\qquad
Group Members: \qquad

Order of Operations; Use of the Calculator; Summation Notation

ORDER OF OPERATIONS

Consider each completed problem.
1.
a) On each line, write which operation was used to get to each step.

$$
\begin{aligned}
& 4+(6+1) \times 2^{3}-9 \\
& 4+(6+1) \times 8-9 \\
& 4-7 \times 8+9 \\
& 4-56+9 \\
& -52+9 \\
& -43
\end{aligned}
$$

b) Explain why the last two operations happened in that order.
2. Joe completed the problem in the following way. Find his mistake, then correct it and find the correct answer.
$90 \div 5 \times 9-(3-2)+1 \times 4$
$90 \div 5 \times 9-1+1 \times 4$
$90 \div 45-1+1 \times 4$
$2-1+1 \times 4$
$1+1 \times 4$
$1+4$
5
3. Natalie completed the problem in the following way. Is she correct? If not, fix her mistake.

```
{2\times5}-2-8+4-16\div2
{10}-2-8+4-16\div2
{10}-6+4-16\div2
4+4-16\div2
4+4-8
8-8
0
```

Complete the following problems. Show your steps and write which operation was used in each step. Round your final answer to 2 decimal places.
4. $\frac{2-(3+4)}{18-8 \cdot 2}$
5. $\frac{4.78-8.3}{1.4+5.4}$
6. $\frac{3(0.5-4)-(7-2)}{2.3+8.1}$

CALCULATOR PRACTICE

7. Use your calculator to compute the following.
a) 18^{2}
b) 4^{3}
c) 3^{4}
8. Use the order of operations and your calculator to complete the following. Round your final answer to hundredths.
a) $2+3\left(2+\frac{5}{7}\right)^{2}$
b) $\sqrt{225} 5-(6-1.8)^{2}-9$
c) $\frac{(5-4.3)^{3}}{2.3-0.1}$
9. Use your calculator to compute the following. Round your final answer to thousandths (if necessary).
a) $\sqrt{225}$
b) $\sqrt{59}$
c) $\sqrt{11.75}$
d) $\sqrt{0.005}$
10. Use the order of operations and your calculator to complete the following. Round your final answer to thousandths.
a) $5+\sqrt{2+15}-4$
b) $1.87-2 \sqrt{7.89+2.3}$
c) $0.004+\sqrt{3.25+187 \div 5}$
d) $\sqrt{\frac{(0.88)(1-0.12)}{458}}$

ORDER OF OPERATIONS IN FORMULAS

Consider the following formulas and values for each variable. Calculate the value of each indicated variable.
11. $\bar{X}=\frac{a_{1}+a_{2}+a_{3}}{n} ; a_{1}=2.3, a_{2}=7.12, a_{3}=0.5, n=3$. Find the value of \bar{x}
12. $z=\frac{x-\bar{x}}{s} ; x=57.5, \bar{x}=53.2, s=4.54$. Find the value of z.
13. $z=\frac{x-\mu}{\sigma} ; x=1.07, \mu=1.25, \sigma=0.21$. Find the value of z.
14. $\sigma=\sqrt{\frac{p(1-p)}{n}} ; p=0.75, n=1032$. Find the value of σ.

SUMMATION NOTATION

15. Jose earned the following test scores: $85,72,89,65$.
a. Determine the average, or arithmetic mean, of his test scores.
b. Write out the mathematical steps you took to calculate the mean.

To write the mean as a formula, we use the following notation:

$$
\bar{x}=\frac{\sum_{i=1}^{n} a_{i}}{n}
$$

where n numbers are given, and each number is denoted by a_{i}, where $i=1,2, \ldots n$. The symbol \sum is the Greek letter, sigma, and is shorthand for telling us to "take the sum" or "add all these numbers together."

So for an arithmetic mean, we add up all of the values in a sequence, then divide by the number of values in the sequence.
16. For Jose's test scores above, what does n equal?
17. List the values of the a_{i}.
18. Suppose that $a_{1}=5, a_{2}=8, a_{3}=2, a_{4}=5$, and $a_{5}=7$. Determine $\sum_{i=1}^{5} a_{i}$.

Now suppose that instead of a list of numbers, we have a formula for $a_{\mathrm{i}}: a_{i}=2 i+3$

Then we can evaluate $\sum_{i=1}^{3} a_{i}$ (or in other notation, $\sum_{i=1}^{3}(2 i+3)$)
19.
a) Determine the values of a_{1}, a_{2}, a_{3}
b) Evaluate $\sum_{i=1}^{3} a_{i}$.
20. Determine the value of $\sum_{i=1}^{4}(3 i-1)$

SOLVING EQUATIONS
Solve each of the following equations for the indicated variable.
21. $3=\frac{x-7}{2}$; Solve for x .
22. $1.25=\frac{x-7.8}{0.5}$; Solve for x .
23. $-0.5=\frac{x-2.57}{0.31}$; Solve for x.
24. $2.15=\frac{108.1-110}{s}$; Solve for s
25. $-1.1=\frac{4.1-\bar{x}}{0.21}$; Solve for \bar{x}

