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This article  reports  findings  from  an  investigation  of precalculus  students’  approaches  to
solving  novel  problems.  We  characterize  the images  that  students  constructed  during  their
solution  attempts  and  describe  the degree  to  which  they  were  successful  in  imagining  how
the  quantities  in  a problem’s  context  change  together.  Our  analyses  revealed  that  students
who  mentally  constructed  a  robust  structure  of  the  related  quantities  were  able  to  produce
meaningful  and  correct  solutions.  In  contrast,  students  who  provided  incorrect  solutions
consistently  constructed  an  image  of the  problem’s  context  that was  misaligned  with  the
intent of  the  problem.  We  also  observed  that students  who  caught  errors  in their  solutions
did  so  by  refining  their  image  of how  the  quantities  in  a problem’s  context  are  related.  These
findings suggest  that  it  is critical  that  students  first engage  in  mental  activity  to visualize  a
situation  and  construct  relevant  quantitative  relationships  prior  to  determining  formulas
or graphs.

© 2011 Elsevier Inc. All rights reserved.

. Introduction

It is well documented that even high performing precalculus and calculus students have difficulty solving problems
n which they are asked to reason about relationships between quantities that have continuously changing values (e.g.,
arlson, 1998; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Monk & Nemirovsky, 1994; Oehrtman, Carlson, & Thompson, 2008;
hompson, 1994b). These studies suggest that secondary mathematics curriculum and instruction needs an increased focus
n developing students’ abilities to construct and formalize (e.g., determining formulas and graphs) relationships between
uantities that vary in tandem. Contributing to the call for improving secondary instruction, the National Council of Teachers
f Mathematics (NCTM) Standards advocated that students should acquire understandings and reasoning abilities that lead
o their using mathematical formulas and graphs to represent how quantities in novel problems are related and change
ogether (2000). The NCTM Standards also called problem solving an “integral part of all mathematics learning” (2000, p.

1) and suggested that a majority of high school mathematics topics can be introduced through novel problems involving
pplied contexts, thus setting the expectation that students gain confidence and proficiency in reasoning about relationships
etween quantities.

In an attempt to gain insights into the difficulties students encounter when modeling relationships between two  dynam-
cally varying quantities, we explored undergraduate precalculus students’ reasoning as they attempted to solve novel
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applied problems.1 The goals of this study were to characterize students’ images of problem contexts and determine how
these images influenced the students’ ability to create meaningful and correct formulas and graphs.2

2. Background

Several studies have provided insights into the various ways that a student reasons about relationships between the
values of two quantities (e.g., Carlson, 1998; Carlson et al., 2002; Harel & Dubinsky, 1992; Saldanha & Thompson, 1998).
In one study, covariational reasoning, described as the “cognitive activities involved in coordinating two  varying quantities
while attending to the ways in which they change in relation to each other” (Carlson et al., 2002, p. 354), was  found to
be a critical reasoning ability for thinking about and representing the quantitative relationships described in a problem
statement. In another study, Dubinsky and Harel (1992) reported that a process conception of function, described as “a
dynamic transformation of quantities according to some repeatable means” (p. 85), is critical for performing and applying
basic operations such as function composition and determining a function’s inverse. Understanding and applying such
operations is commonly needed when modeling relationships between quantities in an applied context (Carlson, 1998;
Kaput, 1992).

The aforementioned studies provide valuable ways to classify students’ reasoning about two  quantities, but they do not
describe the quantities that the students under study initially conceptualized when processing the words of a problem
statement. They also do not characterize how a student’s understanding of a problem’s context evolves during her solu-
tion attempt. A study of mathematicians’ problem solving approaches revealed that the mental actions performed when
attempting to understand a problem’s context are critical because they provide the basis for future constructions and reflec-
tion during the problem solving process (Carlson & Bloom, 2005). This finding highlights the need for future investigations
of how an individual’s understanding of a problem’s context influences her solution to the problem.

Smith and Thompson (2008) and Thompson (1989) have examined the thinking involved in conceptualizing both a
situation (e.g., a runner in a race) and the quantities in a situation (e.g., time elapsed or distance ran since beginning the
race). They describe these mental actions as quantitative reasoning and suggest that a student who  constructs a robust
system of quantitative relationships can be supported in creating meaningful formulas to represent how values of specific
quantities are related.

According to Smith and Thompson’s (2008) theory of quantitative reasoning, a quantity is a conceived attribute of an object
such that the individual envisions that the attribute admits a measurement process. A quantity is cognitively constructed—the
quantities that people know are the quantities they have conceptualized. This statement is consistent with our stance that an
individual’s experience and knowledge is unique to the individual. For instance, an individual could conceive of a quantity in
a way that does or does not include imagining the quantity’s measure varying with respect to variations in another quantity’s
measure.

Thompson (2011) further defines quantification to be the process by which one assigns, or imagines assigning, numerical
values to measurable attributes. In order for an individual to comprehend a quantity, the individual must have a mental
image of an object and attributes of this object that can be measured (e.g., the distance of a car from the starting line, the
time since the car left the starting line). The individual must implicitly or explicitly imagine that an object’s attribute has
a measure, whether stated or not and whether known or not (e.g., imagining a car being a number of miles from a starting
line). Values result from doing or envisioning a measurement process, but specific values (e.g., 0.5 miles, 0.785 miles, 1 mile)
are not required to reason about a quantity’s measure. Quantification is then the dialectic among conceiving the object and
its attribute, conceiving a unit in which the attribute is measured, and conceiving possible processes by which a measure
might actually be obtained (Thompson, 2011).

Thompson (1989) defines a quantitative operation as the conception of a quantity as being produced by relating two other
quantities. For instance, making a multiplicative comparison between a traversed distance and an elapsed time produces
an average speed. With these definitions in place, quantitative reasoning is the process of analyzing a situation in terms
of quantities and relationships among them. As the structure of a student’s conceptualization of a situation develops into
a network of quantities and relationships among them, we say that the student’s quantitative structure is emergent. This
network of quantitative relationships will support students’ explorations of how pairs of quantities change together. The
structure allows a student to have the sense that the situation is “staying the same” even though quantities’ values in the
situation are changing. The structure is invariant; the quantities’ values vary.

In order to describe a student’s understanding of a problem’s context, we  use image of a problem’s context to refer to how
a student imagines the situation described in a problem. We  also distinguish between the situation as written (e.g., two

runners run a 100-m race) and the imagery formed by a student reading that text (e.g., (a) imagining two  runners moving
their arms and legs furiously, eyeing each other as they approach the finish line, or (b) imagining two  distances, each growing
in length and each measured in meters, with one clock timing each runner from the beginning).

1 For the purpose of this work, we  consider a novel applied problem to be a task such that (a) the solver cannot apply a memorized procedure and (b)
correctly solving the problem requires reasoning about quantities that vary in tandem.

2 Meaningful formulas and graphs are viewed as representations of how two quantities change together, and they reflect reasoning about changing
values of these two  quantities.
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A student’s image of a problem’s context also entails a quantitative structure that is shaped by how the student imagines
he written situation. The imagery and structure might be static or dynamic, and when dynamic it might contain invariant
elationships. As an example, consider a problem that describes a ladder leaning against a wall, with a prompt for students
o determine a formula to represent the distance of the top of the ladder from the floor in terms of the distance of the bottom
f the ladder from the wall as the top of the ladder slides down the wall. A student might hold any of these images:

A static image of a ladder leaning against a wall with its top a certain distance from the floor and its bottom a certain
distance from the wall.
A dynamic image of the ladder’s bottom sliding away from the wall while its top slides toward the floor; each having the
distances described above, but the student imagines that those distances’ values vary as the ladder slides. However, the
student’s image might not contain the constraint that the ladder remains the same length no matter its position.
A dynamic image as described above, but with the explicit awareness that the ladder is rigid and does not change length
even though the distances from the wall and floor vary.

The last image, which includes the constraint that the ladder’s length does not change, is necessary for the student to
orrectly determine how the distance of the top of the ladder from the floor is related to the distance of the bottom of the
adder from the wall. A dynamic image (e.g., an image that includes imagining objects moving) also supports the student in
magining variables as taking on different values as the quantities’ magnitudes change (e.g., the number of feet of the top of
he ladder from the floor decreasing from 12 to zero feet as the ladder’s base is pulled away from the base of the wall).

During a solution attempt, a student’s image of a problem’s context is emergent in that it necessarily changes and evolves
s she attempts to make sense of the quantities in a problem and how they change together. As an example, a student
ight initially construct an image of a situation that lacks a well-developed structure of the quantitative relationships in

he situation (e.g., merely imagining a ladder sliding down a wall without explicitly considering the length of the ladder).
f the student is active in considering the quantities of the situation and how they are related, the student’s image of the
roblem’s context evolves to include quantities and their relationships, constituting a student’s quantitative structure of the
roblem context. It might also be the case that as the student attempts to formalize her image of the context (e.g., through
he use of formulas or graphs, or in considering specific pairs of quantities’ values), the structure of her conceptualization
lso changes.

Past research has revealed quantitative reasoning to be central in students developing meaningful and connected math-
matical understandings (Castillo-Garsow, 2010; Ellis, 2007; Hackenberg, 2010; Moore, 2010; Saldanha & Thompson, 1998;
hompson, 1993, 1994a). Collectively, these studies suggest that student learning can be fostered by conceiving of situa-
ions composed of quantities and then reasoning about how the values of these quantities change together. The findings of
hese studies highlight the potential benefits of exploring connections between students’ solutions to applied problems and
tudents’ images of problem contexts.

. Methods

.1. Subjects and setting

This study investigated the thinking of nine undergraduate precalculus level students from a large public university
n the southwest United States. Student participation in the study was voluntary, with the students receiving monetary
ompensation for their participation. The age of the nine full-time students ranged from 18 to 25.

The three classrooms from which the students were drawn were part of a design research study3 where the curriculum
nd instruction for the course was informed by theory on learning the idea of function (Carlson, 1998) and the processes
f engaging in covariational reasoning (Carlson et al., 2002; Saldanha & Thompson, 1998). Select literature on mathemat-
cal discourse and problem solving (Carlson & Bloom, 2005; Clark, Moore, & Carlson, 2008) influenced the scaffolding and
mplementation of in-class activities and homework. The classroom instruction included direct instruction, whole class dis-
ussion, and collaborative activity. The authors of the article collaborated in designing the curriculum and served as the
nstructors of the three classrooms. The curriculum consisted of 7 modules with the design of each module resulting from

 conceptual analysis of the mental actions conjectured to be necessary for students to develop conceptual understandings
f the module’s topics. Specific topics of focus in the 7 modules include rate of change, proportionality, functions, linear
unctions, exponential functions, logarithmic functions, rational functions, and trigonometric functions.

.2. Data collection and analysis methods
The students participated in clinical interviews where the interviewer (the first author) asked the students to respond
o novel applied problems with protocols designed to reveal information about the students’ thinking and their images of

3 The students’ enrollment in the specific classes was voluntary and the students were unaware of the instructional design of the course prior to enrolling.
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the problem contexts. The clinical interviews followed the methodology described by Clement’s (2000) and Goldin’s (2000)
principles of structured, task-based interviews (e.g., four stages of free problem-solving, suggesting heuristics minimally,
guiding the use of heuristics, and exploratory, metacognitive questions). The interviewer prompted the students to read each
problem aloud and explain their thinking when solving each task. This interview approach included open-ended questioning
for the purpose of producing insights into the students’ mental actions and reasoning processes.

We analyzed the data following an open, axial and selective coding approach (Strauss & Corbin, 1998) that involved
examining the interactions between the students and interviewer in an attempt to model and understand the students’
thinking. We  consider mathematical thinking to be unique to the individual, and our goal was  to build a model of the
mental images that contributed to the students’ solutions. Thompson (2000) has described this approach as performing a
conceptual analysis of the data in an effort to accurately portray the thinking that led to the student’s observable or verbal
products. Specifically, we analyzed the students’ actions (verbal, written, and motions) in order to build a model of their
images of problem contexts. As an example, we considered the students’ use and explanation of diagrams in the context of
their solutions to gain insights into their images of the problem contexts.

4. Results

We provide an analysis of student work on two different tasks to characterize their responses and thinking. The presented
data illustrates common findings from analyzing the transcripts and video data of all nine subjects. The data is followed by
a discussion of the findings from analyzing the students’ written and spoken products. Our analyses offer insights into
the students’ images of the problem contexts and how these images influenced their solutions (e.g., formulas, graphs, and
explanations).

4.1. The box problem

Starting with an 11 in. × 13 in. sheet of paper, a box is formed by cutting equal-sized squares from each corner of the
paper and folding the sides up.
Write a formula that predicts the volume of the box from the length of the side of the cutout.

The box problem asked the students to create a formula that related the length of the side of a square cutout from four
corners of a piece of paper to the volume of the box created by folding up the sides of the paper. All students initially
approached solving the problem by drawing a diagram or using the given piece of paper. As an example, Travis oriented to
the problem by drawing a picture of a piece of paper (Fig. 1) and denoting the square cutouts on this drawing. As he drew
and labeled his diagram, he discussed the problem’s context (Table 1).

Travis first labeled the dimensions of the paper and denoted the cutout by writing x next to the length of the square
cutout (lines 1–3). After identifying what appeared to be his understanding of the problem’s goal, “a formula that predicts

the volume of the box” (lines 3–4), Travis stated the general formula for the volume of a box (lines 4–5). When attempting
to describe this formula in terms of the box, he accurately stated how the height of the box and the cutout length are
related. However, he appeared to conceptualize the fixed length and width of the paper as the length and width of the box
(lines 5–8). Travis did not correctly refer (through motions or speech) to the length and width of the box, nor did he clearly

Fig. 1. Travis’s drawing of the box.

Table 1
Travis’s first description of the box.

1 Travis: Uh, I’m drawing the corners that are going to be cutout so they are equal
2  sides. So, I will label one of the sides of the cutouts as x, and, uh, it’s 11 by
3  13, so I’ll label that (labeling the length and width of the paper). Um (pause) a
4  formula that predicts the volume of the box. The volume of the box is length
5  times width times height (writing). Um (pause) so we  would take the length,
6  which is 13, times 11, which is the width, and then the height is x, whatever
7  the side of the length of the cutout is (writing V = 13·11·x).  And. uh, that
8 will  be the volume.
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dentify the process for making a box (e.g., removing the cutouts and folding up the sides of the box). His response suggests
hat he imagined a fixed length and width of the box; these dimensions did not depend on or vary with the length of the
ide of the square cutout. His image of the box was further revealed as the interviewer asked him to explain his solution
Table 2).

During this interaction, Travis continued to identify the height of the box as having a varying measure that was  equal
o the length of the side of the cutout (lines 2–3 and 9–12). He also imagined folding up the sides of the paper to form the
eight of the box, revealing that he held an image of a box in mind (lines 9–12). Yet, Travis did not appear to conceive of
he length and width of the box as distinct from the dimensions of the original sheet of paper (lines 5–6 and 21–23), nor did
ravis mention a relationship between the length and width of the box and the length of the cutout. This further supports
ur claim that Travis’s image of the situation consisted of a box with dimensions not dependent on the length of the cutout,
ven though he imagined the height of the box varying directly with the length of the side of the cutout. It is noteworthy
hat although Travis’s formula (V = 13·11·x)  was incorrect from an observer’s perspective, his formula was compatible with
is image of the problem’s context.

Another student, Matt, responded to the box problem by initially describing how the paper (with initial dimensions of
.5 in. × 11 in.) relates to the box. Matt first used a sheet of paper to discuss the constructed box, rather than representing
he situation with a drawing of the paper and square cutouts (Table 3).

Matt described a shallow box with a wide base, appearing to imagine a box that results from cutting small squares
rom the paper’s corners (lines 1–3). Matt then imagined how increasing the length of the square cutout causes the box to
ecome narrower due to the base of the box becoming “less as wide,” while the depth of the box increased (lines 4–5). Matt
ttempted to relate the varying dimensions of the box to the volume of the box by explaining that the volume increases

nd then decreases as the box became “so thin, but so deep” (lines 9–13). Matt’s description reveals that his image of the
roblem’s context included an understanding that variations in the cutout length caused variations in the three dimensions

able 2
ravis continues his description of the box.

1 Int.: OK, so that’s the volume of what then?
2  Travis: The box from the sheet that you originally had taken the cutout from the corner
3 and folded up.
4  Int.: OK, so what’s the 13, the 11, and the x represent again then?
5 Travis: The 13 is the length of the paper, 11 inches is the width of the paper, x is height
6  of the cutout from a corner.
7  Int.: OK, so that’s the height, so why does that end up being the height of the box?
8  Why  is the cutout. . .
9  Travis: Um,  because when you take this away from the paper and you fold this up
10 (pointing to the cutout on his diagram), say we took that out. This length would
11  be the same as this length (referring to the cutout and height), the height. When
12 you would fold it up it would be the same as the length of the cutout.
13  Int.: OK.
14  Travis: So if you fold it up, then it goes up, which would be the height.
15 Int.: OK. So what are the, what are the various quantities of this situation that we are
16  working with?
17  Travis: Um,  quantity of, number of inches for the length, number of inches for the
18  width (tracing the full dimensions of the paper), number of inches for the
19  height.
20  Int.: OK. So what do the 13 and 11 represent then again?
21  Travis: Number of inches of length of the side of the box, 11 is the number of inches of
22  the width of the side of the box, and x is the number of inches in the height of
23  the box.

able 3
att’s description of the box.

1 Matt: Like this is what happens, basically, when you first, OK, this is the paper (pointing
2  to the paper), um,  the volume first is a wide box, very shallow (moving hands
3  apart to show a wide box that is shallow), when you first start cutting. And then
4  eventually you start cutting it starts getting, the box starts getting less as wide
5  (moving hands horizontally together) but deeper (moving hands vertically apart).
6  Int.: OK, so what do you mean by deeper?
7  Matt: The box becomes deeper, the depth, so it’s height times width times depth, I think.
8  Int.: OK.
9  Matt: Depth, yeah. So eventually, since it’s going, the depth is going to be increasing, the
10  box is going to be getting not as wide as it was, and eventually it’s going to end up
11  (moving hands horizontally together) where the volume increased so much that it
12 starts decreasing because it’s getting so thin, but so deep (moving hand vertically
13 apart),  but it’s still decreasing.
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Table  4
Matt investigates a cutout length.

1 Matt: If you had like, if you say the cutout was 1 inch, so that would mean, that would
2  mean, 7 times 10 times 1. Because you know that if 1 inch has been cut off, or if
3  0.5 inches have been cut off, because 0.5, 0.5 (pointing to the two corners of the
4  paper), this would be 0.5 (referring to the length of the cutout).
5 Int.: OK,  so now why would that be 0.5 then?
6  Matt: Because you’re cutting off (pointing to the side of the paper),  if the width, if the
7 width is 8, and, if we know that before the cutout, oh my, the width is 8.5.

Table 5
Matt continues to investigate a cutout length.

1 Matt: So the original width of the paper is 8.5 inches (pointing to the width of the paper).
2  If you cut off 0.5 from each side (pointing to the two corners) the cutout is 0.5,
3  you’re going to come down to 7.5 inches for width.
4 Int.: So why  is it 7.5 again?
5  Matt: Because you’re cutting out 0.5 here (pointing along the side of the paper in one
6  corner) and 0.5 here (pointing along the side of the paper in the other corner).

7  That way  it adds up to one inch off the 8.5, which is the width (tracing along the
8  entire width of the piece of paper).

of the constructed box. Specifically, Matt imagined that increasing the length of the cutout caused decreases in the base
dimensions of the box and corresponding increases in the height of the box.4

Next, Matt determined a formula for the volume of the box in terms of the length of the cutout. Matt first stated, “The
length is going to be this (pointing to the length of the paper), the 11 in., the width is going to be 8 in. (pointing to the width of
the paper), and the depth, or height, is going to be x.” Even though Matt’s initial formula was the same as Travis’s formula,
the underlying imagery that led to this formula was  not the same. Matt’s formula did not reflect the quantitative structure
he had constructed while orienting himself to the problem. As Matt tried to reconcile his formula with his image of the
problem’s context, Matt paused for several seconds. He then realized that there was a conflict and he proceeded to consider
a specific cutout length (Table 4).

Matt’s process of determining values for the width and length of the box for a specific cutout length led him to refine his
understanding of how the box’s length and width are related to the cutout length. After initially confusing the length and
width of the box as being the same as the length and width of the original sheet of paper (previous to Table 4), he selected a
specific cutout length of 1 inch and described the new values for the length and width of the box that resulted from removing
only one cutout length from the length and width of the paper, which he revealed when stating that he would multiply 10
times 7 times 1 to determine the volume of the box (lines 1–2). When examining the paper, he realized that he would need
to cut one-half of an inch from each edge of the paper to remove one inch from a particular dimension (length or width)
(lines 3–4). His quantitative structure of the problem’s context now included the correct image of the length and width of
the box as being determined by subtracting two cutout lengths from the fixed length and width of the paper. During the
process of refining his image of how the quantities are related, Matt also caught his mistake of using 8 inches as the original
width of the paper, rather than 8.5 in. (lines 6–7). Matt then spontaneously restated how the width and length of the box
are related to the dimensions of the paper and the length of the side of the square cutout, as if to continue to solidify his
understanding of these relationships (Table 5).

After recognizing that he made an incorrect statement about the width of the paper (lines 6–7 in Table 4), Matt refined
his image of the quantities composing the box and explained how a cutout of 0.5 in. related to the width of the box and the
width of the paper (lines 1–3, 5–8). It was only when he considered a specific value (Tables 4 and 5) for the cutout that he
was able to refine his image of the problem’s context by imagining the length and width of the base of the box as being
determined by subtracting two cutout lengths from the fixed dimensions of the paper. Matt’s refinement of his formula
illustrates how a student’s image of a problem’s context can adapt as he attempts to reconcile differences in his imagery and
his products. Prior to writing a formula Matt did not appear to imagine two cutout lengths being removed from the sheet of
paper, although he did imagine that an increase in the cutout length causes the two base dimensions of the box to decrease
in length. It was  only when he attempted to determine the box’s dimensions when considering a specific cutout length that
he began to conceptualize the length and width of the box as two cutout lengths less than the paper’s length and width.

Following Matt’s description of the dimensions of the box resulting from a cutout of 0.5 inches, he created a formula for
the volume of the box based on a cutout of length x. Matt first wrote the formula V = (8.5 − x)(11 − x)x. He then returned to

the sheet of the paper and explained, “The width of the paper in inches minus x, which is the height, which would be also the
cutout (identifying the cutout on the sheet of paper) of each. . .sorry, 2x, because it’s two sides. . .it’s two cutouts because it’s
(identifying cutout from each corner)  from each side.” By returning to the context of the paper and imagining the building of

4 We  note that Matt did not articulate exactly how the base dimensions changed (decreased by 2 cutout lengths) as the cutout length increased. But,
unlike Travis, Matt did imagine the base dimensions changing.
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the box, he was able to correct the error in his formula. The quantitative relationship he constructed between the dimensions
of the box, the paper, and the cutout, supported him in correcting this formula by recognizing that the length and width of
the box resulted from subtracting two cutout lengths from the length and width of the sheet of paper.

Overall, Matt’s actions reveal him making multiple incorrect descriptions, but continually correcting these descriptions as
he persisted in comparing his formulas and calculations to his emergent image of the box’s quantities and how they change
together. It is important to note that Matt refined his image of the problem’s context (e.g., considering a specific cutout in
relation to the dimensions of the box and paper) while reconsidering the process of constructing a box and attempting to
determine specific values for a box’s quantities. In contrast, Travis did not refine his initial image of the quantities and their
relationships (e.g., the box width is the same as the paper width); yet we observe that Travis’s solution did align with his
image of the box’s quantities and how they are related.

The finding that Matt and Travis did not initially construct correct formulas to model the relationships between the
quantities in the box problem was a common phenomenon among the nine students who participated in this study. The
students who did not determine a correct formula typically constructed an image of the problem’s context that was  incon-
sistent with the intention of the problem statement. For instance, four of the students (including Travis) did not construct a
quantitative structure that included their conceptualizing a dynamic relationship between the length and width of the box,
the cutout length, and the dimensions of the sheet of paper. These students conceived of the base of the box having fixed
measurements, as opposed to varying with respect to the cutout length. Such images led to the students creating incorrect
formulas, although their formulas were consistent with their expressed images of the problem’s context (e.g., their formulas
reflected a box with base dimensions of a constant measure).

All students frequently referred to the length of the paper, the width of the paper, the length of the cutout, the length of
the box, and the width of the box as “the length.” Although this could easily be interpreted as a poor choice of wording on
a student’s part, the students often subsequently interchanged various dimensions as they continued to solve the problem,
implying they had not conceived of the various lengths as distinct quantities. As an example, Travis did not conceive of the
base dimensions of the box as distinct from the dimensions of the paper, and he was  unable to determine a correct formula.
This ambiguity could result from the use of the same word for both the attribute being measured (e.g., “length” as a linear
extent) and as an object with that attribute (e.g., “length” of the box as the name of one side, as opposed to the height or
width). We  also frequently observed students referring to a quantity using only one of (i) the attribute being measured (e.g.,
length), (ii) the object to which the attribute belongs, (e.g., a side of the cutout), or (iii) the unit of measurement (e.g., inches).
With only one of the three aspects of the quantity specified, the referent is typically ambiguous, and may  easily lead to
conflation, or blurring, of the various quantities in the context.

In light of the students’ difficulties in responding to the box problem, and in order to gain further information about their
images of the problem’s context, the interviewer asked each student (after he or she settled on a solution) to discuss how
the various sides of the box were formed from the original paper. The interviewer’s prompting resulted in each student
reconsidering the construction of the box and refining her or his image of the problem’s context. As an example of a student
refining his image of the box problem and then correcting his solution after interviewer prompting, consider Travis’s actions
immediately after the interaction presented in Table 2. When describing the box in relation to the original sheet of paper,
Travis paused for several seconds and then claimed, “[I] did it wrong.  . .cutting out a piece [would] reduce the length and
the width,” which implied that he had altered his image of the problem’s context. Without further prompting from the
interviewer, Travis characterized the relationship between the length of the cutout and the dimensions of the box (Table 6).

As a result of Travis imagining the “actual length” and width of the base of the box as varying with the length of the
side of the cutout, Travis correctly constructed formulas for the length and width of the box (lines 1–3 and 6–10). When
describing why 13 − 2x and 11 − 2x represented the length and width of the box, respectively, he described the quantitative
relationships reflected by each term and operation. He described that subtracting “by 2 x’s” reflected taking two  cutouts
away (lines 7–9). Also, Travis understood x as representing the number of inches of the length of the side of a cutout (lines

Table 6
Travis’s modified image of the box.

1 Travis: So, the actual, the actual length would be 13 minus 2 x, because there’s two
2 cutouts on the side, so you have to multiply the x by 2. So that would be
3  length, width would be 11 inches minus 2 x, and the height would be x again.
4  (pause)
5 Int.: Ok, so why the 13 minus 2 x, and 11 minus 2 x.
6  Travis: Um (pause) because on one side of the paper, when you would take the
7 cutouts, you would take two  cutouts and one cutout is x, is the length of one
8  side of the cutout (pointing to the cutout in the diagram). So, since you’re
9  taking two away, you’d have to subtract it by 2 x’s, by two cutouts. And the
10  same thing with the width, two times also.
11  Int.: Ok, so what would the resulting volume be then, of the box?
12  Travis: Um,  it would be the length (pause) times the width times the height.
13  Int.: Ok, so what does x again represent here?
14 Travis: That’s, uh, the length, or the number of inches in the side of a cutout of the
15 paper.
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14–15). Thus, it appears that Travis had developed a quantitative structure involving a relationship between the dimensions
of the box, the dimensions of the paper, and the length of the side of a cutout.

Similar to Travis, when each student modified their image of the problem’s context so that their image was compatible
with the problem’s intentions, they had little difficulty determining the correct formula. These students justified their
formulas by referencing the quantities of the situation and the relationships between these quantities. In comparing Matt’s
and Travis’s actions, Matt’s initial dynamic image of the situation better supported his ability to determine a correct solution
(and construct correct quantitative relationships) with minimal interviewer intervention. Travis, on the other hand, failed to
provide a correct solution until the interviewer’s questioning prompted him to refine his mostly static image of the situation.
It was not until Travis imagined the entire process of making the box (removing the cutouts and then folding up the sides of
the box, where the sides of the box covaried with the cutout length) that his quantitative structure aligned with the box as
intended by the problem statement.

The students’ actions on the box problem support the emphasis Smith and Thompson (2008) place on the mental struc-
tures students create when solving problems and reasoning about relationships between quantities. The students involved
in the present study determined volume formulas that were compatible with their constructed quantitative structures,
regardless if the formulas were correct or incorrect from the interviewer’s perspective. In the cases that the students deter-
mined incorrect formulas, they had little difficulty explaining these formulas, and thus their mistakes appear to have been
situated within their image of the problem’s context (e.g., not appropriately conceiving of the length and width of the box in
relation to the cutout length). When they subsequently modified their images of the problem’s context, the students altered
their volume formulas to reflect these modifications and described the formulas in terms of their reconstructed images of
the quantitative relationships. These actions reveal that the students did not lack the reasoning abilities needed to create
the proper formulas; rather, the accuracy of their formulas was dependent on their mentally constructed images of the box’s
quantities.

4.2. The Ferris wheel problem

Consider a Ferris wheel with a radius of 36 feet that takes 1.2 min  to complete a full rotation. April boards the Ferris wheel
and begins a continuous ride on the Ferris wheel. If the platform to board the Ferris wheel is 8 feet off of the ground at
the bottom of the Ferris wheel, sketch a graph that relates the total distance traveled by April and her vertical distance
from the ground.

The Ferris wheel problem provided insights into how a student’s image of a problem’s context is critical to her or his
ability to determine a graph that correctly represents covarying quantities’ values. When first attempting the Ferris wheel
problem, none of the students drew a diagram of the situation before drawing an accurate graph, although their initial
graphs did depict April’s distance from the ground as increasing and then decreasing as the distance she traveled around
the circumference of the Ferris wheel increased. However, the concavity of each student’s graph was incorrect (e.g., Fig. 2).
When asked to justify the concavity of his or her graph, each student verbalized that as the total distance traveled by April
increases, April’s vertical distance from the ground increases and then decreases. But when initially probed to explain the
shape of their graphs, the students were unable to speak accurately about how the changes in April’s distance from the
ground were changing. They also did not consider the rate of change of April’s distance from the ground with respect to her
distance traveled.

In an attempt to further identify how the students’ images of the problem’s context related to their graph, the interviewer
asked each student to explain why he or she drew a “curved” graph. As an example of a student’s approach to this problem,
Charles first drew a graph that was concave down relative to the first three-quarters of April’s revolution, concave up for
the last quarter of a revolution, and concave up for an additional quarter of a revolution (Fig. 2). Charles described that his
graph was concave down over the first quarter of a revolution because, “the change in [height from the ground] is decreasing
for every equal amount of [arc length] (denoting changes of arc length and vertical distance on his graph for the first quarter

Fig. 2. Charles’s initial graph.
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Fig. 3. Charles’s corrected graph and diagram of situation.

f a revolution).” Charles’s explanation was correct relative to the concavity of his graph; yet, the graph itself was incorrect
elative to the situation (from the interviewer’s perspective) over the first quarter of a revolution (e.g., the correct graph is
oncave up for the first quarter of a revolution).

In response to Charles using his graph, as opposed to the problem’s context, to describe the relationship between the
uantities, the interviewer asked Charles to explain the shape of his graph by using a diagram of the Ferris wheel (Table 7).

In this excerpt, Charles reiterated that April’s distance from the ground increased as her total distance traveled increased
lines 1–3). In an attempt to justify the concavity of his graph, Charles identified successive increases in the value of the
nput quantity by marking off equal sized arcs on the path formed by April’s path around the Ferris wheel (lines 9–12 and
4–16). As a result of marking off equal intervals of arc length on his diagram (Fig. 3) and noticing that the changes in height
ere increasing rather than decreasing (lines 25–27), Charles questioned the accuracy of his original graph (lines 20–23).
fter considering how the amounts of change of the two quantities’ values changed together, Charles proceeded to modify
is graph to be an accurate reflection of the relationship between April’s vertical distance from the ground and the distance
he traveled from her starting position on the Ferris wheel (Fig. 3).

In both cases, Charles’s description of his graph was correct. In the first instance, his graph shaped his description of
mounts of change between the two quantities; in the second instance, he refined his image of the problem’s context by
sing a diagram to consider amounts of change between the two  quantities. The resulting quantitative structure became
he basis for correcting the concavity of his graph. Charles was  only able to produce a correct graph after he refined his
mage of the problem’s context by exploring the relationships between the various quantities. Similarly, each student in
he study provided a correct graph only after they had considered how one of the quantities changed while considering
qual increments of change of the other quantity. Consistent with the students’ actions on the box problem, the students

nly formed a correct solution (in this case a graph) after refining their image of a problem’s context through constructing

 robust and correct quantitative structure.

able 7
harles investigates April’s ride.

1 Charles: So, as the total distance is increasing (tracing the arc-length), we
2  notice that the height is increasing but for every successive change of
3  total distance (making marks at equal changes of arc-length), let’s
4  say right here it’s eight, well if I drew a bigger one, I’d be able to
5  show it more precise.
6  Int.: Here, go ahead and I’ve got some extra pieces of paper. Go ahead and
7 if you want to draw it on there somewhere (handing him a sheet of
8  paper) a little bigger.
9  Charles: (Drawing a larger circle and drawing a vertical and horizontal
10  diameters through the circle) So, as, I guess we  can assume this is
11  ninety degrees (referring to the compass) we can make an angle
12  (attempts to use protractor on compass). . .
13  Int.: So what are you trying to do right now?
14  Charles: Well I see, this thing moves (referring to the compass), I’m trying to
15  show that, um, I’m trying to make, well I could use the protractor,
16  I’m just trying to change, show successive change in input.
17  Int.: Could you use the [waxed string] to do that?
18  Charles: Well, actually, yes I can.
19  Int.: So, you’re trying to show successive changes in what?
20  Charles: In input, which would be the total distance (marks a distance on a
21  waxed string mumbling to himself, then marking off successive arc-
22  lengths on the circle). Ok, so, for every change in total distance, right
23  here (referring to arc-length), he, well, hmmm.
24  Int.: What makes you go hmmm?
25 Charles: Because it seems as total distance increases (referring to the arc-
26  length),  the actual change in the height is increasing instead of
27 decreasing.
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The students’ solutions to the Ferris wheel problem further emphasize the importance of students imagining the situation
described by the problem and continuing to refine their image of the problem’s context. The Ferris wheel problem also
highlights the power of students exploring the context of the problem when attempting to construct a graph that represents
how the quantities in a problem’s context change in tandem over a continuum of input values.

5. Discussion

When initially responding to the box problem, students often did not conceive of the length and width of the box as
distinct from the length and width of the paper. However, these students did conceive of the length and width of the box as
measurable attributes, although they did not conceive of their values in terms of a relationship between the varying length
of the side of the cutout and the dimensions of the original sheet of paper. If a student did not first imagine an accurate
relationship between the dimensions of the base of the box, the length of the cutout, and the dimensions of the paper, the
student commonly constructed a formula (e.g., V = 13·11·x)  that correctly reflected their static image of the box’s base, but
incorrectly characterized the quantitative relationships intended by the problem statement. It was only after the students
imagined the process of making the box and considered how the relevant quantities of the situation changed in tandem
that they created a correct volume formula. For instance, Matt initially formed an image of the situation that included all
dimensions varying as the length of the cutout increased. He then refined this image by considering the dimensions of a
box for a specific cutout value. In instances when students considered a value of one quantity, and attempted to compute
the values the other relevant quantities in the problem context, he or she adapted (if necessary) the structure of her or his
conceptualization to align with the quantitative relationships as intended5 by the problem statements.

Similar to the students’ solution attempts to the box problem, the students had difficulty determining a correct graph
during the Ferris wheel problem. When first responding to the Ferris wheel problem, the students created graphs by imag-
ining the value of one quantity increasing or decreasing with respect to another quantity’s value increasing. The students’
non-linear graphs indicated changing rates of change between the two  quantities, but the interviewer’s questioning revealed
that their image of the problem’s context did not include a robust quantitative structure including how the changes in the
quantities change together, or how the rate of change of the first quantity with respect to the second quantity changes for
variations in the first quantity. As a result, the students constructed incorrect graphs and then used these graphs (as opposed
to a diagram of the situation) to describe rates of change and amounts of change between the two  quantities’ values. The
students only created a correct graph when they modified their image of the problem’s context by using a diagram of the
situation to consider how the values of the two quantities changed together. After using the diagram to construct a more
developed image of the problem’s context, the students determined a correct graph that was  supported by their more robust
quantitative structure.

The students’ actions during the interviews revealed that their solutions aligned with their emerging images of a problem’s
context. Students’ incorrect solutions stemmed from constructing images of the problem contexts that were underdeveloped
or inconsistent with the intention of the problems. As the interviewer continued to ask the students to explain their thinking,
they frequently adjusted their images of the problem contexts. When a student refined her image of a problem’s context,
the student also altered her solution to reflect these refinements. Thus, in the case of both incorrect and correct solutions to
a problem, the students’ formulas and graphs reflected their image of a problem’s context and students only changed their
solutions after modifying their image of a problem’s context.

6. Conclusion and implications

The present study illustrates that a student’s mental image of a problem’s context can either hinder or support the
student’s ability to determine a correct formula or graph. In the case that students do not construct a quantitative structure
compatible with the problem context as intended by the problem statement, they are not equipped to determine formulas
and graphs that correctly represent how the quantities are related and change together. The influence of a student’s image
of a problem’s context on her solution offers one explanation for Carlson’s (1998) observation that students had difficulty
producing graphs that conveyed a relationship between two  covarying values. The weaknesses in these students’ abilities
to reason covariationally, when attempting to construct a formula or graph in an applied problem context, may  have been
related to the students holding different (and sometimes underdeveloped) images of the relevant quantitative relationships
in the problem.

As a student progresses in solving a problem that requires relating quantities that vary in tandem, her understanding
of the quantities of a problem and how these quantities change together emerges as the student imagines the problem’s
context. The students in the present study were able to advance their conceptualization of a problem’s quantities by imaging

the described situation (including the use of diagrams), mentally playing out variations in quantities, and considering specific
values to explore relationships between quantities (e.g., see Matt’s actions on the box problem). As the students engaged
in these actions they refined their images of the problem contexts in ways that impacted their formulas and graphs. These

5 We  use intended in place of described to highlight that a problem statement does not objectively define the problem’s context. Instead, a student’s
cognitive activity produces an image of a problem’s context.
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ndings support Smith and Thompson’s (2008) suggestion for an increased emphasis on quantitative reasoning as a means
f orienting to a novel problem context and supporting students in creating meaningful formulas and graphs. This finding
ay  also shed light on the mental processes that have been characterized in problem solving as sense making (Schoenfeld,

992, 2007) or orienting (Carlson & Bloom, 2005; Pólya, 1957).
The present study provides information about students’ reasoning when making sense of novel applied problems and

hould therefore be useful to curriculum designers and instructors. It is common practice to ask mathematics students to
olve problems based on contextual situations. It is easy to imagine a teacher using formulas or graphs (or asking students
o produce formulas or graphs) before students have constructed a well-developed image of a problem’s context. In such a
ituation, the student has little to no conceptual foundation for interpreting the teacher’s products. Furthermore, the student
s deprived of the opportunity to construct her own  quantitative structure as a basis for determining meaningful formulas
nd graphs.

Our findings suggest that curriculum and instruction should attend to the emergent nature of students’ images of problem
ontexts by frequently prompting them to reason about the quantities in a problem’s context and how they change together.
s an example, in the box problem, students may  benefit from engaging in and discussing the process of making boxes

rom a sheet of paper before performing numerical calculations and creating a formula to model relationships between the
uantities’ values. Students should be given the opportunity to discuss the constraint of having square cutouts of equal
imensions on all four corners and how these cutouts impact the dimensions of the box.

Instruction should also support students in reflecting on a problem’s context as an approach for checking a solution
nd correcting incorrect solutions. When a student determines an incorrect formula or graph, the student’s solution might
correctly) reflect an impoverished quantitative structure. This suggests that the student would benefit by reconsidering the
roblem’s context and the relationships represented by their formula and graph. The emergent nature of students’ quanti-
ative reasoning provides insights into the necessary foundations for productive metacognitive problem solving behaviors,
uch as monitoring (Schoenfeld, 1992) and control (Carlson & Bloom, 2005). By maintaining a focus on problem contexts,
tudents might be supported in constructing images of problem contexts that support their monitoring the correctness and
ffectiveness of their solution attempts.

Based on our findings, we call for other studies to investigate the process by which students’ images of problem contexts
re refined to align with the intent of a problem. In order to better support students in engaging in actions that lead to
heir developing robust quantitative structures, it is important that we understand the productive and unproductive mental
ctions involved in constructing an image of a problem’s context. The present study reveals the importance of students
magining a situation and engaging in activities to conceptualize, vary, and covary the values of related quantities as they
ttempt to solve word problems. Most importantly, our study emphasizes that these activities play a critical role during
tudents’ attempts to determine meaningful and correct formulas and graphs. If mathematics educators expect students to
onsider mathematics as a tool to understand and model real world situations, then it is important that students are provided
pportunities to make sense of the words in a novel problem so that they conceive of situations in ways that support their
iewing formulas and graphs as representing how the quantities of a situation vary in tandem.
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