Table Number:_____

Group Members:_____

Group Name: _____

A Sweet Task

Suppose that we counted the number of M&Ms and Skittles of each color in a bag of the respective candies and recorded the following data.

	Red	Orange	Yellow	Green	Blue	Brown	Total
M&M's	12	6	8	14	10	8	58

	Red	Orange	Yellow	Green	Blue	Purple	Total
Skittle's	9	11	7	10	7	5	49

1. **Create a Two-Way Frequency Table**: We can combine individual frequency tables into a two-way frequency table. The rows represent the types of candy and the columns represent the color of the candy. Use the data above to fill in the two-way frequency table below. Be sure to total each column and row.

	Red	Orange	Yellow	Green	Blue	Purple	Brown	Total
M&M's								
Skittle's								
Total								

We read a two-way frequency table in a similar way as a regular frequency table. For example, the number of orange Skittles is listed where the "Orange" column and the "Skittles" row meet. This is called a **joint frequency**.

We can also find the total number of blue candies in the bag. We just look at the total of the "Blue" column. This is a **marginal frequency**.

2. Analyzing the Data – Finding Marginal and Joint Probabilities: We can compute the probability of an event occurring from the frequency counts in the candy "mix" two-way frequency table. Find the probability of randomly choosing a candy from the "mix" with the listed attributes. Also, identify each event as either a joint or marginal probability. A joint probability requires two or more characteristics to hold true, whereas a marginal probability requires only one.

		Probability	Joint or Marginal Probability?
a.	Any Color M&M		
b.	A Purple Skittle		
c.	A Blue M&M		
d.	An Orange Skittle		
e.	Any Green candy		
f.	A Blue Skittle		

- g. In your own words describe how you compute a joint probability given counts in a two-way frequency table.
- h. In your own words describe how you compute a marginal probability given counts in a two-way frequency table.
- 3. **Finding Conditional Probability with Counts:** Imagine that your friend chooses a candy piece from the above "mix". She looks at it, tells you that it is red, but doesn't tell you if it is an M&M or a Skittle.

Knowing that your friend has a red candy in her hand, we can find the probability that it is a red M&M. This is called the **conditional probability** of an event because **we already know something (a condition) about the event in question.**

Answer the following questions to help you find the conditional probability.

- a. What is the "total number of <u>possible</u> outcomes" for your friend's candy? (*Remember we know the candy is red.*)
- b. What is the probability that your friend has an M&M, if we know the candy is red? (*Keep in mind we only are worried about M&Ms that are red.*)

c. In your own words, explain how to compute conditional probabilities given a two-way frequency table.

What you just found can be written as P(M&M | red), which we read as "the probability of a candy being an M&M *given* that it is red".

4. **Computing Conditional Probabilities:** Using the data about the candy "mix", find the following conditional probabilities. Please show your set up and then your answer as either a simplified fraction or a decimal

a.	P (green Skittle)	b. P (M&M blue)
c.	P (brown M&M)	d. P (Skittle red)
e.	P (Skittle purple)	f. P (M&M purple)
g.	P(yellow M&M)	h. P(M&M yellow)

5. If you draw a red candy, is it more likely to be an M&M or Skittle? _____ Why?

Written by Fiedler, E., M. Huey, & B. Jenkins of Drake University and S. Flinspach of Fairfield HS