Pathways Reading Guide M5 Section 3

Please read Module 5, section1 in your e-book, pp. 21 – 30. (Click on Module 5, then "text.")

Be sure to *read with a pencil in hand* and attempt the examples before you read the solution given. Take notes of important definitions and ideas as you read. I don't expect you to have 100% comprehension of everything in the section, but spending significant time trying to understand the main ideas will assist you as you work on the Investigation during our next class.

Give an example of a monomial expression.

What is the difference between a polynomial expression and a polynomial function?

Create function rule for a fourth degree polynomial and identify the leading term.

Do the same for a cubic polynomial and put it in standard form.

Which of the following are polynomial functions?

$$\triangleright$$
 $v=3^x$

$$\rightarrow$$
 $y=10$

$$y = 7^{-3} + 4x^2 + 1$$

$$y = 5x^4 - 8x^3 - x + 2$$

$$y = \frac{5}{x} + 3x - 8$$

Study Example 14 on p. 23. What happens to the outputs of the function if you throw the ball from a building that is 5 feet higher than the original? How do the graphs of the two function compare?

Give a real-world example of a *horizontal shift* of a function.

How is the function rule for a vertical shift of the original function f different than the function rule for a horizontal shift?

Suppose the function f is given by $f(x) = x^2$. Identify each of the shifts indicated in the function rules below: vertical (up or down) or horizontal (right or left) or both.

$$f(x) = x^2 + 10$$

$$f(x) = (x+10)^2$$

$$\rightarrow$$
 $f(x)=(x-6)^2$

$$\rightarrow$$
 $f(x) = x^2 - 7$

$$f(x) = (x-3)^2 + 8$$

When does a vertical stretch of a graph of a function occur? Give a function rule g for a vertical stretch of the function f given by $f(x) = x^2$.

Give a function rule g for a vertical compression of the function f given by $f(x) = x^2$.