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Abstract

We study a class of Lyapunov functions to be applied for investigation

of the stability of population ecosystems. In a two dimensional case, a

locally geometrical study is given.
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1 Introduction

In this paper, we shall survey some contribution to the geometrical study of
mathematical models of ecosystems with emphasis upon some classes of models
of interacting species. Initially investigated by A.J. Lotka [?] and V. Volterra [?],
this class of ecosystems plays an important role in mathematical ecology. The
models considered in this paper are of the form

ẋi = xiFi(x1, x2, . . . , xn), i = 1, 2, . . . , n,(1)

where xi is the density of the ith species in the community at time t, and ẋi

denotes dxi

dt
. Each Fi is a continuous function from Rn

+, the nonnegative cone
in Rn, to R and is sufficiently smooth to guarantee that initial value problems
associated with (??) have unique solutions in the population orthant, Rn

+.
As a rule, the stability of such a system is studied by using the eigenvalues of

its linear approximation. This method gives answer only concerning the stability
relative to infinitesimal perturbations of the initial state. In real cases these
systems are subjected to large perturbations. So, the study of stability relative
to finite perturbations is useful. This requires an extension from a local property
to a global concept. We shall denote by x∗ = (x∗

1, x
∗

2, . . . , x
∗

n) a steady-state of
(??). x∗ is said to be globally (asymptotically) stable if for any neighbourhood
U of x∗, there exists a neighbourhood W of x∗ such that any orbit through W

remains forever in U and x(t) → x∗ for all x ∈ W as the time variable tends to
infinity.
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In this period, much effort in studies of ecological models has been directed
to local stability analysis and numerical developments [?]. To investigate a global
phenomenon such as globally asymptotically stability analytical studies are re-
quired.

Based on some ideas of Hsu [?], and using the direct method of Lyapunov
[?], we shall study a class of Lyapunov functions to be applied for the study of
globally asymptotically stability of systems of the form (??). In a two dimensional
case, a locally geometrical study of (??) is given. We prove that, in general,
totally extinction cannot appear in (??) and introduce a Riemannian structure
to study it.

2 An extension of the direct method of Lya-

punov

We have [?], the following

Definition 2.1 For (??), a continuous function V : Rn → R is a Lyapunov func-

tion if

1) V is positive definite with V (x∗) = 0;
2) lim

xi→0+
V (x) = ∞; lim

xi→∞

V (x) = ∞ for each i, i = 1, 2, . . . , n;

3) V̇ (x) =
n
∑

i=1

(

∂V
∂xi

)

xiFi(x) is nonpositive for all positive values of x.

Remark 2.1 The third condition in Definition ?? shows that the time derivative

of V (x) along every solution of (??) is nonpositive.

From LaSalle’s extension of the direct method of Lyapunov [?], we have the
following

Theorem 2.1 The positive steady-state x∗ of (??) is globally asymptotically sta-

ble if there exists a Lyapunov function V (x) such that V̇ (x) is nonpositive in the

positive orthant and it does not vanish identically along a nontrivial solution of

(??) except for the constant solution x(t) = x∗.

Let Vi(xi) be the Lyapunov function for a stable single species model whose
population is xi. If (??) describes a multispecies system in which each species
is self-regulating and the interspecific interactions are relatively weak, then the
Lyapunov function can be of the form

V (x) =

n
∑

i=1

ciVi(xi),(2)

where c1, c2, . . . , cn are positive constants. These constants are chosen so that
V̇ (x) is nonpositive in the positive orthant. Hsu [?], suggested that a general
expression for Vi(xi) is of the form
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Vi(xi) =

∫ xi

x∗
i

hi(s)

gi(s)
ds(3)

where hi and gi have the following properties:
a) hi and gi are continuous functions such that for every i, i = 1, 2, . . . , n we

have hi(s) < 0 for all s ∈ (0, x∗

i ), hi(x
∗

i ) = 0, hi(s) > 0 for all s ∈ (x∗

i ,∞);
b) gi(s) > 0 for all s > 0.
c) hi and gi are chosen such that

lim
xi→0+

V (x) = ∞; lim
xi→∞

V (x) = ∞, i = 1, 2, . . . , n.

Taking into account (??) and (??) we obtain

V (x) =

n
∑

i=1

ci

∫ xi

x∗
i

hi(s)

gi(s)
ds

where hi and gi satisfy a), b) and c).

Remark 2.2 The simplest expressions for the functions hi and gi are hi(s) =
s − x∗

i and gi(s) = s.

Using these functions and based on Theorem ?? we can state

Theorem 2.2 A positive steady-state of (??) at x∗ is globally asymptotically

stable if there exist positive constants c1, c2, . . . , cn such that the function

V̇ (x) =

n
∑

i=1

ci(xi − x∗

i )Fi(x)

is negative semidefinite in the positive orthant and V̇ does not vanish identically

along a nontrivial solution of (??) except for the constant solution x(t) = x∗.

Remark 2.3 It can be shown that for a general model of a population

ẋ = xF (x),(4)

where F : R+ → R is a continuous function, a Lyapunov function is

V (x) = x − x∗ − ln
x

x∗
,

and V̇ (x) = (x − x∗)F (x).

So, the positive steady-state x∗ of (??) is globally asymptotically stable if
F (x) > 0 for all x ∈ (0, x∗) and F (x) < 0 for all x ∈ (x∗,∞).

Let us consider now a community of n interacting species modelled by a
Lotka-Volterra system. This system is of the form (??) where

Fi(x1, x2, . . . , xn) = bi +

n
∑

k=1

aikxk, i = 1, 2, . . . , n.(5)
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Here bi, −aii are positive constants and aik, i 6= k are constants with any sign.
As we shall see later, any arbitrary sign for aik, i 6= k, allows us a greater
flexibility for the interactions between the ith and kth species in the community.
If we define A = (aik) and b = (b1, b2, . . . , bn) then it can be shown that x∗ =
−A−1bt is a steady-state of system. Let us suppose that x∗ ∈ Rn

+ is positive and
C = diag(c1, c2, . . . , cn). Using Theorem ?? we can investigate the stability of
the steady-state x∗ > 0 of this system. By Remark ?? we deduce that

V (x) =

n
∑

i=1

ci(xi − x∗

i − x∗

i ln
xi

x∗

i

)

can be used as a Lyapunov function. Clearly, V (x) satisfies the conditions
V (x∗) = 0, V (x) > 0 for all x ∈ Rn

+, x 6= x∗, V (x) → ∞ as x → ∞ and
x → 0. We have

V̇ (x) =

n
∑

i=1

ci(xi − x∗

i )(bi +

n
∑

k=1

aikxk)

=
n

∑

i=1

ci(xi − x∗

i )(
n

∑

k=1

aik(xk − x∗

k))

=
1

2
(x − x∗)t(CA + AtC)(x − x∗).

Let the matrix CA + AtC be negative semidefinite. Then, it is clear that
x = x∗ is asymptotically stable. In fact, the basin of atraction of x∗ is Rn

+.
Therefore we have outlined a proof of this result

Theorem 2.3 The steady-state x∗ is globally assymptotically stable if there ex-

ists a positive diagonal matrix C such that CA + AtC is negative semidefinite

and the function

V̇ (x) =
1

2
(x − x∗)t(CA + AtC)(x − x∗)

does not vanish identically along a nontrivial solution.

3 Stability via Poincaré transformation

Let V̇ be the function in Theorem ??. We remark that is desirable for ∂F1

∂x1
(x∗) to

be nonpositive. If it is positive, Hsu recomments to subject (1.1) to the following
Poincaré transformation [?],

x1 =
1

y1
, xk =

yk

y1
, k = 2, 3, . . . , n.(6)

We obtain

ẏ1 = −y1F1(
1

y1
,
y2

y1
, . . . ,

yn

y1
)

(7)

ẏk = yk(Fk − F1), k = 2, 3, . . . , n.
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Remark 3.1 The transformation (??) maps x∗ into y∗ as follows

y∗ = (
1

x∗

1

,
x∗

2

x∗

1

, . . . ,
x∗

n

x∗

1

).

Now, if we apply Theorem ?? we find

V̇ (y) = −c1(y1 − y∗

1)F1 +

n
∑

k=2

ck(yk − y∗

k)(Fk − F1).(8)

In this context, we get

Theorem 3.1 The steady-state y∗ is globally asymptotically stable if there exists

positive constants c1, c2, . . . , cn such that the function (??) is negative semidef-

inite in the positive orthant and V̇ (y) does not vanish identically along of non-

trivial solution of (??).

We wish now to consider the system [?],

ẋ1 = X(x1, x2); ẋ2 = Y (x1, x2)(9)

where

X(x1, x2) = −2(α2 + α1L)x1x2 − (Lα2 − α1)x
2
2 − (α1 − Lα2)x

2
1 + λx1

Y (x1, x2) = −2(α1 − α2L)x1x2 + (α2 + Lα1)x
2
1 − (α2 + Lα1)x

2
2 + λx2.

This system describes a 2-coral community model of scleractinian corals. It can
be shown that

x∗

1 =
λ(α1 − α2L)

(α1 − α2L)2 + (α2 + α1L)2
; x∗

2 =
α2 + α1L

α1 − α2L
x∗

1(10)

is a positive steady-state of (??). Moreover, by Theorem ?? and a theorem of
Antonelli and Lin [?], we get

Theorem 3.2 The system (??) exhibits a positive steady-state at (x∗

1, x
∗

2) given

by (??). Moreover, this steady-state is unique and globally asymptotically stable

for the set R2
+.

4 A locally geometrical study

According to [?], extinction occurs in (??) if there is a solution (x1, x2, . . . , xn)
of (??) with xi(0) > 0, i = 1, . . . , n and having a component xj which satisfies
lim
t→τ

xj(t) = 0 for some τ in (0, +∞).

Let us consider a community of n ≥ 2 mutually competing species that is
a system (??) whose function F in (??) has the coefficients such that aik, aki,
i 6= k are both negative, that is



106 M.Postolache and O.Mocioalcă

ẋi = xi(bi −
n

∑

j=1

aijxj), i = 1, . . . , n.(11)

Consider also the auxiliary function ρ(t) = x1(t)x2(t) · · · xn(t) and its total time
derivative along trajectories of (??). We have

ρ̇(t) = ρ
[

∑

bi − (
∑

ai1)x1 − (
∑

ai2)x2 − · · · − (
∑

ain

)

xn]

Let us suppose that total extinction occurs. Then there exists a T such that
whenever t ≥ T

x1(t) <

∑

bi

(n + 1)
∑

ai1
; . . . ; xn <

∑

bi

(n + 1)
∑

ain

.

It follows that for η = 1
n+1

∑

bi we have ρ̇ ≥ ρη, therefore ρ(t) ≥ ρ(T )eη(t−T ),
t ≥ T . This implies that lim

t→∞

ρ(t) = ∞. We get the following result which states

that complete extinction cannot occur in (??).

Theorem 4.1 For any solution (x1(t), . . . , xn(t)) of a mutually competing sys-

tem with x1(0) > 0, . . . , xn(0) > 0 the limits lim
t→∞

xi(t) = 0, i = 1, n cannot

occur simultaneously.

In the following we consider n = 2 and we would like to point out how to
use the local Riemannian geometrical structure and information geometry for
studying the qualitative fluctuations of our system. We have

Proposition 4.1 The two dimensional mutually competing system is Hamilto-

nian if and only if the following conditions hold

b1 + b2 = 0, a21 + 2a11 = 0, a12 + 2a22 = 0.

In this case we find the Hamiltonian

H(x1, x2) = x1x2(b1 − a11x1 + a22x2).(12)

We easily check that H(x1, x2) verifies the Hamilton equations

∂H

∂x2
=

dx1

dt
, −

∂H

∂x1
=

dx2

dt
.

We shall denote by (x∗

1, x
∗

2) the nontrivial steady-states of (??). For our
purpose we make the expansion around (x∗

1, x
∗

2) of H given by (??) according
to Taylor formula to the second order. We obtain

−a11x
∗

2(x1−x∗

1)+a22x
∗

1(x2−x∗

2)+(b1−2a11x
∗

1+2a22x
∗

2)(x1−x∗

1)(x2−x∗

2) = H−H0.

We now introduce the Boltzman-Gibbs entropy, in fact the absolute uncer-
tainty of a state P

S(P ) = −

∫

Ω

P lnPdσ,
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where Ω is the state space, P is the density function of a random vector (X, Y ),
and S(P ) is considered as an absolute information (entropy). Also, we introduce
the Kullbak entropy or the relative information

S(Q|P ) =

∫

Ω

P (lnP − lnQ)dσ.(13)

Expression (??) is called the relative uncertainty of P with respect to Q and
represents an information distance between P and Q. Let us consider a two
dimensional differentiable manifold M of class C∞ with local coordinates u :
(u1 = X, u2 = Y ) and local metric defined by S(Q|P ) of C∞ class. Thus
P (X, Y ) → P (u), Q(X, Y ) → Q(u), and they are functions of C∞ class. The
form (??) may be transformed into the following expression

S(u, v) = S(P (v)|P (u)) =

∫

M

P (u)(lnP (u) − lnP (v))dω.(14)

If we take into account that
∫

M

P (u)dω =

∫

M

P (v)dω = 1

we obtain
∫

M

∂P

∂uα
dω = 0,

∫

M

∂2P

∂uα∂uβ
dω = 0, α, β ∈ {1, 2}.

Then the first and the second derivatives of (??) with respect to u are found to
be given by

∂S

∂ui
|u=v = 0,

∂2S

∂ui∂uk
|u=v =<

∂ lnP

∂ui

∂ lnP

∂uk
>= 2gik(15)

We remark that (??) is positive definite, therefore the symmetric matrix g =
(gik) is positive definite. In particular, det(g) > 0 or rank(g) = 2. Thus we
may locally write ds2 = gαβduαduβ ≥ 0, where ds is the information distance
between the states parametrized by u and u + du in the two dimensional state
manifold M . Therefore, M becomes locally a Riemannian manifold.

We introduce now the Gibbs distribution [?]

P (x1, x2) = Z−1(x1, x2) exp(−H(x1, x2) + H(x∗

1, x
∗

2)),(16)

where Z(x1, x2) can be written as

Z(x1, x2) =

∫∫ +∞

−∞

exp(−H(x1, x2) + H(x∗

1, x
∗

2))dx1 dx2.

If we suppose that b1 + a11a22x
∗

1x
∗

2 + 2a22x
∗

2 − 2a11x
∗

1 > 0 then

Z =
π

√

b1 + a11a22x
∗

1x
∗

2 + 2a22x
∗

2 − 2a11x
∗

1

.

If we use the expression (??) in (??) then we can compute the metric tensor and
Gauss curvature.
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