\qquad
\qquad

A Sweet Task

Suppose that we counted the number of M\&Ms and Skittles of each color in a bag of the respective candies and recorded the following data.

	Red	Orange	Yellow	Green	Blue	Brown	Total
M\&M's	12	6	8	14	10	8	58

	Red	Orange	Yellow	Green	Blue	Purple	Total
Skittle's	9	11	7	10	7	5	49

1. Create a Two-Way Frequency Table: We can combine individual frequency tables into a two-way frequency table. The rows represent the types of candy and the columns represent the color of the candy. Use the data above to fill in the two-way frequency table below. Be sure to total each column and row.

	Red	Orange	Yellow	Green	Blue	Purple	Brown	Total
M\&M's								
Skittle's								
Total								

We read a two-way frequency table in a similar way as a regular frequency table. For example, the number of orange Skittles is listed where the "Orange" column and the "Skittles" row meet. This is called a joint frequency.

We can also find the total number of blue candies in the bag. We just look at the total of the "Blue" column. This is a marginal frequency.
2. Analyzing the Data - Finding Marginal and Joint Probabilities: We can compute the probability of an event occurring from the frequency counts in the candy "mix" two-way frequency table. Find the probability of randomly choosing a candy from the "mix" with the listed attributes. Also, identify each event as either a joint or marginal probability. A joint probability requires two or more characteristics to hold true, whereas a marginal probability requires only one.

		Probability
a. \quad Any Color M\&M		Joint or Marginal Probability?
b. \quad A Purple Skittle		
c.	A Blue M\&M	
d. An Orange Skittle		
e. Any Green candy		
f. A Blue Skittle		

g. In your own words describe how you compute a joint probability given counts in a two-way frequency table.
h. In your own words describe how you compute a marginal probability given counts in a two-way frequency table.
3. Finding Conditional Probability with Counts: Imagine that your friend chooses a candy piece from the above "mix". She looks at it, tells you that it is red, but doesn't tell you if it is an M\&M or a Skittle.

Knowing that your friend has a red candy in her hand, we can find the probability that it is a red M\&M. This is called the conditional probability of an event because we already know something (a condition) about the event in question.

Answer the following questions to help you find the conditional probability.
a. What is the "total number of possible outcomes" for your friend's candy? (Remember we know the candy is red.)
b. What is the probability that your friend has an M\&M, if we know the candy is red? (Keep in mind we only are worried about M\&Ms that are red.)
c. In your own words, explain how to compute conditional probabilities given a two-way frequency table.

What you just found can be written as $\mathrm{P}(\mathrm{M} \& \mathrm{M} \mid$ red), which we read as "the probability of a candy being an M\&M given that it is red".
4. Computing Conditional Probabilities: Using the data about the candy "mix", find the following conditional probabilities. Please show your set up and then your answer as either a simplified fraction or a decimal
a. $\quad \mathrm{P}$ (green | Skittle)
b. $\mathrm{P}(\mathrm{M} \& \mathrm{M} \mid$ blue $)$ \qquad
c. $\quad \mathrm{P}$ (brown | M\&M) \qquad d. P (Skittle \| red) \qquad
e. $\quad \mathrm{P}$ (Skittle \| purple) \qquad f. P (M\&M | purple) \qquad
g. $\quad \mathrm{P}$ (yellow | M\&M) \qquad
h. P(M\&M | yellow) \qquad
5. If you draw a red candy, is it more likely to be an M\&M or Skittle? \qquad Why?

