{[0, t]} \sum_{1 \leq i \leq n} 1_{\left[0, t_{i}\right]} 1_{A_{i}} H d I_{X}\right)(\omega)=\sum_{1 \leq i \leq n}\left(\int_{\left[0, t_{i} \wedge t\right]} 1_{A_{i}} H d I_{X}\right)(\omega) \\
&=\sum_{1 \leq i \leq n}\left(\int_{[0, \infty]} H 1_{A_{i}} d I_{X}\right)(\omega)-\sum_{1 \leq i \leq n}\left(\int_{\left(t_{i} \wedge t, \infty\right]} 1_{A_{i}} H d I_{X}\right)(\omega) \\
&=\left(\int_{[0, \infty]} H d I_{X}\right)(\omega)-\sum_{1 \leq i \leq n} 1_{A_{i}}(\omega)\left(\int_{\left(t_{i}, \infty\right]} H d I_{X}\right)(\omega) \\
&=\sum_{1 \leq i \leq n} 1_{A_{i}}(\omega)\left(\int_{[0, \infty]} H d I_{X}\right)(\omega)-\sum_{1 \leq i \leq n} 1_{A_{i}}(\omega)\left(\int_{\left(t_{i}, \infty\right]} H d I_{X}\right)(\omega) \\
&=\sum_{1 \leq i \leq n} 1_{A_{i}}(\omega)\left(\int_{\left[0, t_{i} \wedge t\right]} H d I_{X}\right)(\omega)=\sum_{1 \leq i \leq n}(H \cdot X)_{t_{i} \wedge t}(\omega) 1_{A_{i}}(\omega)
\end{aligned}
$$

where the 4 th equality is obtained by applying Proposition 10 , with $h=1_{A_{i}}$.
Hence, for T simple, we have $1_{[0, T]} H \in L_{F, G}^{1}(X)$ and

$$
\left(1_{[0, T]} H\right) \cdot X=(H \cdot X)^{T} .
$$

Now choose T arbitrary. Then there is a decreasing sequence $\left(T_{n}\right)$ of simple stopping times, such that $T_{n} \downarrow T$.

Note first that since $(H \cdot X)$ is cadlag we have

$$
\begin{equation*}
(H \cdot X)^{T_{n}} \rightarrow(H \cdot X)^{T} . \tag{1}
\end{equation*}
$$

Moreover for $t \geq 0$ we have $1_{\left[0, T_{n} \wedge t\right]} H \downarrow 1_{\left[0, T_{n} \wedge t\right]} H$ pointwise. Since $1_{\left[0, T_{n} \wedge t\right]} H \in$ $L_{F, G}^{1}(X)$, for each $\left(z \in L_{G}^{p}\right)^{*}$ we have $1_{\left[0, T_{n} \wedge t\right]} H \in L_{F}^{1}\left(\left|\left(I_{X}\right)_{z}\right|\right)$, hence

$$
\left\langle\int 1_{\left[0, T_{n} \wedge t\right]} H d I_{X}, z\right\rangle=\int 1_{\left[0, T_{n} \wedge t\right]} H d\left(I_{X}\right)_{z} \rightarrow \int 1_{[0, T \wedge t]} H d\left(I_{X}\right)_{z}=\left\langle\int 1_{[0, T \wedge t]} H d I_{X}, z\right\rangle .
$$

By Theorem 4 we conclude that $\int 1_{[0, T \wedge t]} H d I_{X}=\int_{[0, t]} 1_{[0, T]} H d I_{X} \in L_{G}^{p}$ and

$$
\int 1_{\left[0, T_{n} \wedge t\right]} H d I_{X} \rightarrow \int 1_{[0, T \wedge t]} H d I_{X}
$$

or

$$
\int_{[0, t]} 1_{\left[0, T_{n}\right]} H d I_{X} \rightarrow \int_{[0, t]} 1_{[0, T]} H d I_{X} .
$$

Since for each n we have $\left(1_{\left[0, T_{n}\right]} H \cdot X\right)_{t}=(H \cdot X)_{t}^{T_{n}}$, by (1) we deduce that $\int_{[0, t]} 1_{[0, T]} H d I_{X}=(H \cdot X)_{t}^{T}$. Hence the mapping $t \mapsto \int_{[0, t]} 1_{[0, T]} H d I_{X}$ is cadlag, from which we conclude that $1_{[0, T]} H \in L_{F, G}^{1}(X)$. Moreover

$$
\left(1_{[0, T]} H \cdot X\right)_{t}=(H \cdot X)_{T \wedge t}=(H \cdot X)_{t}^{T} .
$$

The next corollary is a useful particular case of the previous theorem:
Corollary 13. For every stopping time T we have

$$
1_{[0, T]} \cdot X=X^{T}
$$

Proof. Taking $H=1 \in L_{F, G}^{1}(X)$ and applying Theorem 12 we conclude that $1_{[0, T]} \cdot X=X^{T}$.

The following theorem gives the same type of results as Theorem 11.8 in[Din00].

Theorem 14. Let $S \leq T$ be stopping times and assume that either
(i) $h: \Omega \rightarrow \mathbb{R}$ is a simple, \mathcal{F}_{S}-measurable function and $H \in L_{F, G}^{1}(X)$, or
(ii) The measure I_{X} is σ-additive, $h: \Omega \rightarrow F$ is a simple, \mathcal{F}_{S}-measurable function and $H \in L_{\mathbb{R}, E}^{1}(X)$.
Then $1_{(S, T]} H$ and $h 1_{(S, T]} H$ are integrable with respect to X and

$$
\left(h 1_{(S, T]} H\right) \cdot X=h\left[\left(1_{(S, T]} H\right) \cdot X\right] .
$$

Proof. Note that

$$
1_{(S, T]} H=1_{[0, T]} H-1_{[0, S]} H
$$

Assume first the case (i). Applying Theorem 12 for $1_{[0, T]} H$ and $1_{[0, S]} H$ we conclude that $1_{(S, T]} H \in L_{F, G}^{1}(X)$.

If for each $t \geq 0$ we apply Proposition 10 , we obtain

$$
\int_{[0, t]} h 1_{(S, T]} H d I_{X}=h \int_{[0, t]} 1_{(S, T]} H d I_{X}
$$

Since $1_{(S, T]} H \in L_{F, G}^{1}(X)$ we deduce that $h 1_{(S, T]} H \in L_{F, G}^{1}(X)$ and

$$
\left(\left(h 1_{(S, T]} H\right) \cdot X\right)_{t}=h\left(\left(1_{(S, T]} H\right) \cdot X\right)_{t}
$$

which concludeds the proof of case (i). Case (ii) is treated similarly.

2.6 The Integral $\int H d I_{X^{T}}$

In this section we define the set of processes integrable with respect to the measure $I_{X^{T}}$ with finite semivariation relative to the pair $\left(F, L_{G}^{p}\right)$.

Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E \subset L(F, G)$ be a cadlag, adapted process and assume X is p-additive summable relative to (F, G).

Consider the additive measure $I_{X}: \mathcal{P} \rightarrow L_{E}^{p} \subset L\left(F, L_{G}^{p}\right)$ with bounded semivariation $\tilde{I}_{F, G}$ relative to $\left(F, L_{G}^{p}\right)$, such that each of the measures $\left(I_{X}\right)_{z}$ with $z \in\left(L_{G}^{p}\right)^{*}$ is σ-additive.

To simplify the notations denote $m=I_{X^{T}}$. We proved in the previous proposition that the measure $m: \mathcal{R} \rightarrow L_{E}^{p} \subset L\left(F, L_{G}^{p}\right)$ has bounded semivariation relative to $\left(F, L_{G}^{p}\right)$, on \mathcal{R}, and for each $z \in\left(L_{G}^{p}\right)^{*}$ the measures m_{z}, is σ-additive. In order for the process X^{T} to be additive summable we need the measure $m: \mathcal{R} \rightarrow L_{E}^{p}$ to have an extension $m: \mathcal{P} \rightarrow L_{E}^{p}$ with finite semivariation and such that each of the measures m_{z} with $z \in\left(L_{G}^{p}\right)^{*}$ is σ-additive. Applying Theorem 7 from Bongiorno-Dinculeanu, citeBD2001, the measure m has a unique canonical extension $m: \mathcal{P} \rightarrow\left(L_{E}^{p}\right)^{* *}$, with bounded semivariation such that for each $z \in\left(L_{G}^{p}\right)^{*}$ the measure m_{z}, is σ-additive and has bounded variation $\left|m_{z}\right|$, therefore X^{T} is summable.

Then we have

$$
\tilde{m}_{F, L_{G}^{p}}=\sup \left\{\left|m_{z}\right|: z \in\left(L_{G}^{p}\right)^{*},\|z\|_{q} \leq 1\right\} .
$$

We denote by $\mathcal{F}_{F, G}\left(X^{T}\right)$ the space of predictable processes $H: \mathbb{R}_{+} \times \Omega \rightarrow$ F such that

$$
\tilde{m}_{F, G}(H)=\tilde{m}_{F, L_{G}^{p}}(H)=\sup \left\{\int|H| d\left|m_{z}\right|:\|z\| \leq 1\right\}<\infty .
$$

Let $H \in \mathcal{F}_{F, G}\left(X^{T}\right)$; then $H \in L_{F}^{1}\left(\left|m_{z}\right|\right)$ for every $z \in\left(L_{G}^{p}\right)^{*}$, hence the integral $\int H d m_{z}$ is defined and is a scalar. The mapping $z \mapsto \int H d m_{z}$ is a linear continuous functional on $\left(L_{G}^{p}\right)^{*}$, denoted $\int H d m$. Therefore, $\int H d m \in$ $\left(L_{G}^{p}\right)^{* *}$,

$$
\left\langle\int H d m, z\right\rangle=\int H d m_{z}, \text { for } z \in\left(L_{G}^{p}\right)^{*} .
$$

We denote by $L_{F, G}^{1}\left(X^{T}\right)$ the set of processes $H \in \mathcal{F}_{F, G}\left(I_{X}^{T}\right)$ satisfying the following two conditions:
a) $\int_{[0, t]} H d m \in L_{G}^{p}$ for every $t \in \mathbb{R}_{+}$;
b) The process $\left(\int_{[0, t]} H d m\right)_{t \geq 0}$ has a cadlag modification.

Theorem 15. Let $X: \mathbb{R} \rightarrow E \subset L(F, G)$ be a p-additive summable process relative to (F, G) and T a stopping time.
a) We have $H \in \mathcal{F}_{F, G}\left(X^{T}\right)$ iff $1_{[0, T]} H \in \mathcal{F}_{F, G}(X)$ and in this case we have:

$$
\int H d I_{X^{T}}=\int 1_{[0, T]} H d I_{X}
$$

b) We have $H \in L_{F, G}^{1}\left(X^{T}\right)$ iff $1_{[0, T]} H \in L_{F, G}^{1}(X)$ and in this case we have:

$$
H \cdot X^{T}=\left(1_{[0, T]} H\right) \cdot X
$$

If $H \in L_{F, G}^{1}(X)$, then $H \in L_{F, G}^{1}\left(X^{T}\right), 1_{[0, T]} H \in L_{F, G}^{1}(X)$ and

$$
(H \cdot X)^{T}=H \cdot X^{T}=\left(1_{[0, T]} H\right) \cdot X
$$

Proof. a) Define $m: \mathcal{R} \rightarrow E$ by $m(B)=I_{X^{T}}(B)$ for $B \in \mathcal{R}$. We proved in Theorem 11 (a) that for every $z \in\left(L_{G}^{p}\right)^{*}$ we have

$$
\begin{equation*}
m_{z}(B)=\left(I_{X}\right)_{z}(B \cap[0, T]), \text { for all } B \in \mathcal{R} \tag{*}
\end{equation*}
$$

Since $\left(I_{X}\right)_{z}((\cdot) \cap[0, T])$ is a σ-additive measure, with bounded variation on \mathcal{P} satisfying $\left({ }^{*}\right)$ and since \mathcal{P} is the σ-algebra generated by \mathcal{R}, by the uniqueness theorem 7.4 in [Din00] we conclude that

$$
m_{z}(B)=\left(I_{X}\right)_{z}(B \cap[0, T]), \text { for all } B \in \mathcal{P}
$$

Let $H \in \mathcal{F}_{F, G}\left(X^{T}\right)=\bigcap_{\|z\|_{q} \leq 1, z \in\left(L_{G}^{p}\right)^{*}} L_{F}^{1}\left(m_{z}\right)$. From the previous equality we deduce that

$$
\int H d m_{z}=\int 1_{[0, T]} H d\left(I_{X}\right)_{z}
$$

therefore

$$
\int H d I_{X^{T}}=\int 1_{[0, T]} H d I_{X},
$$

and this is the equality in Assertion a).
b) To prove Assertion b) we replace H with $1_{[0, t]} H$ in the previous assertion and deduce that $1_{[0, t]} H \in \mathcal{F}_{F, G}\left(X^{T}\right)$ iff $1_{[0, t]} 1_{[0, T]} H \in \mathcal{F}_{F, G}(X)$ and in this case we have

$$
\int_{[0, t]} H d I_{X^{T}}=\int_{[0, t]} 1_{[0, T]} H d I_{X} .
$$

It follows that $H \in L_{F, G}^{1}\left(X^{T}\right)$ iff $1_{[0, T]} H \in L_{F, G}^{1}(X)$ and in this case we have

$$
\left(H \cdot X^{T}\right)_{t}=\left(\left(1_{[0, T]} H\right) \cdot X\right)_{t} .
$$

If now $H \in L_{F, G}^{1}(X)$, then, from Theorem 12 we deduce that $1_{[0, T]} H \in L_{F, G}^{1}(X)$ and

$$
\left(1_{[0, T]} H\right) \cdot X=(H \cdot X)^{T} .
$$

2.7 Convergence Theorems

Assume X is p-additive summable relative to (F, G). In this section we shall present several convergence theorems.

Lemma 16. Let $\left(H^{n}\right)$ be a sequence in $L_{F, G}^{1}(X)$ and assume that $H^{n} \rightarrow H$ in $\mathcal{F}_{F, G}(X)$. Then there is a subsequence $\left(r_{n}\right)$ such that

$$
\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}=\int_{[0, t]} H d I_{X}, \text { a.s., as } n \rightarrow \infty
$$

uniformly on every bounded time interval.
Proof. Since H^{n} is a convergent sequence in $\mathcal{F}_{F, G}(X)$ there is a subsequence $H^{r_{n}}$ of (H^{n}) such that

$$
\tilde{I}_{F, G}\left(H^{r_{n}}-H^{r_{n+1}}\right) \leq 4^{-n}, \text { for each } n .
$$

Let $t_{0}>0$. Define the stopping time

$$
u_{n}=\inf \left\{t:\left|\left(H^{r_{n}} \cdot X\right)_{t}-\left(H^{r_{n+1}} \cdot X\right)_{t}\right|>2^{-n}\right\} \wedge t_{0}
$$

By Theorem 12 applied to the stopping time u_{n}, we obtain

$$
\left(H^{r_{n}} \cdot X\right)_{u_{n}}=\left(H^{r_{n}} \cdot X\right)_{\infty}^{u_{n}}=\left(\left(1_{\left[0, u_{n}\right]} H^{r_{n}}\right) \cdot X\right)_{\infty}=\int_{\left[0, u_{n}\right]} H^{r_{n}} d I_{X},
$$

hence

$$
\begin{align*}
& E\left(\left|\left(H^{r_{n}} \cdot X\right)_{u_{n}}-\left(H^{r_{n+1}} \cdot X\right)_{u_{n}}\right|\right)=E\left(\left|\int_{\left[0, u_{n}\right]} H^{r_{n}} d I_{X}-\int_{\left[0, u_{n}\right]} H^{r_{n+1}} d I_{X}\right|\right) \\
& \quad=E\left(\mid \int_{\left[0, u_{n}\right]}\left(\left(H^{r_{n}}-H^{r_{n+1}}\right) d I_{X} \mid\right)=\left(\left\|\int_{\left[0, u_{n}\right]}\left(H^{r_{n}}-H^{r_{n+1}}\right) d I_{X}\right\|_{L_{G}^{1}}\right.\right. \\
& \quad \leq\left\|\int_{\left[0, u_{n}\right]}\left(H^{r_{n}}-H^{r_{n+1}}\right) d I_{X}\right\|_{L_{G}^{p}} \leq \tilde{I}_{F, G}\left(H^{r_{n}}-H^{r_{n+1}}\right) \leq 4^{-n} . \tag{*}
\end{align*}
$$

Using inequality $\left(^{*}\right)$ and following the same techniques as in Theorem 12.1 a) in [Din00] one could show first that the sequence $\left(H^{r_{n}} \cdot X\right)_{t}$ is a Cauchy sequence in L_{G}^{p} uniformly for $t<t_{0}$ and then conclude that

$$
\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow \int_{[0, t]} H d I_{X},
$$

uniformly on every bounded time interval.
Theorem 17. Let $\left(H^{n}\right)$ be a sequence from $L_{F, G}^{1}(X)$ and assume that $H^{n} \rightarrow H$ in $\mathcal{F}_{F, G}(X)$. Then:
a) $H \in L_{F, G}^{1}(X)$.
b) $\left(H^{n} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, in L_{G}^{p}, for $t \in[0, \infty]$.
c) There is a subsequence $\left(r_{n}\right)$ such that

$$
\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}, \text { a.s., as } n \rightarrow \infty
$$

uniformly on every bounded time interval.
Proof. For every $t \geq 0$ we have $1_{[0, t]} H^{n} \rightarrow 1_{[0, t]} H$ in $\mathcal{F}_{F, G}(X)$. Since the integral is continuous, we deduce that

$$
\left(H^{n} \cdot X\right)_{t}=\int_{[0, t]} H^{n} d I_{X} \rightarrow \int_{[0, t]} H d I_{X}, \text { in }\left(L_{G^{*}}^{p}\right)^{*}
$$

Since $H^{n} \in L_{F, G}^{1}(X)$ we have $\int_{[0, t]} H^{n} d I_{X} \in L_{G}^{p}$ and

$$
\left(H^{n} \cdot X\right)_{t} \rightarrow \int_{[0, t]} H d I_{X}, \text { in } L_{G}^{p}
$$

From the previous lemma we deduce that there is a subsequence $\left(H^{r_{n}}\right)$ such that

$$
\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}, \text { a.s., as } n \rightarrow \infty,
$$

uniformly on every bounded time interval. Since ($H^{r_{n}} \cdot X$) are cadlag it follows that the limit is also cadlag, hence $H \in L_{F, G}^{1}(X)$ which is Assertion a). Hence

$$
(H \cdot X)_{t}=\int_{[0, t]} H d I_{X}, \text { a.s. }
$$

and therefore $\left(H^{n} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, in L_{G}^{p}, which is Assertion b). Also observe that for the above susequence $\left(H^{r_{n}}\right)$ we have

$$
\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}, \text { a.s., as } n \rightarrow \infty
$$

uniformly on every bounded time interval.
We can restate Theorem 17 as:
Corollary 18. $L_{F, G}^{1}(X)$ is complete.
Next we state an uniform convergence theorem. Uniform convergence implies convergence in $L_{F, G}^{1}(X)$.

Theorem 19. Let $\left(H^{n}\right)$ be a sequence from $\mathcal{F}_{F, G}(X)$. If $H^{n} \rightarrow H$ pointwise uniformly then $H \in \mathcal{F}_{F, G}(X)$ and $H^{n} \rightarrow H$ in $\mathcal{F}_{F, G}(X)$.

If, in addition, for each n, H^{n} is integrable, i.e. $H^{n} \in L_{F, G}^{1}(X)$ then
a) $H \in L_{F, G}^{1}(X)$ and $H^{n} \rightarrow H$ in $L_{F, G}^{1}(X)$;
b) For every $t \in[0, \infty]$ we have $\left(H^{n} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, in L_{G}^{p}.
c) There is a subsequence $\left(r_{n}\right)$ such that $\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, a.s. as $n \rightarrow \infty$, uniformly on any bounded interval.

Proof. Assertion a) is immediate. Assertions b), c) and d) follow from Theorem 17.

Now we shall state Vitali and Lebesgue-type Convergence Theorems. They are direct consequences of the convergence Theorem 17 and of the uniform convergence Theorem 19.

Theorem 20. (Vitali). Let $\left(H^{n}\right)$ be a sequence from $\mathcal{F}_{F, G}(X)$ and let H be an F-valued, predictable process. Assume that
(i) $\quad \tilde{I}_{F, G}\left(H^{n} 1_{A}\right) \rightarrow 0$ as $\tilde{I}_{F, G}(A) \rightarrow 0$, uniformly in n
and that any one of the conditions (ii) or (iii) below is true:
(ii) $H^{n} \rightarrow H$ in $\tilde{I}_{F, G}$-measure;
(iii) $H^{n} \rightarrow H$ pointwise and $I_{F,\left(L_{G}^{p}\right)^{*}}$ is uniformly σ-additive (this is the case if H^{n} are real-valued, i.e., $F=\mathbb{R}$).

Then:
a) $H \in \mathcal{F}_{F, G}(X)$ and $H^{n} \rightarrow H$ in $\mathcal{F}_{F, G}(X)$.

Conversely, if $H^{n}, H \in \mathcal{F}_{F, G}(\mathcal{B}, X)$ and $H^{n} \rightarrow H$ in $\mathcal{F}_{F, G}(X)$, then conditions (i) and (ii) are satisfied.

Under the hypotheses (i) and (ii) or (iii), assume, in addition, that $H^{n} \in L_{F, G}^{1}(X)$ for each n. Then
b) $H \in L_{F, G}^{1}(X)$ and $H^{n} \rightarrow H$ in $L_{F, G}^{1}(X)$;
c) For every $t \in[0, \infty]$ we have $\left(H^{n} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, in L_{G}^{p};
d) There is a subsequence $\left(r_{n}\right)$ such that $\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, a.s., as $n \rightarrow \infty$, uniformly on any bounded interval.
Theorem 21. (Lebesgue). Let $\left(H^{n}\right)$ be a sequence from $\mathcal{F}_{F, G}(X)$ and let H be an F-valued predictable process. Assume that
(i) There is a process $\phi \in \mathcal{F}_{\mathbb{R}}\left(\mathcal{B}, I_{F, G}\right)$ such that

$$
\left|H^{n}\right| \leq \phi \text { for each } n
$$

and that any one of the conditions (ii) or (iii) below is true:
(ii) $H^{n} \rightarrow H$ in $\tilde{I}_{F, G}$-measure;
(iii) $H^{n} \rightarrow H$ pointwise and $I_{F, L_{G^{*}}^{q}}$ is uniformly σ-additive (this is the case if H^{n} are real valued, i.e., $F=\mathbb{R}$).

Then:
a) $H \in \mathcal{F}_{F, G}(\mathcal{B}, X)$ and $H^{n} \rightarrow H$ in $\mathcal{F}_{F, G}(X)$.

Assume, in addition that $H^{n} \in L_{F, G}^{1}(X)$ for each n. Then
b) $H \in L_{F, G}^{1}(X)$ and $H^{n} \rightarrow H$ in $L_{F, G}^{1}(X)$;
c) For every $t \in[0, \infty]$ we have $\left(H^{n} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, in L_{G}^{p};
d) There is a subsequence $\left(r_{n}\right)$ such that $\left(H^{r_{n}} \cdot X\right)_{t} \rightarrow(H \cdot X)_{t}$, a.s., as $n \rightarrow \infty$, uniformly on any bounded interval.

2.8 Summability of the Stochastic Integral

Assume X is p-additive summable relative to (F, G). In this section we are studying the additive summability of the stochastic integral $H \cdot X$ for F-valued processes H.

If H is a real valued processes then in order for the stochastic integral $H \cdot X$ to be defined we need each of the measure $\left(I_{X}\right)_{z}$, for $z \in\left(L_{E}^{P}\right)^{*}$, to be σ-additve, hence the measure I_{X} would be σ-additive. Therefore the process X would be summable. In this case the summability of the stochastic integral is proved in Theorem 13.1 of [Din00].

The next theorem shows that if H is F-valued then the measure $I_{H \cdot X}$ is σ-additive even if I_{X} is just additive.

Theorem 22. Let $H \in L_{F, G}^{1}(X)$ be such that $\int_{A} H d I_{X} \in L_{G}^{p}$ for $A \in \mathcal{P}$. Then the measure $I_{H \cdot X}: \mathcal{R} \rightarrow L_{G}^{p}$ has a σ-additive extension $I_{H \cdot X}: \mathcal{P} \rightarrow L_{G}^{p}$ to \mathcal{P}.

Proof. We first note that $H \cdot X: \mathbb{R}_{+} \times \Omega \rightarrow G=L(\mathbb{R}, G)$ is a cadlag adapted process with $(H \cdot X)_{t} \in L_{G}^{p}$ for $t \geq 0$ (by the definition of $H \cdot X$).

Since $\int_{A} H d I_{X} \in L_{G}^{p}$ for every $A \in \mathcal{P}$, by Proposition ??, with $m=I_{X}$ and $g=H$, we deduce that $H I_{X}$ is σ-additive on \mathcal{P}.

Next we prove that for any predictable rectangle $A \in \mathcal{R}$ we have

$$
\begin{equation*}
I_{H \cdot X}(A)=\int_{A} H d I_{X} \tag{1}
\end{equation*}
$$

In fact, consider first $A=\{0\} \times B$ with $B \in \mathcal{F}_{0}$. Using Proposition 10 for $h=1_{B}$ we have

$$
\begin{aligned}
I_{H \cdot X}(\{0\} \times B) & =1_{B}\left((H \cdot X)_{0}\right)=1_{B} \int_{\{0\}} H d I_{X} \\
& =\int_{\{0\}} 1_{B} H d I_{X}=\int_{\{0\} \times B} H d I_{X}
\end{aligned}
$$

Let now $A=(s, t] \times B$ with $B \in \mathcal{F}_{s}$. Using Proposition 10 for $h=1_{B}$ and $(S, T]=(s, t]$ we have

$$
\begin{aligned}
& I_{H \cdot X}((s, t] \times B)=1_{B}\left((H \cdot X)_{t}-(H \cdot X)_{s}\right) \\
= & 1_{B}\left(\int_{[0, t]} H d I_{X}-\int_{[0, s]} H d I_{X}\right)=1_{B} \int_{(s, t]} H d I_{X} \\
= & \int_{(s, t]} 1_{B} H d I_{X}=\int_{(s, t] \times B} H d I_{X} ;
\end{aligned}
$$

and the desired equality is proved.

Since the measure $A \mapsto \int_{A} H d I_{X}$ is σ-additive for $A \in \mathcal{P}$ it will follow that $I_{H \cdot X}$ can be extended to a σ-additive measure on \mathcal{P} by the same equality

$$
\begin{equation*}
I_{H \cdot X}(A)=\int_{A} H d I_{X}, \text { for } A \in \mathcal{P} \tag{2}
\end{equation*}
$$

The next theorem states the summability of the stochastic integral.
Theorem 23. Let $H \in L_{F, G}^{1}(X)$ be such that $\int_{A} H d I_{X} \in L_{G}^{p}$ for $A \in \mathcal{P}$. Then:
a) $H \cdot X$ is p-summable, hence p-additive summable relative to (\mathbb{R}, G) and

$$
d I_{H \cdot X}=d\left(H I_{X}\right)
$$

b) For any predictable process $K \geq 0$ we have

$$
\left(\tilde{I}_{H \cdot X}\right)_{\mathbb{R}, G}(K) \leq\left(\tilde{I}_{X}\right)_{F, G}(K H)
$$

c) If K is a real-valued predictable process and if $K H \in L_{F, G}^{1}(X)$, then $K \in L_{\mathbb{R}, G}^{1}(H \cdot X)$ and we have

$$
K \cdot(H \cdot X)=(K H) \cdot X
$$

Proof. By Theorem 22 we know that the measure $I_{H \cdot X}$ is σ-additive. Therefore To prove (a) we only need to show that the extension of $I_{H \cdot X}$ to \mathcal{P} has finite semivariation relative to $\left(\mathbb{R}, L_{G}^{p}\right)$.

Let $z \in\left(L_{G}^{p}\right)^{*}$. From the equality (2) in Theorem 22 we deduce that for every $A \in \mathcal{P}$, and we have

$$
\left.\left(I_{H \cdot X}\right)_{z}(A)\right\rangle=\left\langle I_{H \cdot X}(A), z\right\rangle=\left\langle\int_{A} H d I_{X}, z\right\rangle=\int_{A} H d\left(I_{X}\right)_{z} .
$$

From this we deduce the inequality

$$
\begin{equation*}
\left|\left(I_{H \cdot X}\right)_{z}\right|(A) \leq \int_{A}|H| d\left|\left(I_{X}\right)_{z}\right|, \text { for } A \in \mathcal{P} \tag{*}
\end{equation*}
$$

Taking the supremum for $z \in\left(L_{G}^{P}\right)_{1}^{*}$ we obtain

$$
\sup \left\{\left|\left(I_{H \cdot X}\right)_{z}\right|(A), z \in\left(L_{G}^{P}\right)_{1}^{*}\right\} \leq \sup \left\{\int_{A}|H| d\left|\left(I_{X}\right)_{z}\right|, z \in\left(L_{G}^{P}\right)_{1}^{*}\right\}
$$

$$
\leq \sup \left\{\int\left|1_{A} H\right| d\left|\left(I_{X}\right)_{z}\right|, z \in\left(L_{G}^{P}\right)_{1}^{*}\right\}, \text { for } A \in \mathcal{P}
$$

Therefore

$$
\left(\tilde{I}_{H \cdot X}\right)_{\mathbb{R}, G}(A) \leq\left(\tilde{I}_{X}\right)_{F, G}\left(1_{A} H\right)<\infty, \text { for } A \in \mathcal{P}
$$

It follows that $H \cdot X$ is p-summable, hence p-additive summable, relative to (\mathbb{R}, G) and this proves Assertion a).

Since the extension to $\mathbb{\top}$ of the measure $I_{X \cdot H}$ is σ-additive and has finite semivariation b) and c) follow from Theorem 13.1 of [Din00].

2.9 Summability Criterion

Let $Z \subset L_{E^{*}}^{q}$ be any closed subspace norming for L_{E}^{p}. The next theorem differs from the summability criterion in [Din00] by the fact that the restrictive condition $c_{0} \notin E$ was not imposed. Also note that this theorem does not give us necessary and sufficient conditions for the sumability of the precess.
Theorem 24. Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E$ be an adapted, cadlag process such that $X_{t} \in L_{E}^{p}$ for every $t \geq 0$. Then the Assertions a)-d) below are equivalent.
a) $I_{X}: \mathcal{R} \rightarrow L_{E}^{p}$ has an additive extension $I_{X}: \mathcal{P} \rightarrow Z^{*}$ such that for each $g \in Z$, the real valued measure $\left\langle I_{X}, g\right\rangle$ is a σ-additive on \mathcal{P}.
b) I_{X} is bounded on \mathcal{R};
c) For every $g \in Z$, the real valued measure $\left\langle I_{X}, g\right\rangle$ is bounded on \mathcal{R};
d) For every $g \in Z$, the real valued measure $\left\langle I_{X}, g\right\rangle$ is σ-additive and bounded on \mathcal{R}.

Proof. The proof will be done as follows: b) \Longleftrightarrow c) \Longleftrightarrow d) and a) \Longleftrightarrow d).
$\mathrm{b}) \Longrightarrow \mathrm{c}$) and c$) \Longrightarrow \mathrm{b}$) can be proven in the same fashion as in [Din00].
c) $\Longrightarrow \mathrm{d}$) Assume c), and let $g \in Z$. The real valued measure $\left\langle I_{X}, g\right\rangle$ is defined on \mathcal{R} by

$$
\left\langle I_{X}, g\right\rangle(A)=\left\langle I_{X}(A), g\right\rangle=\int\left\langle I_{X}(A), g\right\rangle d P, \text { for } A \in \mathcal{R}
$$

By assumption, $\left\langle I_{X}, g\right\rangle$ is bounded on \mathcal{R}. We need to prove that the measure $\left\langle I_{X}, g\right\rangle$ is $\sigma-$ additive. For that consider, as in [Din00], the real-valued process $X G=\left(\left\langle X_{t}, G_{t}\right\rangle\right)_{t \geq 0}$, where $G_{t}=E\left(g \mid \mathcal{F}_{t}\right)$ for $t \geq 0$. Then $X G$: $\mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}$ is a cadlag, adapted process and it can be proven, using the same techniques as in [Din00] that it is a quasimartingale.

Now, for each n, define the stopping time

$$
T_{n}(\omega)=\inf \left\{t:\left|X_{t}\right|>n\right\} .
$$

Then $T_{n} \uparrow \infty$ and $\left|X_{t}\right| \leq n$ on $\left[0, T_{n}\right)$. Since $X G$ is a quasimartingale on $(0, \infty]$, we know that $(X G)_{T_{n}} \in L^{1}$ (Proposition A 3.5 in [BD87]: $X G$ is a quasimartingale on $(0, \infty]$ iff $X G$ is a quasimartingale on $(0, \infty)$ and $\sup _{t}\|X G\|_{1}<\infty$.)

Moreover,

$$
\begin{align*}
\left|(X G)_{t}^{T_{n}}\right| & =\left|(X G)_{t}\right| 1_{\left\{t<T_{n}\right\}}+\left|(X G)_{T_{n}}\right| 1_{\left\{t \geq T_{n}\right\}} \tag{2}\\
& \leq\left|X_{t}\right|\left|G_{t}\right| 1_{\left\{t<T_{n}\right\}}+\left|(X G)_{T_{n}}\right| 1_{\left\{t \geq T_{n}\right\}} \\
& \leq n\left|G_{t}\right| 1_{\left\{t<T_{n}\right\}}+\left|(X G)_{T_{n}}\right| 1_{\left\{t \geq T_{n}\right\}} .
\end{align*}
$$

Besides, since $G_{t}=E\left(g \mid \mathcal{F}_{t}\right)$ it follows that G is a uniformly integrable martingale.

Next we prove that the family $\left\{(X G)_{T}^{T_{n}}, T\right.$ simple stopping time $\}$ is uniformly integrable.

In fact, note that by inequality (2) we have

$$
\begin{align*}
& \int_{\left\{\left|(X G)_{T}^{T_{n}}\right|>p\right\}}\left|(X G)_{T}^{T_{n}}\right| d P \\
\leq & \int_{\left\{\left|(X G)_{T}^{T_{n}}\right|>p\right\} \cap\left\{T<T_{n}\right\}} n\left|(X G)_{T}^{T_{n}}\right| d P+\int_{\left\{\left|(X G)_{T}^{T_{n}}\right|>p\right\} \cap\left\{T \geq T_{n}\right\}}\left|(X G)_{T_{n}}\right| d P \tag{3}
\end{align*}
$$

Now observe that

$$
\begin{aligned}
& \left\{\left|(X G)_{T}\right|>p\right\} \cap\left\{T<T_{n}\right\}=\left\{\left|\left\langle X_{T}, G_{T}\right\rangle\right|>p\right\} \cap\left\{T<T_{n}\right\} \\
& \subset\left\{|X|_{T}|G|_{T}>p\right\} \cap\left\{T<T_{n}\right\} \subset\left\{p<n\left|G_{T}\right|\right\} \cap\left\{T<T_{n}\right\} \subset\left\{p<n G_{T}\right\}
\end{aligned}
$$

Since G is a uniformly integrable martingale, it is a martingale of class D ; from $n\left|G_{t}\right| 1_{\left\{t<T_{n}\right\}} \leq n\left|G_{t}\right|$ we deduce that $n\left|G_{t}\right| 1_{\left\{t<T_{n}\right\}}$ is a martingale of class (D):

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} \int_{\left\{n\left|G_{t}\right| 1_{\left.\left\{t<T_{n}\right\}>p\right\}}\right.} n\left|G_{t}\right| 1_{\left\{t<T_{n}\right\}} d P \leq \lim _{p \rightarrow \infty} \int_{\left\{n\left|G_{t}\right|>p\right\}} n\left|G_{t}\right| d P \\
& =n \lim _{p \rightarrow \infty} \int_{\left\{\left|G_{t}\right|>\frac{p}{n}\right\}} n\left|G_{t}\right| d P=\lim _{\frac{p}{n} \rightarrow \infty} \int_{\left\{n\left|G_{t}\right|>p\right\}} n\left|G_{t}\right| d P=0 .
\end{aligned}
$$

Hence there is a $p_{1 \epsilon}$ such that for any $p \geq p_{1 \epsilon}$ and any simple stopping time T we have

$$
\begin{equation*}
\int_{\left\{\left|(X G)_{T}^{T_{n}}\right|>p\right\} \cap\left\{T<T_{n}\right\}} n\left|(X G)_{T}^{T_{n}}\right| d P \leq \int_{\left\{n\left|G_{t}\right|>p\right\}} n\left|G_{t}\right| d P<\frac{\epsilon}{2} \tag{4}
\end{equation*}
$$

We look now at the second term of the right hand side of the inequality (3).

$$
\int_{\left\{\left|(X G)_{T}^{T_{n}}\right|>p\right\} \cap\left\{T \geq T_{n}\right\}}\left|(X G)_{T_{n}}\right| d P \leq \int_{\left\{\left|(X G)_{T_{n}}\right|>p\right\}}\left|(X G)_{T_{n}}\right| d P
$$

Since $(X G)_{T_{n}} \in L^{1}$, for every $\epsilon>0$ there is a $p_{2 \epsilon}>0$ such that for every $p \geq p_{2 \epsilon}$ we have

$$
\begin{equation*}
\int_{\left\{\left|(X G)_{T}^{T_{n}}\right|>p\right\}}\left|(X G)_{T_{n}}\right| d P<\frac{\epsilon}{2} \tag{5}
\end{equation*}
$$

If we put (4) and (5) together we deduce that for every $\epsilon>0$ there is a $p_{\epsilon}=\max \left(p_{1 \epsilon}, p_{2 \epsilon}\right)$ such that for any $p>p_{\epsilon}$ and any T simple stopping time we have

$$
\int_{\left\{\left|(X G)_{T}^{T_{n}}\right|>p\right\}}\left|(X G)_{T}^{T_{n}}\right| d P<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,
$$

which proves the fact that $(X G)^{T_{n}}$ is a quasimartingale of class (D). From Theorem 14.2 of [Din00] we deduce that the Doléans measure $\mu_{(X G)^{T_{n}}}$ associated to the process $(X G)^{T_{n}}$ is σ-additive and has bounded variation on \mathcal{R}, hence it can be extended to a σ-additive measure with bounded variations on \mathcal{P} (Theorem 7.4 b) of [Din00]).

Next we show that for any $B \in \mathcal{P}$ we have

$$
\mu_{(X G)^{T_{n}}}(B)=\mu_{X G}\left(B \cap\left[0, T_{n}\right]\right) .
$$

In fact, for $A \in \mathcal{F}_{0}$ we have

$$
\mu_{(X G)^{T_{n}}}(\{0\} \times A)=\mu_{X G}\left((\{0\} \times A) \cap\left[0, T_{n}\right]\right) .
$$

and for $(s, t] \times A$ with $A \in \mathcal{F}_{s}$ we have
$\mu_{(X G)^{T_{n}}}((s, t] \times A)=E\left(1_{A}\left((X G)_{t}^{T_{n}}-(X G)_{s}^{T_{n}}\right)\right)=\mu_{X G}\left(((s, t] \times A) \cap\left[0, T_{n}\right]\right)$,
which proves our equality. Hence the measure $\mu_{X G}$ is σ-additive on the σ-ring $\mathcal{P} \cap\left[0, T_{n}\right]$ for each n, hence it is σ-additive on the ring

$$
\mathcal{B}=\bigcup_{1 \leq n<\infty} \mathcal{P} \cap\left[0, T_{n}\right]
$$

Next we observe that $\mu_{X G}$ is bounded on \mathcal{R}, therefore it has bounded variation on \mathcal{R} which implies that the measure defined on $\mathcal{B} \cap \mathcal{R}$ is σ-additive and has bounded variation. Since $\mathcal{B} \cap \mathcal{R}$ generates \mathcal{P}, by Theorem 7.4 b) of [Din00], $\mu_{X G}$ can be extended to a σ-additive measure with bounded variation on \mathcal{P}.

Since $\left\langle I_{X}, g\right\rangle=\mu_{X G}$, it follows that $\left\langle I_{X}, g\right\rangle$ is bounded and σ-additive on \mathcal{R}, thus d) holds. The implication d$) \Longrightarrow \mathrm{c}$) is evident.
a) $\Longrightarrow \mathrm{d})$ is evident since for each $g \in Z$, the measure $\left\langle I_{X}, g\right\rangle$ is σ additive on \mathcal{P} and since any σ-additive measure on a σ-algebra is bounded we conclude that for $g \in Z$, the measure $\left\langle I_{X}, g\right\rangle$ is bounded on \mathcal{P} hence on \mathcal{R}.

Next we prove d) $\Longrightarrow \mathrm{a}$). Assume d) is true. Then the real valued measure $\left\langle I_{X}, g\right\rangle$ is σ-additive and bounded on \mathcal{R}. Since we proved that b$) \Longleftrightarrow \mathrm{c}$) $\Longleftrightarrow \mathrm{d}$) we deduce from (1) that

$$
\left|\left\langle I_{X}, g\right\rangle(A)\right| \leq M\|g\| \text { for all } A \in \mathcal{R}
$$

where $M=\sup \left\{\left|I_{X}(A)\right|: A \in \mathcal{R}\right\}$. By Proposition 2.16 of [Din00] it follows that
the measure $\left\langle I_{X}(\cdot), g\right\rangle$ has bounded variation $\left|\left\langle I_{X}, g\right\rangle\right|(\cdot)$ satisfying

$$
\left|\left\langle I_{X}, g\right\rangle\right|(A) \leq 2 M\|g\|, \text { for } A \in \mathcal{R}
$$

Applying Proposition 4.15 in [Din00] we deduce that $\tilde{I_{X \mathbb{R}, E}}$ is bounded. By Theorem 3.7 b) of $[\mathrm{BD} 01]$ we conclude that the measure $I_{X}: \mathcal{R} \rightarrow L_{E}^{p}$ has an additive extension $I_{X}: \mathcal{P} \rightarrow Z^{* *}$ to \mathcal{P} such that for each $g \in Z$, the real valued measure $\left\langle I_{X}, g\right\rangle$ is a σ-additive on \mathcal{P} which is Assertion a).

3 Examples of Additive Summable Processes

Definition 25. Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E$ be an E-valued process. We say that X has finite variation, if for each $\omega \in \Omega$, the path $t \mapsto X_{t}(\omega)$ has finite variation on each interval $[0, t]$. If $1 \leq p<\infty$, the process X has p-integrable variation if the total variation $|X|_{\infty}=\operatorname{var}\left(X, \mathbb{R}_{+}\right)$is p-integrable.

Definition 26. We define the variation process $|X|$ by

$$
|X|_{t}(\omega)=\operatorname{var}(X .(\omega),(-\infty, t]), \text { for } t \in \mathbb{R} \text { and } \omega \in \Omega
$$

where $X_{t}=0$ for $t<0$.
Noting that if $m: \mathcal{D} \rightarrow E \subset L(F, G)$ is a σ-additive measure then for each $z \in G^{*}$, the measure $m_{z}: \mathcal{D} \rightarrow F^{*}$ is σ-additive, we deduce that, if the process X is summable, then it is also additive summable. Hence the following theorem is a direct consequence of Theorem 19.13 in [Din00]

Theorem 27. Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E$ be a cadlag, adapted process with integrable variation $|X|$. Then X is 1-additive summable relative to any embedding $E \subset L(F, G)$.

Proof. If $m: \mathcal{D} \rightarrow E \subset L(F, G)$ is a σ-additive measure then for each $z \in G^{*}$, the measure $m_{z}: \mathcal{D} \rightarrow F^{*}$ is σ-additive. We deduce that, if the process X is summable, then it is additive summable. Hence applying Theorem 19.13 b) in [Din00] we conclude our proof.

3.1 Processes with Integrable Semivariation

Definition 28. We define the semivariation process of X relative to (F, G) by

$$
\tilde{X}_{t}(\omega)=\operatorname{svar}_{F, G}(X .(\omega), \quad(-\infty, t]), \text { for } t \in \mathbb{R} \text { and } \omega \in \Omega
$$

where $X_{t}=0$ for $t<0$.
Definition 29. The total semivariation of X is defined by

$$
\tilde{X}_{\infty}(\omega)=\sup _{t \geq 0} \tilde{X}_{t}(\omega)=\operatorname{svar}_{F, G}(X .(\omega), \mathbb{R}), \text { for } \omega \in \Omega
$$

Definition 30. Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E \subset L(F, G)$. The process X is said to have finite semivariation relative to (F, G), if for every $\omega \in \Omega$, the path $t \mapsto X_{t}(\omega)$ has finite semivariation relative to (F, G) on each interval $(-\infty, t]$. The process X is said to have p-integrable semivariation $\tilde{X}_{F, G}$ if the total semivariation $\left(\tilde{X}_{F, G}\right)_{\infty}$ belongs to L^{p}.

Remark: If $X: \mathbb{R}_{+} \times \Omega \rightarrow E \subset L(F, G)$ is a process and $z \in G^{*}$ we define, the process $X_{z}: \mathbb{R}_{+} \times \Omega \rightarrow F^{*}$ by

$$
\left\langle x,\left(X_{z}\right)_{t}(\omega)\right\rangle=\left\langle X_{t}(\omega) x, z\right\rangle, \text { for } x \in F, t \in \mathbb{R}_{+} \text {and } \omega \in \Omega
$$

For fixed $t \geq 0$, we consider the function $X_{t}: \omega \mapsto X_{t}(\omega)$ from Ω into $E \subset L(F, G)$ and for $z \in G^{*}$ we define $\left(X_{t}\right)_{z}: \Omega \rightarrow F^{*}$ by the equality

$$
\left\langle x,\left(X_{t}\right)_{z}(\omega)\right\rangle=\left\langle X_{t}(\omega) x, z\right\rangle, \text { for } \omega \in \Omega, \text { and } x \in F .
$$

It follows that

$$
\left(X_{t}\right)_{z}(\omega)=\left(X_{z}\right)_{t}(\omega), \text { for } t \in \mathbb{R}_{+} \text {and } \omega \in \Omega
$$

The semivariation \tilde{X} can be computed in terms of the variation of the processes X_{z} :

$$
\tilde{X}_{t}(\omega)=\sup _{z \in G_{1}^{*}}\left|X_{z}\right|_{t}(\omega) .
$$

If X has finite semivariation \tilde{X}, then each X_{z} has finite variation $\left|X_{z}\right|$.
The following theorem is an improvement over the Theorem 21.12 in [Din00], where it was supposed that $c_{0} \notin E$ and $c_{0} \notin G$.

Theorem 31. Assume $c_{0} \not \subset G$. Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E \subset L(F, G)$ be a cadlag, adapted process with p-integrable semivariation relative to (\mathbb{R}, E) and relative to (F, G). Then X is p-additive summable relative to (F, G)

Proof. First we present the sketch of the proof, after which we prove all the details.

The prove goes as follows:

1) First we will show that

$$
\begin{equation*}
I_{X}(A)(\omega)=m_{X(\omega)}(A(\omega)), \text { for } A \in \mathcal{R} \text { and } \omega \in \Omega \tag{}
\end{equation*}
$$

where $A(\omega)=\{t ;(t, \omega) \in A\}$ and $X(\omega)$ is $X .(\omega)$. For the definition of the measure $m_{X(\omega)}$ see Section 2.2.
2) Then we will prove that the measure $m_{X(\omega)}$ has an additive extension to $\mathcal{B}\left(\mathbb{R}_{+}\right)$, with bounded semivariation relative to (F, G) and such that for every $g \in G^{*}$ the measure $\left(m_{X(\omega)}\right)_{g}$ is σ-additive.
3) Next we prove that the function $\omega \mapsto m_{X(\omega)}(M(\omega))$ belongs to L_{E}^{p} for all $M \in \mathcal{P}$.
4) Then we show that the extension of the measure I_{X} to \mathcal{P} has bounded semivariation relative to $\left(F, L_{G}^{p}\right)$.
5) Finally we show that for each $z \in\left(L_{G}^{p}\right)^{*}$ the measure $\left(I_{X}\right)_{z}: \mathcal{P} \rightarrow F^{*}$ is σ-additive.
6) We conclude that the process X is p-additive summable.

Now we prove each step in detail.

1) First we prove $\left({ }^{*}\right)$ for predictable rectangles. Let $A=\{0\} \times B$ with $B \in \mathcal{F}_{0}$. Then we have

$$
I_{X}(\{0\} \times B)(\omega)=1_{B}(\omega) X_{0}(\omega)=\int 1_{\{0\} \times B}(s, \omega) d X_{s}(\omega)=m_{X(\omega)}(A(\omega))
$$

Now let $A=(s, t] \times B$ with $B \in \mathcal{F}_{s}$. In this case we also obtain
$I_{X}((s, t] \times B)(\omega)=1_{B}(\omega)\left(X_{t}(\omega)-X_{s}(\omega)\right)=\int 1_{(s, t] \times B}(p, \omega) d X_{p}(\omega)=m_{X(\omega)}(A(\omega))$.
Since both $I_{X}(A)(\omega)$ and $m_{X(\omega)}(A(\omega))$ are additive we conclude that the equality $\left({ }^{*}\right)$ is true for $A \in \mathcal{R}$.
2) Since X has p-integrable semivariation relative to (F, G) we infer that $\left(\tilde{X}_{F, G}\right)_{\infty}(\omega)<\infty$ a.s. If we redefine $X_{t}(\omega)=0$ for those ω for which $\left(\tilde{X}_{F, G}\right)_{\infty}(\omega)=\infty$ we obtain a process still denoted X with bounded semivariation. In this case for each $\omega \in \Omega$ the function $t \mapsto X_{t}(\omega)$ is right continuous and with bounded semivariation. By Theorem ?? we deduce that the measure $m_{X(\omega)}$ can be extended to an additive measure $m_{X(\omega)}: \mathcal{B}\left(\mathbb{R}_{+}\right) \rightarrow E \subset$ $L(F, G)$, with bounded semivariation relative to (F, G) and such that for every $g \in G^{*}$ the measure $\left(m_{X(\omega)}\right)_{g}: \mathcal{B}\left(\mathbb{R}_{+}\right) \rightarrow F^{*}$ is σ-additive.
3) Since X has p-integrable semivariation relative to (F, G), for each $t \geq 0$ we have $X_{t} \in L_{E}^{p}$. Hence, by step 1, the function $\omega \mapsto m_{X(\omega)}(M(\omega))$ belongs to L_{E}^{p} for all $M \in \mathcal{R}$. To prove that $\omega \mapsto m_{X(\omega)}(M(\omega))$ belongs to L_{E}^{p} for all $M \in \mathcal{P}$ we will use the Monotone Class Theorem. We will prove that the set \mathcal{P}_{0} of all sets $M \in \mathcal{P}$ for which the affirmation is true is a monotone class, containing \mathcal{R}, hence equal to \mathcal{P}. In fact, let M_{n} be a monotone sequence from \mathcal{P}_{0} converging to M. By assumption, for each n the function $\omega \mapsto m_{X(\omega)}\left(M_{n}(\omega)\right)$ belongs to L_{E}^{p} and for each ω the sequence $\left(M_{n}(\omega)\right)$ is monotone in $\mathcal{B}\left(\mathbb{R}_{+}\right)$ and has limit $M(\omega)$. Moreover $\left|m_{X(\omega)}\left(M_{n}(\omega)\right)\right| \leq \tilde{m}_{X(\omega)}\left(\mathbb{R}_{+} \times \Omega\right)=\tilde{X}_{\infty}(\omega)$, which is p-integrable. By Lebesgue's Theorem we deduce that the mapping $\omega \mapsto m_{X(\omega)}(M(\omega))$ belongs to L_{E}^{p}, hence $M \in \mathcal{P}_{0}$. Therefore \mathcal{P}_{0} is a monotone class.
4) We use the equality $\left(^{*}\right)$ to extend I_{X} to the whole \mathcal{P}, by

$$
I_{X}(A)(\omega)=m_{X(\omega)}(A(\omega)), \text { for } A \in \mathcal{P} .
$$

Let $A \in \mathcal{P},\left(A_{i}\right)_{i \in I}$ be a finite family of disjoint sets from \mathcal{P} contained in A, and $\left(x_{i}\right)_{i \in I}$ a family of elements from F with $\left|x_{i}\right| \leq 1$. Then we have

$$
\left\|\sum I_{X}\left(A_{i}\right) x_{i}\right\|_{p}^{p}=E\left(\left|\sum I_{X}\left(A_{i}\right)(\omega) x_{i}\right|^{p}\right)
$$

$$
\begin{aligned}
& =E\left(\left|\sum m_{X(\omega)}\left(A_{i}(\omega)\right) x_{i}\right|^{p}\right) \leq E\left(\left|\left(\tilde{m}_{X(\omega)}\right)_{F, G}(A(\omega))\right|^{p}\right) \\
& =\left\|\left(\tilde{m}_{X(\omega)}\right)_{F, G}(A(\omega))\right\|_{p}^{p}=\left\|\tilde{X}_{F, G}(A(\omega))\right\|_{p}^{p} \leq\left\|\left(\tilde{X}_{F, G}\right)_{\infty}\right\|_{p}^{p}<\infty .
\end{aligned}
$$

Taking the supremum over all the families $\left(A_{i}\right)$ and $\left(x_{i}\right)$ as above, we deduce $\left(\tilde{I}_{X}\right)_{F, L_{G}^{p}} \leq\left\|\left(\tilde{X}_{F, G}\right)\right\|_{p}<\infty$.
5) Let $z \in\left(L_{G}^{p}\right)^{*}$ and $x \in F$. Then $z(\omega) \in G^{*}$ and for each set $M \in \mathcal{P}$ we have

$$
\begin{align*}
\left\langle\left(I_{X}\right)_{z}(M), x\right\rangle & =\left\langle I_{X}(M) x, z\right\rangle=E\left(\left\langle I_{X}(M)(\omega) x, z(\omega)\right\rangle\right) \\
& =E\left(\left\langle m_{X(\omega)}(M(\omega)) x, z(\omega)\right\rangle\right)=E\left(\left\langle\left(m_{X(\omega)}\right)_{z(\omega)}(M(\omega)), x\right\rangle\right) . \tag{3}
\end{align*}
$$

By step we conclude that the measure $\left(I_{X}\right)_{z}$ is σ-additive for each $z \in\left(L_{G}^{p}\right)^{*}$.
6) By the definition in step 4,

$$
I_{X}(A)(\omega)=m_{X(\omega)}(A(\omega)), \text { for } A \in \mathcal{P} \text { and } \omega \in \Omega
$$

and by steps 2 and 3 we conclude that the measure I_{X} has an additive extension $I_{X}: \mathcal{P} \rightarrow L_{E}^{p}$. By step 5 the measure $\left(I_{X}\right)_{z}$ is σ-additive for each $z \in\left(L_{G}^{p}\right)^{*}$. By step 4 this extension has bounded semivariation. Therefore the process X is p-additive summable.

The following theorem gives sufficient conditions for two processes to be indistinguishable. For the proof see [Din00], Corollary 21.10 b').
Theorem 32. ([Din00]21.10b')) Assume $c_{0} \not \subset E$ and let $A, B: \mathbb{R}_{+} \times \Omega \rightarrow E$ be two predictable processes with integrable semivariation relative to (\mathbb{R}, E). If for every stopping time T we have $E\left(A_{\infty}-A_{T}\right)=E\left(B_{\infty}-B_{T}\right)$, then A and B are indistinguishable.

The next theorem gives examples of processes with locally integrable variation or semivariation. For the proof see [Din00], Theorems 22.15 and 22.16.

Theorem 33. ([Din00]22.15,16) Assume X is right continuous and has finite variation $|X|$ (resp. finite semivariation $\tilde{X}_{F, G}$). If X is either predictable or a local martingale, then X has locally integrable variation $|X|$ (resp. locally integrable semivariation $\tilde{X}_{F, G}$).
Proposition 34. Let $X: \mathbb{R}_{+} \times \Omega \rightarrow E$ be a process with finite variation. If X has locally integrable semivariation $\tilde{X}_{\mathbb{R}, E}$, then X has locally integrable variation.

Proof. Assume X has locally integrable semivariation \tilde{X} relative to (\mathbb{R}, E). Then there is an increasing sequence S_{n} of stopping times with $S_{n} \uparrow \infty$ such that $E\left(\tilde{X}_{S_{n}}\right)<\infty$ for each n. For each n define the stopping times T_{n} by $T_{n}=S_{n} \wedge \inf \left\{\left.t| | X\right|_{t} \geq n\right\}$. It follows that $|X|_{T_{n}-} \leq n$. Since X has finite variation, by Proposition 6 we have $\Delta\left|X_{T_{n}}\right|=\left|\Delta X_{T_{n}}\right| \leq \tilde{X}_{T_{n}}$. From $\Delta|X|_{T_{n}}=|X|_{T_{n}}-|X|_{T_{n}-}$ we deduce that $|X|_{T_{n}}=|X|_{T_{n}-}+\Delta\left|X_{T_{n}}\right| \leq n+\tilde{X}_{T_{n}} ;$ Therefore $E\left(|X|_{T_{n}}\right) \leq n+E\left(\tilde{X}_{T_{n}}\right)<\infty$; hence X has locally integrable variation.

References

[BD76] J. K. Brooks and N. Dinculeanu. Lebesgue-type spaces for vector integration, linear operators, weak completeness and weak compactness. J. Math. Anal. Appl. 54 (1976), no. 2, 348-389.
[BD87] J. K. Brooks and N. Dinculeanu. Regularity and the Doob-Meyer decomposition of abstract quasimartigales. Seminar on Stochastic Processes, 21-63, 1987.
[BD90] J. K. Brooks and N. Dinculeanu. Stochastic integration in Banach spaces. Adv. Math., 81(1):99-104, 1990.
[BD91] J. K. Brooks and N. Dinculeanu. Stochastic integration in Banach spaces. Seminar on Stoch. Proc., Birkhauser,27-115, 1991.
[BD01] Benedetto Bongiorno and Nicolae Dinculeanu. The Riesz representation theorem and extension of vector valued additive measures. J. Math. Anal. Appl., 261(2):706-732, 2001.
[Din67] N. Dinculeanu. Vector measures. Pergamon Press, Oxford, 1967.
[Din00] Nicolae Dinculeanu. Vector integration and stochastic integration in Banach spaces. Wiley-Interscience, New York, 2000.
[DM78] Claude Dellacherie and Paul-André Meyer. Probabilities and potential. North-Holland Publishing Co., Amsterdam, 1978.
[DS88a] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part I. John Wiley \& Sons Inc., New York, 1988. General theory, With the
assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.
[DU77] J. Diestel and J. J. Uhl, Jr. Vector measures. American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15.
[Kun70] Hiroshi Kunita. Stochastic integrals based on martingales taking values in Hilbert space. Nagoya Math. J., 38:41-52, 1970.
[Kus77] A. U. Kussmaul. Stochastic integration and generalized martingales. Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1977. Research Notes in Mathematics, No. 11.
[Kus78] A.U. Kussmaul, Regularität und Stochastische Integration von Semimartingalen mit Werten in einen Banach Raum, Dissertation, Stuttgart, 1978.
[MP80] Michel Métivier and Jean Pellaumail. Stochastic integration. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980. Probability and Mathematical Statistics.

