Additive Summable Processes and their Stochastic Integral

August 19, 2005

Abstract

We define and study a class of summable processes, called additive summable processes, that is larger than the class used by Dinculeanu and Brooks [D–B].

We relax the definition of a summable processes $X : \Omega \times \mathbb{R}_+ \to E \subset L(F; G)$ by asking for the associated measure I_X to have just an additive extension to the predictable σ–algebra \mathcal{P}, such that each of the measures $(I_X)_z$, for $z \in (L^p_G)^*$, being σ–additive, rather than having a σ–additive extension. We define a stochastic integral with respect to such a process and we prove several properties of the integral. After that we show that this class of summable processes contains all processes $X : \Omega \times \mathbb{R}_+ \to E \subset L(F; G)$ with integrable semivariation if $\ell_0 \notin G$.

Introduction

We study the stochastic integral in the case of Banach-valued processes, from a measure-theoretical point of view.

The classical stochastic integration (for real-valued processes) refers only to integrals with respect to semimartingale (Dellacherie and Meyer [DM78]). A similar technique has also been applied by Kunita [Kun70], for Hilbert valued processes, making use of the inner product. A number of technical difficulties emerge for Banach spaces, since the Banach space lacks an inner product.
Vector integration using different approaches were presented in several books by Dinculeanu [Din00], Diestel and Uhl [DU77], and Kussmaul [Kus77]. Brooks and Dinculeanu [BD76] were the first to present a version of integration with respect to a vector measure with finite semivariation. Later, the same authors [BD90] presented a stochastic integral with respect to so-called summable Banach-valued processes.

A Banach-valued process X is called summable if the Doleans-Dade measure I_X defined on the ring generated by the predictable rectangles can be extended to a σ-additive measure with finite semivariation on the corresponding σ-algebra \mathcal{P}. The summable process X plays the role of the square integrable martingale in the classical theory: a stochastic integral $H \cdot X$ can be defined with respect to X as a cadlag modification of the process $(\int_{[0,t]} H \, dI_X)_{t \geq 0}$ of integrals with respect to I_X such that $\int_{[0,t]} H \, dI_X \in L^p_G$ for every $t \in \mathbb{R}_+$.

In [Din00] Dinculeanu presents a detailed account of the integration theory with respect to these summable processes, from a measure-theoretical point of view.

Our attention turned to a further generalization of the stochastic integral. Besides the processes considered in the classical theory (Hilbert-valued square-integrable martingales and processes with integrable variation), the class of summable processes also includes processes with integrable semivariation, as long as the Banach space E satisfies some restrictions. To get rid of some of these restrictions, we redefine, in Section 2, the notion of summability: now we only require that I_X can be extended to an additive measure on \mathcal{P}, but such that each of the measures $(I_X)_z$, for $z \in Z$ a norming space for L^p_G, is σ-additive. With this new notion of summability, called additive summability, the stochastic integral is then defined, in Section 5.1, as before. The rest of Chapter 5 is dedicated to proving the same type of properties of the stochastic integral as in Dinculeanu [Din00], namely measure theoretical properties.

In Section we will prove that there are more additive summable processes than summable processes by reducing the restrictions imposed on the space E.
1 Notations and definitions

Throughout this paper we consider S to be a set and \mathcal{R}, \mathcal{D}, Σ respectively a ring, a δ–ring, a σ–ring, and a σ–algebra of subsets of S, E, F, G Banach spaces with $E \subset L(F, G)$ continuously, that is, $|x(y)| \leq |x||y|$ for $x \in E$ and $y \in F$; for example, $E = L(\mathbb{R}, E)$. If M is any Banach space, we denote by $|x|$ the norm of an element $x \in M$, by M_1 its unit ball of M and by M^* the dual of M. A space $Z \subset G^*$ is called a norming space for G, if for every $x \in G$ we have

$$|x| = \sup_{z \in Z_1} \langle x, z \rangle.$$

If $m : \mathcal{R} \to E \subset L(F, G)$ is an additive measure for every set $A \subset S$ the semivariation of m on A relative to the embedding $E \subset L(F, G)$ (or relative to the pair (F, G)) is denoted by $\tilde{m}_{F,G}(A)$ and defined by the equality

$$\tilde{m}_{F,G}(A) = \sup | \sum_{i \in I} m(A_i)x_i|,$$

where the supremum is taken for all finite families $(A_i)_{i \in I}$ of disjoint sets from \mathcal{R} contained in A and all families $(x_i)_{i \in I}$ of elements from F_1.

2 Additive summable processes

The framework for this section is a cadlag, adapted process $X : \mathbb{R}_+ \times \Omega \to E \subset L(F, G)$, such that $X_t \in L^p_E$ for every $t \geq 0$ and $1 \leq p < \infty$.

2.1 The Measures I_X and $(I_X)_z$

Let \mathcal{S} be the semiring of predictable rectangles and $I_X : \mathcal{S} \to L^p_E$ the stochastic measure defined by

$$I_X(\{0\} \times A) = 1_A X_0, \text{ for } A \in \mathcal{F}_0$$

and

$$I_X((s, t] \times A) = 1_A (X_t - X_s), \text{ for } A \in \mathcal{F}_s.$$

Note that I_X is finitely additive on \mathcal{S} therefore it can be extended uniquely to a finitely additive measure on the ring \mathcal{R} generated by \mathcal{S}. We obtain a finitely additive measure $I_X : \mathcal{R} \to L^p_E$ verifying the previous equalities.
Let $Z \subset (L^p_G)^*$ be a norming space for L^p_G. For each $z \in Z$ we define a measure $(I_X)_z : \mathcal{R} \to F^*$ by

$$\langle y, (I_X)_z(A) \rangle = \langle I_X(A)y, z \rangle = \int \langle I_X(A)(\omega)y, z(\omega) \rangle dP(\omega), \text{ for } A \in \mathcal{P} \text{ and } y \in F$$

where the bracket in the integral represents the duality between G and G^*.

Since $L^p_E \subset L(F, L^p_G)$, we can consider the semivariation of I_X relative to the pair (F, L^p_G). To simplify the notation, we shall write $(I_X)_{F,G}$ instead of $(I_X)_{F,L^p_G}$ and we shall call it the semivariation of I_X relative to (F, G):

2.2 Additive Summable Processes

Definition 1. We say that X is p-additive summable relative to the pair (F, G) if I_X has an additive extension $I_X : \mathcal{P} \to L^p_E$ with finite semivariation relative to (F, G) and such that the measure $(I_X)_z$ is σ-additive for each $z \in (L^p_G)^*$.

If $p = 1$, we say, simply, that X is additive summable relative to (F, G).

Remark. 1) This definition is weaker than the definition of summable processes since here we don’t require the measure I_X to have a σ-additive extension to \mathcal{P}.

2) The problems that might appear if (I_X) is not σ-additive are convergence problems (most of the convergence theorem are stated for σ-additive measures and extension problems (the uniqueness of extensions of measures usually requires σ-additivity).

3) Note that in the paper “The Riesz representation theorem and extension of vector valued additive measures” N. Dinculeanu and B. Bongiorno [BD01] (Theorem 3.7 II) proved that if each of the measures $(I_X)_z$ is σ-additive and if $I_X : \mathcal{R} \to L^p_E$ has finite semivariation relative to (F, G) then I_X has canonical additive extension $I_X : \mathcal{P} \to (L^p_E)^{**}$ with finite semivariation relative to $(F, (L^p_E)^{**})$ such that for each $z \in (L^p_G)^*$, the measure $(I_X)_z$ is σ-additive on \mathcal{P} and has finite variation $|((I_X)_z)$.

Proposition 2. If X is p-additive summable relative to (\mathbb{R}, E) then X is p-summable relative to (\mathbb{R}, E).

Proof. If X is p-additive summable relative to (\mathbb{R}, E) then the measure I_X has an additive extension $I_X : \mathcal{P} \to L^p_E$ with finite semivariation relative to (\mathbb{R}, E). Moreover for each $z \in (L^p_E)^*$ the measure $(I_X)_z$ is σ-additive.
By Pettis Theorem, the measure I_X is σ–additive. Hence, the process X is p–summable.

2.3 The Integral $\int HdI_X$

Let X be a p-additive summable process relative to (F,G).

Consider the additive measure $I_X : \mathcal{P} \to L^p_E \subset L(F,L^p_G)$ with bounded semivariation $\bar{I}_{F,G}$ relative to (F,L^p_G) for which each measure $(I_X)_z$ is σ-additive for every $z \in Z$.

Then we have

$$(\bar{I}_X)_{F,L^p_G} = \sup\{|m_z| : z \in Z, \|z\| \leq 1, z \in (L^p_F)^*\},$$

(See Corollary 23, Section 1.5 [?].)

If p is fixed, to simplify the notation, we can write $\bar{I}_{F,G} = \bar{I}_{F,L^p_G}$.

For any Banach space D we denote by $\mathcal{F}_D(\bar{I}_{F,G})$ or $\mathcal{F}_D(\bar{I}_{F,L^p_G})$ the space of predictable processes $H : \mathbb{R}_+ \times \Omega \to D$ such that

$$\bar{I}_{F,G}(H) = \sup\{\int |H| d(I_X)_z : \|z\|_q \leq 1\} < \infty.$$

Definition 3. Let $D = F$. For any $H \in \mathcal{F}_F(\bar{I}_{F,G})$ We define the integral $\int HdI_X$ to be the mapping $z \mapsto \int Hd(I_X)_z$.

Observe that if $H \in \mathcal{F}_F(\bar{I}_{F,G})$ the integral $\int Hd(I_X)_z$ is defined and is a scalar for each $z \in Z$, hence the mapping $z \mapsto \int Hd(I_X)_z$ is a continuous linear functional on $(L^p_G)^*$. Therefore, $\int HdI_X \in (L^p_G)^*$

\[
\langle \int HdI_X, z \rangle = \int Hd(I_X)_z, \text{ for } z \in Z
\]

and

$$|\int HdI_X| \leq \bar{I}_{F,G}(H).$$

Theorem 4. Let $(H^n)_{0 \leq n < \infty}$ be a sequence of elements from $\mathcal{F}_F(G)(X)$ such that $|H^n| \leq |H^0|$ for each n and $H^n \to H$ pointwise. Assume that

(i) $\int H^ndI_X \in L^p_G$ for every $n \geq 1$

and

(ii) The sequence $(\int H^ndI_X)_n$ converges pointwise on Ω, weakly in G.

Then
a) \(\int HdI_X \in L^p_G \)

and

b) \(\int H^n dI_X \to \int HdI_X \), in the weak topology of \(L^p_G \), as well as pointwise, weakly in \(G \).

c) If \((\int n dI_X) \) converges pointwise on \(\Omega \), strongly in \(G \), then

\[
\int H^n dI_X \to \int HdI_X,
\]

strongly in \(L^1_G \).

Proof. This theorem was proved in [Din00] under the assumption that \(I_X \) is \(\sigma \)-additive. But, in fact, only the \(\sigma \)-additivity of each of the measures \((I_X)_\varepsilon \) was used. Hence the same proof remains valid in our case. \(\square \)

2.4 The Stochastic Integral \(H \cdot X \)

In this section we define the stochastic integral and we prove that the stochastic integral is a cadlag adapted process.

Let \(H \in \mathcal{F}_{F,G}(X) \). Then, for every \(t \geq 0 \) we have \(1_{[0,t]}H \in \mathcal{F}_{F,G}(X) \). We denote by \(\int_{[0,t]}HdI_X \) the integral \(\int 1_{[0,t]}HdI_X \). We define

\[
\int_{[0,\infty]}HdI_X := \int_{[0,\infty)}HdI_X = \int HdI_X.
\]

Taking \(Z = (L^p_G)^* \), for each \(H \in \mathcal{F}_{F,G}(X) \) we obtain a family \((\int_{[0,t]}HdI_X)_{t \in \mathbb{R}^+} \) of elements of \((L^p_G)^* \).

We restrict ourselves to processes \(H \) for which \(\int_{[0,t]}HdI_X \in L^p_G \) for each \(t \geq 0 \). Since \(L^p_G \) is a set of equivalence classes, \(\int_{[0,t]}HdI_X \) represents an equivalence class. We use the same notation for any random variable in its equivalence class. We are interested to see whether or not the process \((\int_{[0,t]}HdI_X)_{t \geq 0} \) is adapted and if it admits a cadlag modification.

Theorem 5. Let \(X : \mathbb{R} \to E \subset L(F,G) \) be a cadlag, adapted, \(p \)-summable process relative to \((F,G) \) and \(H \in \mathcal{F}_{F,G}(X) \) such that \(\int_{[0,t]}HdI_X \in L^p_G \) for every \(t \geq 0 \).

Then the process \((\int_{[0,t]}HdI_X)_{t \geq 0} \) is adapted.
Proof. This is the equivalent of Theorem 10.4 in [Din00] and since in the proof was used the \(\sigma\)-additivity of the measures \((I_X)_z\) rather than \(\sigma\)-additivity of the measure \(I_X\) that proof will work for our case too. \(\square\)

It is not clear that there is a cadlag modification of the previously defined process \((\int_{[0,t]} H dI_X)_t\). Therefore we use the following definition

Definition 6. We define \(L^1_{F,G}(X)\) to be the set of processes \(H \in \mathcal{F}_{F,G}(I_X)\) that satisfy the following two conditions:

a) \(\int_{[0,t]} H dI_X \in L^p_G\) for every \(t \in \mathbb{R}_+\);

b) The process \((\int_{[0,t]} H dI_X)_{t \geq 0}\) has a cadlag modification.

The processes \(H \in L^1_{F,G}(X)\) are said to be integrable with respect to \(X\).

If \(H \in L^1_{F,G}(X)\), then any cadlag modification of the process \((\int_{[0,t]} H dI_X)_{t \geq 0}\) is called the stochastic integral of \(H\) with respect to \(X\) and is denoted by \(H \cdot X\) or \(\int H dX\):

\[
(H \cdot X)_t(\omega) = (\int H dX)_t(\omega) = (\int_{[0,t]} H dI_X)(\omega), \text{ a.s.}
\]

Therefore the stochastic integral is defined up to an evanescent process. For \(t = \infty\) we have

\[
(H \cdot X)_\infty = \int_{[0,\infty]} H dI_X = \int_{[0,\infty]} H dI_X = \int H dI_X.
\]

Note that if \(H : \mathbb{R}_+ \times \Omega \to F\) is an \(\mathcal{R}\)-step process then we have

\[
(H \cdot X)_t(\omega) = \int_{[0,t]} H_s(\omega) dX_s(\omega),
\]

that is, the stochastic integral can be computed pathwise.

The next theorem shows that the stochastic integral \(H \cdot X\) is a cadlag process and it is cadlag in \(L^p_G\).

Theorem 7. If \(X : \mathbb{R}_+ \times \Omega \to E \subset L(F,G)\) is a \(p\)-additive summable process relative to \((F,G)\) and if \(H \in L^1_{F,G}(X)\), then:

a) The stochastic integral \(H \cdot X\) is a cadlag, adapted process.

b) For every \(t \in [0,\infty)\) we have \((H \cdot X)_t \in L^p_G\) and

\[
(H \cdot X)_t^- = \int_{[0,t]} H dI_X, \text{ a.s.}
\]
If \((H \cdot X)_{\infty-} (\omega)\) exists for each \(\omega \in \Omega\), then
\[
(H \cdot X)_{\infty-} = (H \cdot X)_{\infty} = \int H dI_X, \text{ a.s.}
\]

c) The mapping \(t \mapsto (H \cdot X)_t\) is cadlag in \(L_G^1\).

Proof. a) Follows from the previous theorem and definition. b) and c) are proved as in theorem 10.7 in [Din00] since there was not used the \(\sigma\)-additivity of \(I_X\) but rather of \((I_X)_z\). \qed

2.5 The Stochastic Integral and Stopping Times

Let \(T\) be a stopping time. If \(A \in \mathcal{F}_T\), then the stopping time \(T_A\) is defined by \(T_A(\omega) = T(\omega)\) if \(\omega \in A\) and \(T_A(\omega) = \infty\) if \(\omega \notin A\). With this notation the predictable rectangles \((s, t] \times A\) with \(A \in \mathcal{F}_s\) could be written as stochastic intervals \((s, t_A]\). Another notation we will use is \(I_X([0, T])\) for \(I_X([0, T] \times \Omega)\).

Let \(X : \mathbb{R}_+ \times \Omega \to E \subset L(F, G)\) be an additive summable process

Proposition 8. For any stopping time \(T\) we have \(X_T \in L_E^p\) and \(I_X[0, T] = X_T\) for \(T\) simple. For any decreasing sequence \((T_n)\) of simple stopping times such that \(T_n \downarrow T\), and for every \(z \in (L_G^p)^*\) we have
\[
\langle I_X([0, T])y, z \rangle = \lim_{n \to \infty} \langle X_{T_n}y, z \rangle,
\]
where the bracket represents the duality between \(L_G^p\) and \((L_G^p)^*\).

Proof. Assume first that \(T\) is a simple stopping time of the form
\[
T = \sum_{1 \leq i \leq n} 1_{A_i}t_i,
\]
with \(0 < t_i \leq \infty, t_i \neq t_j\) for \(i \neq j\), \(A_i \in \mathcal{F}_t\) are mutually disjoint and \(\bigcup_{1 \leq i \leq n} A_i = \Omega\). Then \([0, T] = \bigcup_{1 \leq i \leq n}[0, t_i] \times A_i\) is a disjoint union. Hence \(I_X([0, T]) = \sum_i I_X([0, t_i] \times A_i) = \sum_i 1_{A_i}X_{t_i} = X_T\). Since \(I_X : \mathcal{P} \to L_E^p\), we conclude that \(X_T \in L_E^p\).

Next, assume that \((T_n)\) is a sequence of simple stopping times such that \(T_n \downarrow T\). Then \([0, T_n] \downarrow [0, T]\). Since \((I_X)_z\) is \(\sigma\)-additive in \(F^*\), for any \(y \in F\) and \(z \in (L_G^p)^*\), we have
\[
\langle I_X([0, T])y, z \rangle = \langle (I_X)_z([0, T]), y \rangle = \lim_{n \to \infty} \langle (I_X)_z([0, T_n]), y \rangle
\]
\[
\lim_{n \to \infty} \langle I_X([0, T_n])y, z \rangle = \lim_{n \to \infty} \langle X_{T_n}y, z \rangle.
\]

and the relation (4.1) is proven. It remains to prove that \(X_T \in L^p_E \). Since \(X_{T_n}(\omega) \to X_T(\omega) \) it follows that \(X_T \) is \(\mathcal{F} \)-measurable. We will prove that \(|X_{T_n}| \in L^p \) to deduce that \(X_{T_n} \in L^p_G \).

We saw before that for \(y \in F \) and \(z \in (L^p_G)^* \) the sequence \(\langle (I_X)([0, T_n])y, z \rangle \) is convergent hence bounded, i.e.

\[
\sup_n |\langle (I_X)([0, T_n])y, z \rangle| < \infty, \text{ for } y \in F, z \in (L^p_G)^*.
\]

By the Banach-Steinhauss Theorem, we have

\[
\sup_n \|I_X([0, T_n])y\|_{L^p_E} < \infty, \text{ for } y \in F
\]

hence

\[
\sup_n \|I_X([0, T_n])\|_{L^p_E} < \infty.
\]

or \(\sup_n \|X_{T_n}\|_{L^p_E} < \infty \), which is equivalent to \(\sup_n \int |X_{T_n}|^p dP < \infty \). Now \(|X_T|^p = \lim |X_{T_n}|^p = \lim \inf |X_{T_n}|^p \). If we apply Fatou Lemma we get:

\[
\int |X_T|^p dP = \int \lim \inf |X_{T_n}|^p \leq \lim \inf \int |X_{T_n}|^p dP \leq \sup \int |X_{T_n}|^p dP < \infty.
\]

therefore \(X_T \in L^p_G \).

Proposition 9. Let \(S \leq T \) be stopping times and \(h : \Omega \to F \) be an \(\mathcal{F}_S \)-measurable, simple random variable. Then for any pair \((T^n)_n, (S^n)_n\) of sequences of simple stopping times, with \(T^n \downarrow T, S^n \downarrow S \), such that \(S^n \leq T^n \) for each \(n \), we have

\[
\langle \int h1_{(S,T]} dI_X, z \rangle = \lim_n \langle h(X_{T^n} - X_{S^n}), z \rangle, \text{ for } z \in (L^p_G)^*,
\]

where the bracket represents the duality between \(L^p_G \) and \((L^p_G)^* \).

Proof. First we prove that there are two sequences \((T^n)\) and \((S^n)\) of simple stopping times such that \(T^n \downarrow T, S^n \downarrow S \) and \(S^n \leq T^n \). In fact, there are two sequences of simple stopping times \(T^n \) and \(P^n \) such that \(P^n \downarrow S \) and \(T^n \downarrow T \). Consider, now, \(S^n = P^n \wedge T^n \). Since \(P^n \) and \(T^n \) are stopping times, \(S^n \) is a stopping time and \(S^n \leq T^n \). On the other hand, observe that \(S \leq S^n \leq P^n \).
and \(\lim P^n = S \). Therefore \(\lim_{n \to \infty} S^n = S \) too. So we have \(S^n \downarrow S \) and \(S^n \leq T^n \).

Now we want to prove (4.2). Assume first \(h = 1_A y \) with \(A \in \mathcal{F}_S \) and \(y \in F \). Then
\[
\int h1_{(S,T]} dI_X = \int 1_A y 1_{(S,T]} dI_X = \int 1_{(S_A,T_A]} y dI_X = I_X((S_A,T_A])y.
\]
For any sequence of simple stopping times \((T^n) \) and \((S^n) \) with \(T^n \downarrow T \), \(S^n \downarrow S \) and \(S^n \leq T^n \), we have \(T^n_A \uparrow T_A \) and \(S^n_A \uparrow S_A \). Therefore, applying Proposition 8 for every \(z \in (L_p^p)^* \), we get
\[
\langle \int h1_{(S,T]} dI_X, z \rangle = \langle I_X((S_A,T_A])y, z \rangle = \langle I_X([0,T_A]) - I_X([0,S_A])y, z \rangle = \lim_{n \to \infty} \langle X_{T^n} - X_{S^n}, y \rangle.
\]

Then the equality holds for any \(\mathcal{F}_S \)-step function \(h \).

Proposition 10. Let \(S \leq T \) be stopping times and assume that either

(i) \(h : \Omega \to \mathbb{R} \) is a simple, \(\mathcal{F}_S \)-measurable function and \(H \in L^1_{F,G}(X) \),

or

(ii) The measure \(I_X \) is \(\sigma \)-additive, \(h : \Omega \to F \) is a simple, \(\mathcal{F}_S \)-measurable function and \(H \in L^1_{F,E}(X) \).

If \(\int 1_{(S,T]} dI_X \in L^p_G \) in case (i) and \(\int 1_{(S,T]} H dI_X \in L^p_E \) in case (ii) then
\[
\int h1_{(S,T]} H dI_X = h \int 1_{(S,T]} H dI_X.
\]

Proof. Assume first hypothesis (i). Let \((T^n)\) and \((S^n)\) be two sequences of simple stopping times such that \(T^n \downarrow T \), \(S^n \downarrow S \) and \(S^n \leq T^n \). Assume \(H = 1_{(s,t] \times A} y \) with \(A \in \mathcal{F}_s \) and \(y \in F \). Then \(T^n \wedge t \downarrow T \wedge t \), \(S^n \wedge s \downarrow S \wedge s \). Let \(z \in (L_p^p)^* \). Then
\[
\langle h \int 1_{(S,T]} H dI_X, z \rangle = \langle \int h1_{A} 1_{(S\vee s,T\wedge t]} dI_X, z \rangle,
\]
where the bracket represents the duality between \(L^p_G \) and \((L^p_E)^* \). By (4.2), for the simple \(\mathcal{F}_{S\vee s} \)-measurable function \(h1_A y \) and the stopping times \(S \vee s \leq (T \wedge t) \) we have
\[
\langle h \int 1_{(S,T]} H dI_X, z \rangle = \langle \int 1_{(S,T]} H dI_X, h z \rangle = \langle \int 1_{(S\vee s,T\wedge t]} 1_A y dI_X, h z \rangle
\]

10
\[= \lim \langle 1_A y(X_{T^n \wedge t} - X_{S^v \wedge s}), h z \rangle \]
\[= \lim \langle h 1_A y(X_{T^n \wedge t} - X_{S^v \wedge s}), z \rangle = \langle \int h 1_A y 1_{(S^{v} \wedge t)} dI_X, z \rangle \]
\[= \langle \int h 1_A y 1_{(s,t)} 1_{(S,T)} dI_X, z \rangle = \langle \int h 1_{(S,T)} dI_X, z \rangle \]

If \(H = 1_{(0) \times A} y \) with \(A \in \mathcal{F}_0 \) and \(y \in F \), since \(1_{(S,T)} 1_{(0) \times A} = 0 \) we have
\[\langle h \int 1_{(S,T)} H dI_X, z \rangle = 0 = \langle \int h 1_{(S,T)} dI_X, z \rangle.
\]

It follows that for any \(B \in \mathcal{R} \) we have
\[\langle \int h 1_{(S,T)} 1_{B \times} dI_X, z \rangle = \langle h \int 1_{(S,T)} 1_{B \times} dI_X, z \rangle. \quad (*)\]

The class \(\mathcal{M} \) of sets \(B \in \mathcal{P} \) for which the above equality holds for all \(z \in (L^p_G)^* \) is a monotone class: in fact, let \(B_n \) be a monotone sequence of sets from \(\mathcal{M} \) and let \(B = \lim B_n \). For each \(n \) we have
\[\int h 1_{(S,T)} 1_{B_n \times} dI_X, z = \langle h \int 1_{(S,T)} 1_{B_n \times} dI_X, z \rangle.\]

Since \(h 1_{(S,T)} 1_{B_n \times} \) is a sequence of bounded functions converging to \(h 1_{(S,T)} 1_{B \times} \) (\(h \) is a step-function) with \(|h 1_{(S,T)} 1_{B_n \times}| \leq \|h\| \|y\| \), we can apply Lebesgue Theorem and conclude that \(\int h 1_{(S,T)} 1_{B_n \times} dI_X, z \to \int h 1_{(S,T)} 1_{B \times} dI_X, z \). Using the same reasoning we can conclude that \(\int 1_{(S,T)} 1_{B_n \times} dI_X, z \to \int 1_{(S,T)} 1_{B \times} dI_X, z \).

hence we have
\[\langle \int h 1_{(S,T)} 1_{B_n \times} dI_X, z \rangle = \lim_n \langle \int h 1_{(S,T)} 1_{B_n \times} dI_X, z \rangle = \lim_n \langle h \int 1_{(S,T)} 1_{B_n \times} dI_X, z \rangle = \langle h \lim_n \int 1_{(S,T)} 1_{B_n \times} dI_X, z \rangle = \langle h \int 1_{(S,T)} 1_{B \times} dI_X, z \rangle.
\]

Since the class \(\mathcal{M} \) of sets satisfying equality (*) is a monotone class containing \(\mathcal{R} \) we conclude that the equality (*) is satisfied by all \(B \in \mathcal{P} \).

It follows that for any predictable, simple process \(H \) and for each \(z \in (L^p_G)^* \) we have
\[\langle \int h 1_{(S,T)} H dI_X, z \rangle = \langle h \int 1_{(S,T)} H dI_X, z \rangle \quad (**)
\]
Consider now the general case. If \(H \in L^1_{F,G}(X) \), then there is a sequence \((H^n) \) of simple, predictable processes such that \(H^n \to H \) and \(|H^n| \leq |H| \). We apply Lebesgue’s Theorem and deduce that

\[
\int h 1_{(S,T]} H^n d(I_X)_z \to \int h 1_{(S,T]} H d(I_X)_z, \tag{1}
\]

and

\[
\int 1_{(S,T]} H^n d(I_X)_{hz} \to \int 1_{(S,T]} H d(I_X)_{hz}. \tag{2}
\]

By equality (***) for each \(n \) we have

\[
\int h 1_{(S,T]} H^n d(I_X)_z = \langle \int h 1_{(S,T]} H^n dI_X, z \rangle = \langle h \int 1_{(S,T]} H^n dI_X, z \rangle = \langle \int 1_{(S,T]} H^n dI_X, hz \rangle = \int 1_{(S,T]} H^n d(I_X)_{hz}
\]

By (1) and (2) we deduce that

\[
\int h 1_{(S,T]} H d(I_X)_z = \int 1_{(S,T]} H d(I_X)_{hz},
\]

which is equivalent to

\[
\langle h 1_{(S,T]} H dI_X, z \rangle = \langle 1_{(S,T]} H dI_X, hz \rangle.
\]

We conclude that

\[
\int h 1_{(S,T]} H dI_X = h \int 1_{(X,T]} H dI_X, \ a.e.
\]

Assume now hypothesis (ii). Since the measure \(I_X \) is \(\sigma \)-additive the process \(X \) is summable. Then observe that the assumptions of (ii) are the same as the assumptions in Proposition 11.5 (ii) of [Din00]. Hence

\[
\int h 1_{(S,T]} H dI_X = h \int 1_{(X,T]} H dI_X,
\]

which concludes our proof. \(\square \)
Proposition 11. Let $X : \mathbb{R} \times \Omega \to E \subset L(F,G)$ be a p-additive summable process relative to (F,G) and T a stopping time.

a) For every $z \in (L^p_G)^*$ and every $B \in \mathcal{P}$ we have:

$$(I_{X^T})_z(B) = (I_X)_z(B \cap [0,T]).$$

b) The measure $I_{X^T} : \mathcal{R} \to L^p_E$ has finite semivariation relative to (F,L^p_G)

c) If T is a simple stopping time then the process X^T is summable.

Proof. a) First we prove that if T and S are simple stopping times then we have $I_X((S,T]) = X_T - X_S$.

Assume that T is a simple stopping time of the form

$$T = \sum_{1 \leq i \leq n} 1_{A_i} t_i,$$

with $0 < t_i \leq \infty$, $t_i \neq t_j$ for $i \neq j$, $A_i \in \mathcal{F}_t$ are mutually disjoint and $\bigcup_{1 \leq i \leq n} A_i = \Omega$. Then $[0,T] = \bigcup_{1 \leq i \leq n} [0,t_i] \times A_i$ is a disjoint union. Hence $I_X([0,T]) = \sum_i I_X([0,t_i] \times A_i) = \sum_i 1_{A_i} X_{t_i} = X_T$. Since $(S,T] = [0,T] - [0,S]$ and I_X is an additive measure, we have $I_X((S,T]) = I_X([0,T]) - I_X([0,S]) = X_T - X_S$.

Next observe that if T is a simple stopping time then $T \wedge t$ is also a simple stopping time. In fact, if $T = \sum_{1 \leq i \leq n} 1_{A_i} t_i$ then $T \wedge t = \sum_{i:t_i < t} 1_{A_i} t_i + \sum_{i:t_i \geq t} 1_{A_i} t$ which is a simple stopping time.

Now we prove that for $B \in \mathcal{R}$ we have

$$I_{X^T}(B) = I_X([0,T] \cap B).$$

In fact, for $A \in \mathcal{F}_0$ we have

$$I_{X^T}([0] \times A) = 1_A X_0 = I_X([0] \times A) = I_X([0,T] \cap ([0] \times A)).$$

For $s < t$ and $A \in \mathcal{F}_s$ we have,

$$I_{X^T}((s,t] \times A) = 1_A (X^T_t - X^T_s) = 1_A (X_{T \wedge t} - X_{T \wedge s})$$

$$= 1_A (I_X((T \wedge s, T \wedge t])) = 1_A \int_{(s,t]} 1_{[0,T]} dI_X$$

$$= \int 1_A 1_{(s,t]} 1_{[0,T]} dI_X = I_X([0,T] \cap ((s,t] \times A)). \quad (*)$$

We used the above Proposition 10 with $h = 1_A$, $(S,T] = (s,t]$ and $H = 1_{[0,T]}$.
Next we consider the general case, with T a stopping time. For $A \in \mathcal{F}_0$ we have

$$I_{X^T}(\{0\} \times A) = 1_A X_0 = I_X(\{0\} \times A) = I_X([0, T] \cap (\{0\} \times A)).$$

Let $y \in F$ and $z \in (L_G^p)^*$. We have

$$\langle (I_{X^T})_z(\{0\} \times A), y \rangle = \langle I_{X^T}(\{0\} \times A) y, z \rangle = \langle I_X([0, T] \cap (\{0\} \times A)) y, z \rangle = \langle (I_X)_z([0, T] \cap (\{0\} \times A)), y \rangle$$

(1)

For $s < t$ and $A \in \mathcal{F}_s$ we have,

$$I_{X^T}((s, t] \times A) = 1_A (X^T_s - X^T_t) = 1_A (X_{T \land t} - X_{T \land s})$$

(2)

Let T_n be a sequence of simple stopping times such that $T_n \downarrow T$. Let $y \in F$ and $z \in (L_G^p)^*$. We have by (2):

$$\langle (I_{X^T})_z((s, t] \times A), y \rangle = \langle I_{X^T}((s, t] \times A) y, z \rangle = \langle 1_A (X_{T \land t} - X_{T \land s}) y, z \rangle$$

$$= \lim_{n \to \infty} \langle 1_A (X_{T_n \land t} - X_{T_n \land s}) y, z \rangle$$

(3)

By (*) we have:

$$\lim_{n \to \infty} \langle 1_A (X_{T_n \land t} - X_{T_n \land s}) y, z \rangle = \lim_{n \to \infty} \langle I_X([0, T_n] \cap ((s, t] \times A) y, z \rangle$$

$$= \lim_{n \to \infty} \langle (I_X)_z([0, T_n] \cap ((s, t] \times A)), y \rangle = \langle (I_X)_z([0, T] \cap ((s, t] \times A)), y \rangle$$

(3)

since $(I_X)_z$ is σ-additive. By (1) and (3) and the fact that $(I_{X^T})_z$ is σ-additive we deduce that

$$(I_{X^T})_z(B) = (I_X)_z(B \cap [0, T]), \text{ for all } B \in \mathcal{R} \quad (4)$$

Since $(I_X)_z$ is σ-additive we deduce that $(I_{X^T})_z$ is σ-additive, hence it can be extended to a σ-additive measure on \mathcal{F}. Since $(I_{X^T})_z(B) = (I_X)_z(B \cap [0, T])$ for all $B \in \mathcal{R}$ we deduce that

$$(I_{X^T})_z(B) = (I_X)_z(B \cap [0, T]), \text{ for all } B \in \mathcal{F}$$

b) Let A be a set in \mathcal{R}. By Proposition 4.15 in [Din00] we have $svar_{F, L_G} I_{X^T}(A) < \infty$ if and only if $var(I_{X^T})_z(A) < \infty$ for each $z \in (L_G^p)^*$. But

$$\sup_{z \in ((L_G^p)^*)_1} var(I_{X^T})_z(A) = \sup_{z \in ((L_G^p)^*)_1} var(I_X)_z(A \cap [0, T])$$

14
\[= \text{svr}_{F,L_G^p} I_X(A \cap [0,T]) < \infty, \]

and Assertion b) is proved.

c) Assume \(T \) is a simple stopping time. By the equality (*) we have
\[I_X^T(B) = I_X([0,T] \cap B), \quad \text{for } B \in \mathcal{R}. \]

Since \(X \) is \(p \)-additive summable relative to \((F,G)\), \(I_X \) has a canonical additive extension \(I_X : \mathcal{P} \to L_G^p \). The equality
\[I_X^T(A) = I_X([0,T] \cap A), \quad \text{for } A \in \mathcal{P}, \]
defines an additive extension of \(I_X^T \) to \(\mathcal{P} \). Since the measure \(I_X \) has finite semivariation relative to \((F,L_G^p)\) \((X \) is additive summable), the measure \(I_X^T \) has finite semivariation relative to \((F,L_G^p)\) also. Moreover, for each \(z \in (L_G^p)^* \), by Assertion a), the measure \((I_X^T)_z \), defined on \(\mathcal{P} \) is \(\sigma \)-additive. Therefore \(X^T \) is additive summable. We have \(|(I_X^T)_z(A)| = |(I_X)_z|([0,T] \cap A)\) for \(A \in \mathcal{P} \) since \(|(I_X)_z| \) is the canonical extension of its restriction on \(\mathcal{R} \). Then \(|(I_X^T)_z| \) is the canonical extension of its restriction to \(\mathcal{R} \). it follows that \(I_X^T \) is the canonical extension of its restriction to \(\mathcal{R} \).

The next theorem gives the relationship between the stopped stochastic integral and the integral of the process \(1_{[0,T]}H \). The same type of relation was proved in Theorem 11.6 in [Din00].

Theorem 12. Let \(H \in L_{F,G}^1(X) \) and let \(T \) be a stopping time. Then \(1_{[0,T]}H \in L_{F,G}^1(X) \) and
\[(1_{[0,T]}H) \cdot X = (H \cdot X)^T. \]

Proof. Suppose first that \(T \) is a simple stopping time of the form
\[T = \sum_{1 \leq i \leq n} 1_{A_i} t_i \]
with \(0 \leq t_1 \leq t_2 \leq \ldots \leq t_n \leq +\infty, \quad A_i \in \mathcal{F}_{t_i} \) mutually disjoint and with union \(\Omega \). Then for \(t \geq 0 \) we have
\[(H \cdot X)^T_t(\omega) = \sum_{1 \leq i \leq n} (H \cdot X)_{t_i \wedge t}(\omega) 1_{A_i}(\omega). \]
In fact, for $\omega \in \Omega$ there is $1 \leq i \leq n$ such that $\omega \in A_i$. Then $T(\omega) = t_i$, hence
\[
(H \cdot X)^{T_i}(\omega) = (H \cdot X)_{t_i \wedge t}(\omega).
\]
On the other hand
\[
(1_{[0,T]}H) \cdot X(t)(\omega) = \sum_{1 \leq i \leq n} (H \cdot X)_{t_i \wedge t}(\omega)1_{A_i}(\omega).
\]
In fact,
\[
(\int_{[0,t]} 1_{[0,T]}HdI_X)(\omega) = \left(\int_{[0,t]} \sum_{1 \leq i \leq n} 1_{[0,t_i]}1_{A_i}HdI_X \right)(\omega) = \sum_{1 \leq i \leq n} \left(\int_{[0,t]} 1_{A_i}HdI_X \right)(\omega)
\]
\[
= \sum_{1 \leq i \leq n} \left(\int_{[0,\infty]} H1_{A_i}dI_X \right)(\omega) - \sum_{1 \leq i \leq n} \left(\int_{(t_i,\infty]} 1_{A_i}HdI_X \right)(\omega)
\]
\[
= \sum_{1 \leq i \leq n} 1_{A_i}(\omega)\left(\int_{[0,\infty]} HdI_X \right)(\omega) - \sum_{1 \leq i \leq n} 1_{A_i}(\omega)\left(\int_{(t_i,\infty]} HdI_X \right)(\omega)
\]
\[
= \sum_{1 \leq i \leq n} 1_{A_i}(\omega)\left(\int_{[0,t_i \wedge t]} HdI_X \right)(\omega) = \sum_{1 \leq i \leq n} (H \cdot X)_{t_i \wedge t}(\omega)1_{A_i}(\omega),
\]
where the 4th equality is obtained by applying Proposition 10, with $h = 1_{A_i}$.

Hence, for T simple, we have $1_{[0,T]}H \in L^1_{F,G}(X)$ and
\[
(1_{[0,T]}H) \cdot X = (H \cdot X)^{T_i}.
\]

Now choose T arbitrary. Then there is a decreasing sequence (T_n) of simple stopping times, such that $T_n \downarrow T$.

Note first that since $(H \cdot X)$ is cadlag we have
\[
(H \cdot X)^{T_n} \rightarrow (H \cdot X)^{T_i}.
\]
Moreover for $t \geq 0$ we have $1_{[0,T_n \wedge t]}H \downarrow 1_{[0,T_n \wedge t]}H$ pointwise. Since $1_{[0,T_n \wedge t]}H \in L^1_{F,G}(X)$, for each $(z \in L^0_p)$ we have $1_{[0,T_n \wedge t]}H \in L^1_F((I_X)_z)$, hence
\[
\langle \int 1_{[0,T_n \wedge t]}HdI_X, z \rangle = \int 1_{[0,T_n \wedge t]}Hd(I_X)_z \rightarrow \int 1_{[0,T \wedge t]}Hd(I_X)_z = \langle \int 1_{[0,T \wedge t]}HdI_X, z \rangle.
\]
By Theorem 4 we conclude that \(\int 1_{[0,T]} H dI_X = \int_{[0,t]} 1_{[0,T]} H dI_X \in L^p_G \) and

\[
\int 1_{[0,T_n \wedge t]} H dI_X \to \int 1_{[0,T]} H dI_X,
\]
or

\[
\int_{[0,t]} 1_{[0,T_n]} H dI_X \to \int_{[0,t]} 1_{[0,T]} H dI_X.
\]

Since for each \(n \) we have \(1_{[0,T_n]} H \cdot X_t = (H \cdot X)_t^{T_n} \), by (1) we deduce that \(\int_{[0,t]} 1_{[0,T]} H dI_X = (H \cdot X)_t^T \). Hence the mapping \(t \mapsto \int_{[0,t]} 1_{[0,T]} H dI_X \) is cadlag, from which we conclude that \(1_{[0,T]} H \in L_{F,G}^1(X) \). Moreover

\[
(1_{[0,T]} H \cdot X)_t = (H \cdot X)_{T \wedge t} = (H \cdot X)_t^T.
\]

The next corollary is a useful particular case of the previous theorem:

Corollary 13. For every stopping time \(T \) we have

\[
1_{[0,T]} \cdot X = X^T.
\]

Proof. Taking \(H = 1 \in L_{F,G}^1(X) \) and applying Theorem 12 we conclude that \(1_{[0,T]} \cdot X = X^T \). \(\square \)

The following theorem gives the same type of results as Theorem 11.8 in [Din00].

Theorem 14. Let \(S \leq T \) be stopping times and assume that either

(i) \(h : \Omega \to \mathbb{R} \) is a simple, \(\mathcal{F}_S \)-measurable function and \(H \in L_{F,G}^1(X) \),

or

(ii) The measure \(I_X \) is \(\sigma \)-additive, \(h : \Omega \to F \) is a simple, \(\mathcal{F}_S \)-measurable function and \(H \in L_{R,F}^1(X) \).

Then \(1_{(S,T]} H \) and \(h 1_{(S,T]} H \) are integrable with respect to \(X \) and

\[
(h 1_{(S,T]} H) \cdot X = h[(1_{(S,T]} H) \cdot X].
\]

Proof. Note that

\[
1_{(S,T]} H = 1_{[0,T]} H - 1_{[0,S]} H.
\]

Assume first the case (i). Applying Theorem 12 for \(1_{[0,T]} H \) and \(1_{[0,S]} H \) we conclude that \(1_{(S,T]} H \in L_{F,G}^1(X) \).
If for each \(t \geq 0 \) we apply Proposition 10, we obtain

\[
\int_{[0,t]} h1_{(S,T]}H d\mathcal{I}_X = h \int_{[0,t]} 1_{(S,T]}H d\mathcal{I}_X.
\]

Since \(1_{(S,T]}H \in L^1_{F,G}(X) \) we deduce that \(h1_{(S,T]}H \in L^1_{F,G}(X) \) and

\[
((h1_{(S,T]}H) \cdot X)_t = h((1_{(S,T]}H) \cdot X)_t,
\]

which concluded the proof of case (i). Case (ii) is treated similarly. \(\square \)

2.6 The Integral \(\int H d\mathcal{I}_{X^T} \)

In this section we define the set of processes integrable with respect to the measure \(\mathcal{I}_{X^T} \) with finite semivariation relative to the pair \((F, L^p_G) \).

Let \(X : \mathbb{R}_+ \times \Omega \to E \subset L(F, G) \) be a cadlag, adapted process and assume \(X \) is \(p \)-additive summable relative to \((F, L^p_G) \).

Consider the additive measure \(\mathcal{I}_X : \mathcal{P} \to L^p_E \subset L(F, L^p_G) \) with bounded semivariation \(I_{F,G} \) relative to \((F, L^p_G) \), such that each of the measures \((\mathcal{I}_X)_z \) with \(z \in (L^p_G)^* \) is \(\sigma \)-additive.

To simplify the notations denote \(m = \mathcal{I}_{X^T} \). We proved in the previous proposition that the measure \(m : \mathcal{R} \to L^p_E \subset L(F, L^p_G) \) has bounded semivariation relative to \((F, L^p_G) \), on \(\mathcal{R} \), and for each \(z \in (L^p_G)^* \) the measures \(m_z \), is \(\sigma \)-additive. In order for the process \(X^T \) to be additive summable we need the measure \(m : \mathcal{R} \to L^p_E \) to have an extension \(m : \mathcal{P} \to L^p_E \) with finite semivariation and such that each of the measures \(m_z \) with \(z \in (L^p_G)^* \) is \(\sigma \)-additive. Applying Theorem 7 from Bongiorno-Dinculeanu, citeBD2001, the measure \(m \) has a unique canonical extension \(m : \mathcal{P} \to (L^p_E)^{**} \), with bounded semivariation such that for each \(z \in (L^p_G)^* \) the measure \(m_z \), is \(\sigma \)-additive and has bounded variation \(|m_z| \), therefore \(X^T \) is summable.

Then we have

\[
\tilde{m}_{F,L^p_G} = \sup \{|m_z| : z \in (L^p_G)^*, \|z\|_q \leq 1\}.
\]

We denote by \(\mathcal{F}_{F,G}(X^T) \) the space of predictable processes \(H : \mathbb{R}_+ \times \Omega \to F \) such that

\[
\tilde{m}_{F,G}(H) = \tilde{m}_{F,L^p_G}(H) = \sup \left\{ \int |H|d|m_z| : \|z\| \leq 1 \right\} < \infty.
\]
Let $H \in \mathcal{F}_{F,G}(X^T)$; then $H \in L^1_F(|m_z|)$ for every $z \in (L^p_G)^*$, hence the integral $\int Hdm_z$ is defined and is a scalar. The mapping $z \mapsto \int Hdm_z$ is a linear continuous functional on $(L^p_G)^*$, denoted $\int Hdm$. Therefore, $\int Hdm \in (L^p_G)^*$,

$$\langle \int Hdm, z \rangle = \int Hdm_z, \text{ for } z \in (L^p_G)^*.$$

We denote by $L^{1,F,G}(X^T)$ the set of processes $H \in \mathcal{F}_{F,G}(I^T_X)$ satisfying the following two conditions:

a) $\int_{[0,t]} Hdm \in L^p_G$ for every $t \in \mathbb{R}_+$;

b) The process $(\int_{[0,t]} Hdm)_{t \geq 0}$ has a cadlag modification.

Theorem 15. Let $X : \mathbb{R} \to E \subset L(F,G)$ be a p-additive summable process relative to (F,G) and T a stopping time.

a) We have $H \in \mathcal{F}_{F,G}(X^T)$ iff $1_{[0,T]}H \in \mathcal{F}_{F,G}(X)$ and in this case we have:

$$\int HdI_{X^T} = \int 1_{[0,T]}HdI_X.$$

b) We have $H \in L^{1,F,G}(X^T)$ iff $1_{[0,T]}H \in L^{1,F,G}(X)$ and in this case we have:

$$H \cdot X^T = (1_{[0,T]}H) \cdot X.$$

If $H \in L^{1,F,G}(X)$, then $H \in L^{1,F,G}(X^T), 1_{[0,T]}H \in L^{1,F,G}(X)$ and

$$(H \cdot X)^T = H \cdot X^T = (1_{[0,T]}H) \cdot X.$$

Proof. a) Define $m : \mathcal{R} \to E$ by $m(B) = I_{X^T}(B)$ for $B \in \mathcal{R}$. We proved in Theorem 11 (a) that for every $z \in (L^p_G)^*$ we have

$$m_z(B) = (I_X)_z(B \cap [0,T]), \text{ for all } B \in \mathcal{R}. \quad (*)$$

Since $(I_X)_z((\cdot) \cap [0,T])$ is a σ–additive measure, with bounded variation on \mathcal{P} satisfying (*) and since \mathcal{P} is the σ–algebra generated by \mathcal{R}, by the uniqueness theorem 7.4 in [Din00] we conclude that

$$m_z(B) = (I_X)_z(B \cap [0,T]), \text{ for all } B \in \mathcal{P}.$$

Let $H \in \mathcal{F}_{F,G}(X^T) = \bigcap_{\|z\|_q \leq 1, z \in (L^p_G)^*} L_F^1(m_z)$. From the previous equality we deduce that

$$\int Hdm_z = \int 1_{[0,T]}Hd(I_X)_z,$$

19
therefore
\[\int HdI_{XT} = \int 1_{[0,T]}HdI_X, \]
and this is the equality in Assertion a).

b) To prove Assertion b) we replace \(H \) with \(1_{[0,t]}H \) in the previous assertion and deduce that \(1_{[0,t]}H \in \mathcal{F}_{F,G}(X^T) \) iff \(1_{[0,t]}1_{[0,T]}H \in \mathcal{F}_{F,G}(X) \). In this case we have
\[\int_{[0,t]} HdI_{XT} = \int_{[0,t]} 1_{[0,T]}HdI_X. \]
It follows that \(H \in L^1_{F,G}(X^T) \) iff \(1_{[0,T]}H \in L^1_{F,G}(X) \) and in this case we have
\[(H \cdot X^T)_t = ((1_{[0,T]}H) \cdot X)_t. \]
If now \(H \in L^1_{F,G}(X) \), then, from Theorem 12 we deduce that \(1_{[0,T]}H \in L^1_{F,G}(X) \) and
\[(1_{[0,T]}H) \cdot X = (H \cdot X)^T. \]

\[\square \]

2.7 Convergence Theorems

Assume \(X \) is \(p \)-additive summable relative to \((F, G)\). In this section we shall present several convergence theorems.

Lemma 16. Let \((H^n)\) be a sequence in \(L^1_{F,G}(X)\) and assume that \(H^n \to H\) in \(\mathcal{F}_{F,G}(X)\). Then there is a subsequence \((r_n)\) such that
\[(H^{r_n} \cdot X)_t \to (H \cdot X)_t = \int_{[0,t]} HdI_X, \text{ a.s., as } n \to \infty, \]
uniformly on every bounded time interval.

Proof. Since \(H^n\) is a convergent sequence in \(\mathcal{F}_{F,G}(X)\) there is a subsequence \(H^{r_n}\) of \((H^n)\) such that
\[\tilde{I}_{F,G}(H^{r_n} - H^{r_{n+1}}) \leq 4^{-n}, \text{ for each } n. \]

Let \(t_0 > 0\). Define the stopping time
\[u_n = \inf\{t : |(H^{r_n} \cdot X)_t - (H^{r_{n+1}} \cdot X)_t| > 2^{-n}\} \wedge t_0. \]
By Theorem 12 applied to the stopping time u_n, we obtain

$$(H^r_n \cdot X)_{u_n} = (H^r_n \cdot X)_{\infty} = ((1_{[0,u_n]}H^r_n) \cdot X)_{\infty} = \int_{[0,u_n]} H^r_n dI_X,$$

hence

$$E(|(H^r_n \cdot X)_{u_n} - (H^r_{n+1} \cdot X)_{u_n}|) = E(|\int_{[0,u_n]} H^r_n dI_X - \int_{[0,u_n]} H^r_{n+1} dI_X|)$$

$$= E(\int_{[0,u_n]} |(H^r_n - H^r_{n+1})dI_X|) = (\int_{[0,u_n]} |(H^r_n - H^r_{n+1})dI_X|_{L^G})$$

$$\leq \int_{[0,u_n]} |(H^r_n - H^r_{n+1})dI_X|_{L^G} \leq \tilde{I}_{F,G}(H^r_n - H^r_{n+1}) \leq 4^{-n}. \quad (*)$$

Using inequality (*) and following the same techniques as in Theorem 12.1 a) in [Dim00] one could show first that the sequence $(H^r_n \cdot X)_t$ is a Cauchy sequence in L^p_G uniformly for $t < t_0$ and then conclude that

$$(H^r_n \cdot X)_t \to \int_{[0,t]} H dI_X,$$

uniformly on every bounded time interval.

Theorem 17. Let (H^n) be a sequence from $L^1_{F,G}(X)$ and assume that $H^n \to H$ in $F_{F,G}(X)$. Then:

a) $H \in L^1_{F,G}(X)$.

b) $(H^n \cdot X)_t \to (H \cdot X)_t$, in L^p_G, for $t \in [0, \infty]$.

c) There is a subsequence (r_n) such that

$$(H^{r_n} \cdot X)_t \to (H \cdot X)_t, \text{ a.s., as } n \to \infty,$$

uniformly on every bounded time interval.

Proof. For every $t \geq 0$ we have $1_{[0,t]}H^n \to 1_{[0,t]}H$ in $F_{F,G}(X)$. Since the integral is continuous, we deduce that

$$(H^n \cdot X)_t = \int_{[0,t]} H^n dI_X \to \int_{[0,t]} H dI_X, \text{ in } (L^p_G)^*.$$

Since $H^n \in L^1_{F,G}(X)$ we have $\int_{[0,t]} H^n dI_X \in L^p_G$ and

$$(H^n \cdot X)_t \to \int_{[0,t]} H dI_X, \text{ in } L^p_G.$$
From the previous lemma we deduce that there is a subsequence \((H^{r_n})\) such that

\[(H^{r_n} \cdot X)_t \to (H \cdot X)_t, \text{ a.s., as } n \to \infty,\]

uniformly on every bounded time interval. Since \((H^{r_n} \cdot X)\) are cadlag it follows that the limit is also cadlag, hence \(H \in L^1_{F,G}(X)\) which is Assertion a). Hence

\[(H \cdot X)_t = \int_{[0,t]} HdI_X, \text{ a.s.}\]

and therefore \((H^n \cdot X)_t \to (H \cdot X)_t\) in \(L^p_G\), which is Assertion b). Also observe that for the above subsequence \((H^{r_n})\) we have

\[(H^{r_n} \cdot X)_t \to (H \cdot X)_t, \text{ a.s., as } n \to \infty,\]

uniformly on every bounded time interval.

We can restate Theorem 17 as:

Corollary 18. \(L^1_{F,G}(X)\) is complete.

Next we state an uniform convergence theorem. Uniform convergence implies convergence in \(L^1_{F,G}(X)\).

Theorem 19. Let \((H^n)\) be a sequence from \(\mathcal{F}_{F,G}(X)\). If \(H^n \to H\) pointwise uniformly then \(H \in \mathcal{F}_{F,G}(X)\) and \(H^n \to H\) in \(\mathcal{F}_{F,G}(X)\).

If, in addition, for each \(n\), \(H^n\) is integrable, i.e. \(H^n \in L^1_{F,G}(X)\) then

a) \(H \in L^1_{F,G}(X)\) and \(H^n \to H\) in \(L^1_{F,G}(X)\);

b) For every \(t \in [0,\infty]\) we have \((H^n \cdot X)_t \to (H \cdot X)_t\), in \(L^p_G\).

c) There is a subsequence \((r_n)\) such that \((H^{r_n} \cdot X)_t \to (H \cdot X)_t, \text{ a.s. as } n \to \infty, \text{ uniformly on any bounded interval.}\)

Proof. Assertion a) is immediate. Assertions b), c) and d) follow from Theorem 17.

Now we shall state Vitali and Lebesgue-type Convergence Theorems. They are direct consequences of the convergence Theorem 17 and of the uniform convergence Theorem 19.

Theorem 20. (Vitali). Let \((H^n)\) be a sequence from \(\mathcal{F}_{F,G}(X)\) and let \(H\) be an \(F\)-valued, predictable process. Assume that
(i) \(\tilde{I}_{F,G}(H^n1_A) \to 0 \) as \(\tilde{I}_{F,G}(A) \to 0 \), uniformly in \(n \) and that any one of the conditions (ii) or (iii) below is true:
(ii) \(H^n \to H \) in \(\tilde{I}_{F,G} \)-measure;
(iii) \(H^n \to H \) pointwise and \(I_{F,L^p_G} \) is uniformly \(\sigma \)-additive (this is the case if \(H^n \) are real-valued, i.e., \(F = \mathbb{R} \)).

Then:
a) \(H \in \mathcal{F}_{F,G}(X) \) and \(H^n \to H \) in \(\mathcal{F}_{F,G}(X) \).
Conversely, if \(H^n, H \in \mathcal{F}_{F,G}(\mathcal{B}, X) \) and \(H^n \to H \) in \(\mathcal{F}_{F,G}(X) \), then conditions (i) and (ii) are satisfied.

Under the hypotheses (i) and (ii) or (iii), assume, in addition, that \(H^n \in L^1_{F,G}(X) \) for each \(n \). Then
b) \(H \in L^1_{F,G}(X) \) and \(H^n \to H \) in \(L^1_{F,G}(X) \);
c) For every \(t \in [0, \infty) \) we have \((H^n \cdot X)_t \to (H \cdot X)_t \), in \(L^p_G \);
d) There is a subsequence \((r_n) \) such that \((H^{r_n} \cdot X)_t \to (H \cdot X)_t \), a.s., as \(n \to \infty \), uniformly on any bounded interval.

Theorem 21. (Lebesgue). Let \((H^n) \) be a sequence from \(\mathcal{F}_{F,G}(X) \) and let \(H \) be an \(F \)-valued predictable process. Assume that
(i) There is a process \(\phi \in \mathcal{F}_{\mathbb{R}}(\mathcal{B}, I_{F,G}) \) such that
\[
|H^n| \leq \phi \text{ for each } n;
\]
and that any one of the conditions (ii) or (iii) below is true:
(ii) \(H^n \to H \) in \(\tilde{I}_{F,G} \)-measure;
(iii) \(H^n \to H \) pointwise and \(I_{F,L^p_G} \) is uniformly \(\sigma \)-additive (this is the case if \(H^n \) are real-valued, i.e., \(F = \mathbb{R} \)).

Then:
a) \(H \in \mathcal{F}_{F,G}(\mathcal{B}, X) \) and \(H^n \to H \) in \(\mathcal{F}_{F,G}(X) \).
Assume, in addition that \(H^n \in L^1_{F,G}(X) \) for each \(n \). Then
b) \(H \in L^1_{F,G}(X) \) and \(H^n \to H \) in \(L^1_{F,G}(X) \);
c) For every \(t \in [0, \infty) \) we have \((H^n \cdot X)_t \to (H \cdot X)_t \), in \(L^p_G \);
d) There is a subsequence \((r_n) \) such that \((H^{r_n} \cdot X)_t \to (H \cdot X)_t \), a.s., as \(n \to \infty \), uniformly on any bounded interval.

2.8 Summability of the Stochastic Integral

Assume \(X \) is \(p \)-additive summable relative to \((F,G) \). In this section we are studying the additive summability of the stochastic integral \(H \cdot X \) for \(F \)-valued processes \(H \).
If H is a real valued processes then in order for the stochastic integral $H \cdot X$ to be defined we need each of the measure $(I_X)_z$, for $z \in (L_F^p)^*$, to be $\sigma-$additive, hence the measure I_X would be $\sigma-$additive. Therefore the process X would be summable. In this case the summability of the stochastic integral is proved in Theorem 13.1 of [Din00].

The next theorem shows that if H is $F-$valued then the measure $I_H \cdot X$ is $\sigma-$additive even if I_X is just additive.

Theorem 22. Let $H \in L_{F,G}^1(X)$ be such that $\int_A H dI_X \in L_G^p$ for $A \in \mathcal{P}$. Then the measure $I_{H \cdot X} : \mathcal{R} \to L_G^p$ has a $\sigma-$additive extension $I_{H \cdot X} : \mathcal{P} \to L_G^p$ to \mathcal{P}.

Proof. We first note that $H \cdot X : \mathbb{R}_+ \times \Omega \to G = L(\mathbb{R}, G)$ is a cadlag adapted process with $(H \cdot X)_t \in L_G^p$ for $t \geq 0$ (by the definition of $H \cdot X$).

Since $\int_A H dI_X \in L_G^p$ for every $A \in \mathcal{P}$, by Proposition ??, with $m = I_X$ and $g = H$, we deduce that HI_X is $\sigma-$additive on \mathcal{P}.

Next we prove that for any predictable rectangle $A \in \mathcal{R}$ we have

$$I_{H \cdot X}(A) = \int_A H dI_X.$$

In fact, consider first $A = \{0\} \times B$ with $B \in \mathcal{F}_0$. Using Proposition 10 for $h = 1_B$ we have

$$I_{H \cdot X}(\{0\} \times B) = 1_B((H \cdot X)_0) = 1_B \int_{\{0\}} H dI_X$$

$$= \int_{\{0\}} 1_B H dI_X = \int_{\{0\} \times B} H dI_X;$$

Let now $A = (s,t] \times B$ with $B \in \mathcal{F}_s$. Using Proposition 10 for $h = 1_B$ and $(S,T] = (s,t]$ we have

$$I_{H \cdot X}((s,t] \times B) = 1_B((H \cdot X)_t - (H \cdot X)_s)$$

$$= 1_B(\int_{[0,t]} H dI_X - \int_{[0,s]} H dI_X) = 1_B (\int_{(s,t]} H dI_X$$

$$= \int_{(s,t]} 1_B H dI_X = \int_{(s,t] \times B} H dI_X;$$

and the desired equality is proved.
Since the measure $A \mapsto \int_A H dI_X$ is $\sigma-$additive for $A \in \mathcal{P}$ it will follow that $I_{H,X}$ can be extended to a σ-additive measure on \mathcal{P} by the same equality

$$I_{H,X}(A) = \int_A H dI_X, \text{ for } A \in \mathcal{P}. \quad (2)$$

The next theorem states the summability of the stochastic integral.

Theorem 23. Let $H \in L^1_{F,G}(X)$ be such that $\int_A H dI_X \in L^p_G$ for $A \in \mathcal{P}$. Then:

a) $H \cdot X$ is p-summable, hence p-additive summable relative to (\mathbb{R}, G) and

$$dI_{H,X} = d(HI_X).$$

b) For any predictable process $K \geq 0$ we have

$$(\tilde{I}_{H,X})_{\mathbb{R},G}(K) \leq (\tilde{I}_X)_{F,G}(KH).$$

c) If K is a real-valued predictable process and if $KH \in L^1_{F,G}(X)$, then $K \in L^1_{\mathbb{R},G}(H \cdot X)$ and we have

$$K \cdot (H \cdot X) = (KH) \cdot X.$$

Proof. By Theorem 22 we know that the measure $I_{H,X}$ is $\sigma-$additive. Therefore To prove (a) we only need to show that the extension of $I_{H,X}$ to \mathcal{P} has finite semivariation relative to (\mathbb{R}, L^p_G).

Let $z \in (L^p_G)^*$. From the equality (2) in Theorem 22 we deduce that for every $A \in \mathcal{P}$, and we have

$$(I_{H,X})_z(A) = \langle I_{H,X}(A), z \rangle = \langle \int_A H dI_X, z \rangle = \int_A H d(I_X)_z.$$

From this we deduce the inequality

$$|(I_{H,X})_z|(A) \leq \int_A |H||d|(I_X)_z|, \text{ for } A \in \mathcal{P}. \quad (*)$$

Taking the supremum for $z \in (L^p_G)^*$ we obtain

$$\sup\{|(I_{H,X})_z|(A), z \in (L^p_G)^*\} \leq \sup\{\int_A |H||d|(I_X)_z|, z \in (L^p_G)^*\}.$$
\[\leq \sup \{ \int |1_A H| d((I_X)_z), z \in (L_{E}^p)_{1}\}, \text{ for } A \in \mathcal{P}. \]

Therefore
\[(\tilde{I}_{H,X})_{R,G}(A) \leq (\tilde{I}_X)_{F,G}(1_A H) < \infty, \text{ for } A \in \mathcal{P}. \]

It follows that \(H \cdot X \) is \(p \)-summable, hence \(p \)-additive summable, relative to \((R, G)\) and this proves Assertion a).

Since the extension to \(\mathcal{P} \) of the measure \(I_{X,H} \) is \(\sigma \)-additive and has finite semivariation b) and c) follow from Theorem 13.1 of [Din00].

2.9 Summability Criterion

Let \(Z \subset L_{E}^p \), be any closed subspace norming for \(L_{E}^p \). The next theorem differs from the summability criterion in [Din00] by the fact that the restrictive condition \(c_0 \notin E \) was not imposed. Also note that this theorem does not give us necessary and sufficient conditions for the summability of the process.

Theorem 24. Let \(X : \mathbb{R}_+ \times \Omega \to E \) be an adapted, cadlag process such that \(X_t \in L_{E}^p \) for every \(t \geq 0 \). Then the Assertions a)-d) below are equivalent.

a) \(I_X : \mathcal{R} \to L_{E}^p \) has an additive extension \(I_X : \mathcal{P} \to Z^* \) such that for each \(g \in Z \), the real valued measure \(\langle I_X, g \rangle \) is a \(\sigma \)-additive on \(\mathcal{P} \).

b) \(I_X \) is bounded on \(\mathcal{R} \);

c) For every \(g \in Z \), the real valued measure \(\langle I_X, g \rangle \) is bounded on \(\mathcal{R} \);

d) For every \(g \in Z \), the real valued measure \(\langle I_X, g \rangle \) is \(\sigma \)-additive and bounded on \(\mathcal{R} \).

Proof. The proof will be done as follows: b) \(\iff \) c) \(\iff \) d) and a) \(\iff \) d).

b) \(\implies \) c) and c) \(\implies \) b) can be proven in the same fashion as in [Din00].

c) \(\implies \) d) Assume c), and let \(g \in Z \). The real valued measure \(\langle I_X, g \rangle \) is defined on \(\mathcal{R} \) by
\[\langle I_X, g \rangle(A) = \langle I_X(A), g \rangle = \int \langle I_X(A), g \rangle dP, \text{ for } A \in \mathcal{R}. \]

By assumption, \(\langle I_X, g \rangle \) is bounded on \(\mathcal{R} \). We need to prove that the measure \(\langle I_X, g \rangle \) is \(\sigma \)-additive. For that consider, as in [Din00], the real-valued process \(XG = (X_t, G_t)_{t \geq 0} \), where \(G_t = E(g|\mathcal{F}_t) \) for \(t \geq 0 \). Then \(XG : \mathbb{R}_+ \times \Omega \to \mathbb{R} \) is a cadlag, adapted process and it can be proven, using the same techniques as in [Din00] that it is a quasimartingale.
Now, for each \(n \), define the stopping time
\[
T_n(\omega) = \inf\{ t : |X_t| > n \}.
\]
Then \(T_n \uparrow \infty \) and \(|X_t| \leq n \) on \([0, T_n)\). Since \(XG \) is a quasimartingale on \((0, \infty)\), we know that \((XG)_{T_n} \in L^1\) (Proposition A 3.5 in [BD87]: \(XG \) is a quasimartingale on \((0, \infty)\) iff \(XG \) is a quasimartingale on \((0, \infty)\) and \(\sup_t \|XG\|_1 < \infty \).

Moreover,
\[
|(XG)_{T_n}^T| = |(XG)_t|_{1\{t < T_n\}} + |(XG)_{T_n}|_{1\{t \geq T_n\}}
\]
\[
\leq |X_t||G_t|_{1\{t < T_n\}} + |(XG)_{T_n}|_{1\{t \geq T_n\}}
\]
\[
\leq n|G_t|_{1\{t < T_n\}} + |(XG)_{T_n}|_{1\{t \geq T_n\}}.
\]

Besides, since \(G_t = E(g|\mathcal{F}_t) \) it follows that \(G \) is a uniformly integrable martingale.

Next we prove that the family \(\{(XG)_{T_n}^T, T \text{ simple stopping time}\} \) is uniformly integrable.

In fact, note that by inequality (2) we have
\[
\int_{\{(XG)_{T_n}^T > p\}} |(XG)_{T_n}^T| dP
\]
\[
\leq \int_{\{(XG)_{T_n}^T > p\} \cap \{T < T_n\}} n|(XG)_{T_n}^T| dP + \int_{\{(XG)_{T_n}^T > p\} \cap \{T \geq T_n\}} |(XG)_{T_n}^T| dP \tag{3}
\]

Now observe that
\[
\{(XG)_T > p\} \cap \{T < T_n\} = \{(X_T, G_T) > p\} \cap \{T < T_n\}
\]
\[
\subset \{|X_T|G_T > p\} \cap \{T < T_n\} \subset \{p < n|G_T|\} \cap \{T < T_n\} \subset \{p < nG_T\}
\]

Since \(G \) is a uniformly integrable martingale, it is a martingale of class D; from \(n|G_t|_{1\{t < T_n\}} \leq n|G_t| \) we deduce that \(n|G_t|_{1\{t < T_n\}} \) is a martingale of class (D):
\[
\lim_{p \to \infty} \int_{\{n|G_t|_{1\{t < T_n\}} > p\}} n|G_t|_{1\{t < T_n\}} dP \leq \lim_{p \to \infty} \int_{\{n|G_t| > p\}} n|G_t| dP
\]
\[
= n \lim_{p \to \infty} \int_{\{|G_t| > \frac{p}{n}\}} n|G_t| dP = \lim_{\frac{p}{n} \to \infty} \int_{\{n|G_t| > p\}} n|G_t| dP = 0.
\]
Hence there is a $p_{1\epsilon}$ such that for any $p \geq p_{1\epsilon}$ and any simple stopping time T we have

$$\int_{\{(XG)^{T_n}_T > p\} \cap \{T < T_n\}} n|(XG)^{T_n}_T|dP \leq \int_{\{n|G_t| > p\}} n|G_t|dP < \frac{\epsilon}{2} \quad (4)$$

We look now at the second term of the right hand side of the inequality (3).

$$\int_{\{(XG)^{T_n}_T > p\} \cap \{T \geq T_n\}} |(XG)^{T_n}_T|dP \leq \int_{\{(XG)^{T_n}_T > p\}} |(XG)^{T_n}_T|dP$$

Since $(XG)^{T_n}_T \in L^1$, for every $\epsilon > 0$ there is a $p_{2\epsilon} > 0$ such that for every $p \geq p_{2\epsilon}$ we have

$$\int_{\{(XG)^{T_n}_T > p\}} |(XG)^{T_n}_T|dP < \frac{\epsilon}{2} \quad (5)$$

If we put (4) and (5) together we deduce that for every $\epsilon > 0$ there is a $p_{\epsilon} = \max(p_{1\epsilon}, p_{2\epsilon})$ such that for any $p > p_{\epsilon}$ and any T simple stopping time we have

$$\int_{\{(XG)^{T_n}_T > p\}} |(XG)^{T_n}_T|dP < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

which proves the fact that $(XG)^{T_n}_T$ is a quasimartingale of class (D). From Theorem 14.2 of [Din00] we deduce that the Doléans measure $\mu_{(XG)^{T_n}_T}$ associated to the process $(XG)^{T_n}_T$ is $\sigma-$additive and has bounded variation on \mathcal{R}, hence it can be extended to a σ-additive measure with bounded variations on \mathcal{P} (Theorem 7.4 b) of [Din00]).

Next we show that for any $B \in \mathcal{P}$ we have

$$\mu_{(XG)^{T_n}_T}(B) = \mu_{XG}(B \cap [0, T_n]).$$

In fact, for $A \in \mathcal{F}_0$ we have

$$\mu_{(XG)^{T_n}_T}(\{0\} \times A) = \mu_{XG}(((\{0\} \times A) \cap [0, T_n]).$$

and for $(s, t] \times A$ with $A \in \mathcal{F}_s$ we have

$$\mu_{(XG)^{T_n}_T}((s, t] \times A) = E(1_A((XG)^{T_n}_t - (XG)^{T_n}_s)) = \mu_{XG}(((s, t] \times A) \cap [0, T_n]),$$

28
which proves our equality. Hence the measure μ_{XG} is σ-additive on the σ-ring $\mathcal{P} \cap [0, T_n]$ for each n, hence it is σ-additive on the ring $\mathcal{B} = \bigcup_{1 \leq n < \infty} \mathcal{P} \cap [0, T_n]$.

Next we observe that μ_{XG} is bounded on \mathcal{R}, therefore it has bounded variation on \mathcal{R} which implies that the measure defined on $\mathcal{B} \cap \mathcal{R}$ is σ-additive and has bounded variation. Since $\mathcal{B} \cap \mathcal{R}$ generates \mathcal{P}, by Theorem 7.4 b) of [Din00], μ_{XG} can be extended to a σ-additive measure with bounded variation on \mathcal{P}.

Since $\langle I_X, g \rangle = \mu_{XG}$, it follows that $\langle I_X, g \rangle$ is bounded and σ-additive on \mathcal{R}, thus d) holds. The implication $d) \Rightarrow c)$ is evident.

$\Rightarrow d)$ is evident since for each $g \in Z$, the measure $\langle I_X, g \rangle$ is σ-additive on \mathcal{P} and since any σ-additive measure on a σ-algebra is bounded we conclude that for $g \in Z$, the measure $\langle I_X, g \rangle$ is bounded on \mathcal{P} hence on \mathcal{R}.

Next we prove $d) \Rightarrow a)$. Assume d) is true. Then the real valued measure $\langle I_X, g \rangle$ is σ-additive and bounded on \mathcal{R}. Since we proved that $b) \iff c) \iff d)$ we deduce from (1) that

$$|\langle I_X, g \rangle(A)| \leq M\|g\| \text{ for all } A \in \mathcal{R}$$

where $M = \sup\{|I_X(A)| : A \in \mathcal{R}\}$. By Proposition 2.16 of [Din00] it follows that

the measure $\langle I_X(\cdot), g \rangle$ has bounded variation $|\langle I_X, g \rangle|(\cdot)$ satisfying

$$|\langle I_X, g \rangle|(A) \leq 2M\|g\|, \text{ for } A \in \mathcal{R}.$$

Applying Proposition 4.15 in [Din00] we deduce that $\tilde{I}_{X_{\mathbb{R},E}}$ is bounded. By Theorem 3.7 b) of [BD01] we conclude that the measure $I_X : \mathcal{R} \rightarrow L^p_E$ has an additive extension $I_X : \mathcal{P} \rightarrow Z^{**}$ to \mathcal{P} such that for each $g \in Z$, the real valued measure $\langle I_X, g \rangle$ is a σ-additive on \mathcal{P} which is Assertion a).

3 Examples of Additive Summable Processes

Definition 25. Let $X : \mathbb{R}_+ \times \Omega \rightarrow E$ be an E-valued process. We say that X has finite variation, if for each $\omega \in \Omega$, the path $t \mapsto X_t(\omega)$ has finite variation on each interval $[0, t]$. If $1 \leq p < \infty$, the process X has p-integrable variation if the total variation $|X|_\infty = \var(X, \mathbb{R}_+)$ is p-integrable.
Definition 26. We define the variation process $|X|$ by

$$|X|_{t}(\omega) = \text{var}(X_{t}(\omega), (-\infty, t])$$

for $t \in \mathbb{R}$ and $\omega \in \Omega,$

where $X_{t} = 0$ for $t < 0.$

Noting that if $m : \mathcal{D} \to E \subset L(F, G)$ is a σ-additive measure then for each $z \in G^{*}$, the measure $m_{z} : \mathcal{D} \to F^{*}$ is $\sigma-$additive, we deduce that, if the process X is summable, then it is also additive summable. Hence the following theorem is a direct consequence of Theorem 19.13 in [Din00]

Theorem 27. Let $X : \mathbb{R}_{+} \times \Omega \to E$ be a cadlag, adapted process with integrable variation $|X|$. Then X is 1-additive summable relative to any embedding $E \subset L(F, G)$.

Proof. If $m : \mathcal{D} \to E \subset L(F, G)$ is a σ-additive measure then for each $z \in G^{*}$, the measure $m_{z} : \mathcal{D} \to F^{*}$ is $\sigma-$additive. We deduce that, if the process X is summable, then it is additive summable. Hence applying Theorem 19.13 b) in [Din00] we conclude our proof. \(\square \)

3.1 Processes with Integrable Semivariation

Definition 28. We define the semivariation process of X relative to (F, G) by

$$\tilde{X}_{t}(\omega) = \text{svar}_{F,G}(X_{t}(\omega), (-\infty, t])$$

for $t \in \mathbb{R}$ and $\omega \in \Omega,$

where $X_{t} = 0$ for $t < 0.$

Definition 29. The total semivariation of X is defined by

$$\tilde{X}_{\infty}(\omega) = \sup_{t \geq 0} \tilde{X}_{t}(\omega) = \text{svar}_{F,G}(X_{t}(\omega), \mathbb{R}),$$

for $\omega \in \Omega.$

Definition 30. Let $X : \mathbb{R}_{+} \times \Omega \to E \subset L(F, G)$. The process X is said to have finite semivariation relative to (F, G), if for every $\omega \in \Omega$, the path $t \mapsto X_{t}(\omega)$ has finite semivariation relative to (F, G) on each interval $(-\infty, t]$. The process X is said to have p-integrable semivariation if $\tilde{X}_{F,G}$ if the total semivariation $(\tilde{X}_{F,G})_{\infty}$ belongs to L^{p}.

Remark: If $X : \mathbb{R}_{+} \times \Omega \to E \subset L(F, G)$ is a process and $z \in G^{*}$ we define, the process $X_{z} : \mathbb{R}_{+} \times \Omega \to F^{*}$ by

$$\langle x, (X_{z})_{t}(\omega) \rangle = \langle X_{t}(\omega)x, z \rangle,$$

for $x \in F, t \in \mathbb{R}_{+}$ and $\omega \in \Omega.$
For fixed $t \geq 0$, we consider the function $X_t : \omega \mapsto X_t(\omega)$ from Ω into $E \subset L(F, G)$ and for $z \in G^*$ we define $(X_t)_z : \Omega \to F^*$ by the equality

$$\langle x, (X_t)_z(\omega) \rangle = \langle X_t(\omega)x, z \rangle, \text{ for } \omega \in \Omega, \text{ and } x \in F.$$

It follows that

$$(X_t)_z(\omega) = X_z(t)(\omega), \text{ for } t \in \mathbb{R}_+ \text{ and } \omega \in \Omega.$$

The semivariation \tilde{X} can be computed in terms of the variation of the processes X_z:

$$\tilde{X}_t(\omega) = \sup_{z \in G^*_t} |X_z|_t(\omega).$$

If X has finite semivariation \tilde{X}, then each X_z has finite variation $|X_z|$.

The following theorem is an improvement over the Theorem 21.12 in [Din00], where it was supposed that $c_0 \not\in E$ and $c_0 \not\in G$.

Theorem 31. Assume $c_0 \not\in G$. Let $X : \mathbb{R}_+ \times \Omega \to E \subset L(F, G)$ be a cadlag, adapted process with p-integrable semivariation relative to (\mathbb{R}, E) and relative to (F, G). Then X is p-additive summable relative to (F, G).

Proof. First we present the sketch of the proof, after which we prove all the details.

The prove goes as follows:

1) First we will show that

$$I_X(A)(\omega) = m_X(\omega)(A(\omega)), \text{ for } A \in \mathcal{R} \text{ and } \omega \in \Omega,$$

where $A(\omega) = \{t; (t, \omega) \in A\}$ and $X(\omega)$ is $X(\omega)$. For the definition of the measure $m_X(\omega)$ see Section 2.2.

2) Then we will prove that the measure $m_X(\omega)$ has an additive extension to $\mathcal{B}(\mathbb{R}_+)$, with bounded semivariation relative to (F, G) and such that for every $g \in G^*$ the measure $(m_X(\omega))_g$ is $\sigma-$additive.

3) Next we prove that the function $\omega \mapsto m_X(\omega)(M(\omega))$ belongs to L^p_E for all $M \in \mathcal{P}$.

4) Then we show that the extension of the measure I_X to \mathcal{P} has bounded semivariation relative to (F, L^p_G).

5) Finally we show that for each $z \in (L^p_G)^*$ the measure $(I_X)_z : \mathcal{P} \to F^*$ is $\sigma-$additive.

6) We conclude that the process X is $p-$additive summable.
Now we prove each step in detail.

1) First we prove (*) for predictable rectangles. Let \(A = \{0\} \times B \) with \(B \in \mathcal{F}_0 \). Then we have
\[
I_X(\{0\} \times B)(\omega) = 1_B(\omega)X_0(\omega) = \int 1_{\{0\} \times B}(s, \omega) dX_s(\omega) = m_X(\omega)(A(\omega)).
\]
Now let \(A = (s, t] \times B \) with \(B \in \mathcal{F}_s \). In this case we also obtain
\[
I_X((s, t]\times B)(\omega) = 1_B(\omega)(X_t(\omega) - X_s(\omega)) = \int 1_{(s, t]\times B}(p, \omega) dX_p(\omega) = m_X(\omega)(A(\omega)).
\]
Since both \(I_X(A)(\omega) \) and \(m_X(\omega)(A(\omega)) \) are additive we conclude that the equality (*) is true for \(A \in \mathcal{R} \).

2) Since \(X \) has \(p \)-integrable semivariation relative to \((F, G) \) we infer that \((X_{F,G})_\infty(\omega) < \infty \) a.s. If we redefine \(X_t(\omega) = 0 \) for those \(\omega \) for which \((X_{F,G})_\infty(\omega) = \infty \) we obtain a process still denoted \(X \) with bounded semivariation. In this case for each \(\omega \in \Omega \) the function \(t \mapsto X_t(\omega) \) is right continuous and with bounded semivariation. By Theorem ?? we deduce that the measure \(m_X(\omega) \) can be extended to an additive measure \(m_X(\omega) : \mathcal{B}(\mathbb{R}_+) \rightarrow E \subset L(F, G) \), with bounded semivariation relative to \((F, G) \) and such that for every \(g \in G^* \) the measure \((m_X(\omega))_g : \mathcal{B}(\mathbb{R}_+) \rightarrow F^* \) is \(\sigma \)-additive.

3) Since \(X \) has \(p \)-integrable semivariation relative to \((F, G) \), for each \(t \geq 0 \) we have \(X_t \in L^p_E \). Hence, by step 1, the function \(\omega \mapsto m_X(\omega)(M_0(\omega)) \) belongs to \(L^p_E \) for all \(M \in \mathcal{R} \). To prove that \(\omega \mapsto m_X(\omega)(M(\omega)) \) belongs to \(L^p_E \) for all \(M \in \mathcal{P} \) we will use the Monotone Class Theorem. We will prove that the set \(\mathcal{P}_0 \) of all sets \(M \in \mathcal{P} \) for which the affirmation is true is a monotone class, containing \(\mathcal{R} \), hence equal to \(\mathcal{P} \). In fact, let \(M_n \) be a monotone sequence from \(\mathcal{P}_0 \) converging to \(M \). By assumption, for each \(n \) the function \(\omega \mapsto m_X(\omega)(M_n(\omega)) \) belongs to \(L^p_E \) and for each \(\omega \) the sequence \((M_n(\omega)) \) is monotone in \(\mathcal{B}(\mathbb{R}_+) \) and has limit \(M(\omega) \). Moreover \(\|m_X(\omega)(M_n(\omega))\| \leq m_X(\omega)(\mathbb{R}_+ \times \Omega) = X_\infty(\omega) \), which is \(p \)-integrable. By Lebesgue’s Theorem we deduce that the mapping \(\omega \mapsto m_X(\omega)(M(\omega)) \) belongs to \(L^p_E \), hence \(M \in \mathcal{P}_0 \). Therefore \(\mathcal{P}_0 \) is a monotone class.

4) We use the equality (*) to extend \(I_X \) to the whole \(\mathcal{P} \), by
\[
I_X(A)(\omega) = m_X(\omega)(A(\omega)), \quad \text{for } A \in \mathcal{P}.
\]
Let \(A \in \mathcal{P} \), \((A_i)_{i \in I} \) be a finite family of disjoint sets from \(\mathcal{P} \) contained in \(A \), and \((x_i)_{i \in I} \) a family of elements from \(F \) with \(|x_i| \leq 1 \). Then we have
\[
\| \sum I_X(A_i)x_i \|_p = E(\| \sum I_X(A_i)(\omega)x_i \|_p^p)
\]
= E(\left|\sum m_{X(\omega)}(A_i(\omega))x_i\right|^p) \leq E(\left|\sum (m_{X(\omega)}(A(\omega))\right|^p) \\
= \left\|\sum (m_{X(\omega)}(A(\omega)))\right\|^p = \left\|\sum (X_{FG}(A(\omega)))\right\|^p \leq \left\|\sum (X_{FG})\right\|^p < \infty.

Taking the supremum over all the families \((A_i)\) and \((x_i)\) as above, we deduce
\((\bar{I}_X)^{FG}_p \leq \left\|\sum (X_{FG})\right\|^p < \infty.\)

5) Let \(z \in (L^p_G)^*\) and \(x \in F\). Then \(z(\omega) \in G^*\) and for each set \(M \in \mathcal{P}\) we have

\[
\langle (I_X)_z(M), x \rangle = \langle I_X(M) x, z \rangle = E(\langle I_X(M)(\omega) x, z(\omega) \rangle) \\
= E(\langle (m_{X(\omega)})(M(\omega)) x, z(\omega) \rangle) = E(\langle (m_{X(\omega)})(z(\omega))(M(\omega)), x \rangle).
\]

(3)

By step we conclude that the measure \((I_X)_z\) is \(\sigma\)-additive for each \(z \in (L^p_G)^*\).

6) By the definition in step 4,

\[I_X(A)(\omega) = m_{X(\omega)}(A(\omega)), \text{ for } A \in \mathcal{P} \text{ and } \omega \in \Omega,\]

and by steps 2 and 3 we conclude that the measure \(I_X\) has an additive extension \(\bar{I}_X : \mathcal{P} \to L^p_E\). By step 5 the measure \((I_X)_z\) is \(\sigma\)-additive for each \(z \in (L^p_G)^*\). By step 4 this extension has bounded semivariation. Therefore the process \(X\) is \(p\)-additive summable.

The following theorem gives sufficient conditions for two processes to be indistinguishable. For the proof see [Din00], Corollary 21.10 b’.

Theorem 32. ([Din00]21.10b’) Assume \(c_0 \not\in E\) and let \(A, B : \mathbb{R}_+ \times \Omega \to E\) be two predictable processes with integrable semivariation relative to \((\mathbb{R}, E)\). If for every stopping time \(T\) we have \(E(A_\infty - A_T) = E(B_\infty - B_T)\), then \(A\) and \(B\) are indistinguishable.

The next theorem gives examples of processes with locally integrable variation or semivariation. For the proof see [Din00], Theorems 22.15 and 22.16.

Theorem 33. ([Din00]22.15,16) Assume \(X\) is right continuous and has finite variation \(|X|\) (resp. finite semivariation \(X_{FG}\)). If \(X\) is either predictable or a local martingale, then \(X\) has locally integrable variation \(|X|\) (resp. locally integrable semivariation \(X_{FG}\)).

Proposition 34. Let \(X : \mathbb{R}_+ \times \Omega \to E\) be a process with finite variation. If \(X\) has locally integrable semivariation \(X_{FG}\), then \(X\) has locally integrable variation.
Proof. Assume X has locally integrable semivariation \tilde{X} relative to (\mathbb{R}, E). Then there is an increasing sequence S_n of stopping times with $S_n \uparrow \infty$ such that $E(\tilde{X}_{S_n}) < \infty$ for each n. For each n define the stopping times T_n by $T_n = S_n \wedge \inf\{t | |X|_t \geq n\}$. It follows that $|X|_{T_n} \leq n$. Since X has finite variation, by Proposition 6 we have $\Delta |X_{T_n}| = |\Delta X_{T_n}| \leq \tilde{X}_{T_n}$. From $\Delta |X_{T_n}| = |X|_{T_n} - |X|_{T_n-}$ we deduce that $|X|_{T_n} = |X|_{T_n-} + \Delta |X_{T_n}| \leq n + \tilde{X}_{T_n}$; therefore $E(|X|_{T_n}) \leq n + E(\tilde{X}_{T_n}) < \infty$; hence X has locally integrable variation. \qed

References

