1. Given $f(x)=x^{2}-3 x+2$, find
a) $f(5)$
b) $f(-5)$
c) $f(x+1)$
d) $f(x-1)$
e) $f(x-2)$
f) $f(x+5)$
g) $f(x+h)$
h) $f(a+h)$
i) $f(3 x)$
j) $3 \cdot f(x)$
k) $f(x)-3$
2. Given $f(x)=2 x^{2}-x+1$, find
a) $f(5)$
b) $f(-5)$
c) $f(x+1)$
d) $f(x-1)$
e) $f(x-2)$
f) $f(x+5)$
g) $f(x+h)$
h) $f(a+h)$
i) $f(3 x)$
j) $3 \cdot f(x)$
k) $f(x)-3$
3. Given $f(x)=x^{3}$, find
a) $f(5)$
b) $f(-5)$
c) $f(x+1)$
d) $f(x-1)$
e) $f(x-2)$
f) $f(x+5)$
g) $f(x+h)$
h) $f(a+h)$
i) $f(3 x)$
j) $3 \cdot f(x)$
k) $f(x)-3$
4. Given $f(x)=\frac{3 x-4}{x+1}$
a) $f(5)$
b) $f(-5)$
c) $f(x+1)$
d) $f(x-1)$
e) $f(x-2)$
f) $f(x+5)$
g) $f(x+h)$
h) $f(a+h)$
i) $f(3 x)$
j) $3 \cdot f(x)$
k) $f(x)-3$
5. Given $f(x)=\frac{x^{2}-x-12}{x+4}$
a) $f(5)$
b) $f(-5)$
c) $f(x+1)$
d) $f(x-1)$
e) $f(x-2)$
f) $f(x+5)$
g) $f(x+h)$
h) $f(a+h)$
i) $f(3 x)$
j) $3 \cdot f(x)$
k) $f(x)-3$

REMEMBER!

With the notation $f(x)$,
f is the NAME OF THE FUNCTION and the number or variable expression inside the () is the INPUT.

The problem is asking you for the OUTPUT.

To calculate the output, SUBSTITUTE the input into the function rule everywhere there is a variable (usually, but not always, $\mathrm{x})$.

