
14 Digital Audio Compression

The compression of digital audio data is an important topic. Compressing (reducing) the data storage
requirements of digital audio allows us to fit more songs into our iPods and download them faster. We will
apply ideas from interpolation, least-squares approximation, and other topics, in order to reduce the storage
requirements of digital audio files. All of our approaches replace the original audio signal by approximations
that are made up by a linear combination of cosine functions.

We describe basic ideas behind data compression methods used in mp3 players. The numerical ex-
periments use several interesting MATLAB/Octave commands, including commands for the manipulating
sound.

14.1 Computers and sound

Sound is a complicated phenomenon. It is normally caused by a moving object in air (or other medium),
for example a loudspeaker cone moving back and forth. The motion in turn causes air pressure variations
that travel through the air like waves in a pond. Our eardrums convert the pressure variations into the
phenomenon that our brain processes as sound.

Computers “hear” sounds using a microphone instead of an eardrum. The microphone converts pressure
variations into an electric potential with amplitude corresponding to the intensity of the pressure. The
computer then processes the electrical signal using a technique called sampling. Computers sample the
signal by measuring its amplitude at regular intervals, often 44,100 times per second. Each measurement
is stored as a number with fixed precision, often 16 bits. The following diagram illustrates the sampling
process showing a simple wave sampled at regular intervals1:

Computers emit sound by more or less reversing the above process. Samples are fed to a device that
generates an electric potential proportional to the sample values. A speaker or other similar device may then
convert the electric signal into air pressure variations.

The rate at which the measurements are made is called the sampling rate. A common sampling rate is
44,100 times per second (used by compact disc, or CD, audio). The format of numbers used to store the
sampled audio signal generally differs from the floating point numbers described in Lecture 2, with 64 bits
per number. For example, compact discs use 16 bit numbers to store the samples.

The bit rate of a set of digital audio data is the storage in bits required for each second of sound. If the
data has fixed sampling rate and precision (as does CD audio), the bit rate is simply their product. For
example, the bit rate of one channel of CD audio is 44,100 samples/second × 16 bits/sample = 705,600
bits/second. The bit rate is a general measure of storage, and is not always simply the product of sampling
rate and precision. For example, we will discuss a way of encoding data with variable precision.

1Image adapted from Franz Ferdinand, c©2005

1



Large storage requirements limit the amount of audio data that can be stored on compact discs, flash
memory, and other media. Large file sizes also give rise to long download times for retrieving songs from the
internet. For these reasons (and others), there is considerable interest in shrinking the storage requirements
of sampled sound.

14.2 Least-squares data compression

Least-squares data fitting can be thought of as a method for replacing a (large) set of data with a model and
a (smaller) set of model coefficients that approximate the
data by minimizing the norm of the difference between
the data and the model.

Consider the following simple example. Let the func-
tion f(t) = cos(t) + 5 cos(2t) + cos(3t) + 2 cos(4t). A
plot of f(t) for 0 ≤ t ≤ 2π appears as the blue curve in
the figure. Assume that we are given a data set of 1000
discrete function values of f(t) regularly spaced over the
interval 0 ≤ t ≤ 2π. We can fully interpolate the data by
setting up the model matrix A (using MATLAB/Octave
notation):

t = linspace (0,2*pi,1000)’;
b = cos(t) + 5*cos(2*t) + cos(3*t) + 2*cos(4*t);
A = [ones(size(t)), cos(t), cos(2*t), cos(3*t), cos(4*t)];

and then solving the linear system Ax = b with the command x=A\b. Try it! Note that the solution vector
components match the function coefficients.

Some of the coefficients are not as large as others in this simple example. We can approximate the function
f with a least-squares approximation that omits parts of the model corresponding to smaller coefficients.
For example, set up the least-squares model

A = [cos(2*t), cos(4*t)];

and solve the corresponding least-squares system x=A\b. This model uses only two coefficients to describe
the data set of 1000 data points. The resulting fit is reasonable, and is displayed by the red curve in the
figure. The plot was made with the command plot(t,b,’-b’,t,A*x,’-r’).

The cosine function oscillates with a regular frequency. The multiples of t in the above example correspond
to different frequencies (the larger the multiple of t is, the higher the frequency of oscillation). The least-
squares fit computed the best approximation to the data using only two frequencies.

Exercise 14.1

Experiment with different least-squares models for the above example by omitting different frequencies. Plot
your experiments and briefly describe the results. 2

14.3 Manipulating sound in MATLAB and Octave

MATLAB and Octave provide several commands that make it relatively easy to read in, manipulate, and
listen to digital audio signals. This lecture is accompanied by a short sound file

2



http://www.math.kent.edu/ blewis/numerical computing.1/project5/shostakovich.wav.
The data of the file is sampled at 22,050 samples per second and 16 bits per sample (1/2 the bit rate

of CD audio), and is corresponds to 40 seconds of music. If you do not care for the tune, you are free to
experiment with any audio samples that you wish. In order to experiment with the provided file, you will
need to download it from the above link into your working directory. The MATLAB/Octave command to
load an audio file is:

[b,R] = wavread (’shostakovich.wav’);
N = length(b);

The returned vector b contains the sound samples (it’s very long!), R is the sampling rate, and N is the
number of samples. Note that even though the precision of the data is 16 bits, MATLAB and Octave
represent the samples as double-precision internally. You can listen to the sample you just loaded with the
command:

sound (b,R);

Some versions of MATLAB and Octave may have slightly different syntax; use the help command for more
detailed information. The wavread command for Octave is part of the Octave-Forge project.

Sampled audio data is generally much more complicated looking than the simple example in the last
section; view for instance the data of the read file. This can be done with the command plot(b). However,
also the data of the file can be interpolated or fitted in the least-squares sense with a cosine model

y = c0 + c1 cos(ω1t) + c2 cos(ω2t) + · · ·+ cn−1 cos(ωn−1t),

for some positive integer n−1 and frequencies ωj . An important result from information theory, the Shannon-
Nyquist theorem, requires that the highest frequency in our model, ωn−1, be less than half the sampling
rate. That is, our cosine model assumes that the audio data is filtered to cut-off all frequencies above half
the sampling rate.

The cosine model requires additional technical assumptions on the data. Recall that the cosine function
is an even function, and the sum of even functions is an even function. Therefore, the model also assumes
that the data is even. The usual approach taken to satisfy this requirement of the model is to simply assume
that the data is extended outside of the interval of interest to make it even.

The above-mentioned conditions (cut-off frequency, extension beyond the interval boundaries) are in
general important to consider, but we will not discuss the details in this lecture. Instead, we focus on the
basic ideas behind compression methods, such as mp3.

14.4 Computing the model interpolation coefficients with the DCT

Let the vector b contain one second of sampled audio, and assume that the sampling rate is N samples per
second (b is of length N). It is tempting to proceed just as in the simple example above by setting up an
interpolation model

t = linspace (0,2*pi,N)’;
A = [ones(size(t)), cos(t), cos(2*t), cos(3*t), ..., cos((N/2-1)*t)];
x = A\b;

3



Aside from a few technical details, this method could be used to interpolate an audio signal. However,
consider the size of the quantities involved. At the CD-quality sampling rate, N = 44100, and the matrix A
is gigantic (44100× 22050)! This problem is unreasonably large.

Fortunately, there exists a remarkable algorithm, the Fast Discrete Cosine Transform (DCT), which can
compute the solution efficiently. The DCT is a variation on the FFT method described in Lecture 13. The
DCT produces scaled versions of the model coefficients with the command:

c = dct(b);

The computed coefficient vector c has the same number of components as b.
To investigate the plausibility of the DCT, we can try it out on our simple example:

% Simple example revisited
t = linspace (0,2*pi,1000)’;
b = cos(t) + 5*cos(2*t) + cos(3*t) + 2*cos(4*t);
x = dct(b);
N = length(b);
w = sqrt(2/N);
f = linspace(0, N/2, N)’;
plot (f(1:8),w*x(1:8),’x’);

The variable w is a scaling factor produced by the DCT algorithm and the vector f is the frequency scale
for the model coefficients computed by the DCT and stored in x. The frequency range from 0 to N/2 − 1
corresponds to half the sampling rate (assumed here to be N). We can think of the dct(b) command as
essentially computing A\b for the full interpolation model using the frequencies in the vector f . Your plot
should show that we closely compute the model coefficients (i.e., a value of 1 at frequency 1, 5 at frequency
2, etc.)

We can reconstruct the original signal from the model coefficients with the command:

y = idct(x); % The reconstructed data is in y.
plot (t, b, ’-r’, t, y,’-b’);

The plots should overlay each other. The idct command is the inverse of the dct command. We can think
of idct(x) as computing the product Ax for an appropriate model matrix A and coefficient vector x.

14.5 Digital filtering

The DCT algorithm can be used to not only interpolate data, but to compute a least-squares fit to the
data by omitting frequencies. The process of computing a least-squares fit to digitized signals by omitting
frequencies is called digital filtering. Digital filtering can reduce the storage requirements of digital audio by
simply lopping off parts of the data that correspond to specific frequencies. Of course, cutting out frequencies
affects the sound quality of data. However, the human ear is not equally sensitive to all frequencies. In
particular, we generally do not perceive very high and very low frequencies nearly as well as mid-range
frequencies. In some cases, we can filter out these frequencies without significantly affecting the perceived
quality. An easy way to filter specific frequencies in MATLAB and Octave is to generate a mask. Consider
the example:

[b,R] = wavread (’shostakovich.wav’);

4



N = length(b);
c = dct(b); % Compute the interpolation model coefficients
w = sqrt(2/N);
f = linspace(0,R/2,N)’;
plot (f,w*c); % Shows a plot of the frequencies coefficients for the sample
% Generate a mask of zeros and ones. m is 0 for every frequency above 3000, 1 otherwise.
% This mask will cut-off all frequencies above 3000 cycles/second.
m = (f<3000);
plot (f,w*m.*c); % Display the filtered frequency coefficients.
y = idct(m.*c); % Generate a filtered sound sample data set
sound(y,R); % Listen to the result

Exercise 14.2

Experiment with several frequency cut-off values in the above example. Listen to your results. 2

Exercise 14.3

Exhibit how to construct a single mask that will cut off frequencies below 200 and above 5000 cycles/second.
2

Exercise 14.4

How much does the above code reduce the storage requirement of the sample (in bit rate)? 2

14.6 The ideas behind mp3

Digital filtering is an effective technique for compressing audio data in many situations, especially telephony.
Cutting out entire frequency ranges is rather a brute-force method, however. There are more effective ways
to reduce the storage required of digital audio data, while also maintaining a high-quality sound.

One idea is this: rather than cutting out “less-important” frequencies altogether, we could store the
corresponding model coefficients with lower precision - that is, with fewer bits. This technique is called
quantization. The “less-important” frequencies are determined by the magnitude of their DCT model co-
efficients. Coefficients of small magnitude correspond to cosine frequencies that do not contribute much to
the sound sample. A key idea of methods like the mp3 algorithm is to focus the compression on parts of the
signal that are perceptually not very important.

Here is an illustration of an audio compression method similar to (but much simpler than) mp3 com-
pression: Note that with the illustrated choice of quantization bands, the bulk of the model coefficients lie
in the low precision storage realm in the above example. Our compression method will encode all of the
corresponding unweighted model coefficients that fall in that band with low precision. The precise cut-off
between low- and high-precision storage will govern the overall compression obtained by this method.

For example, assume that 90% of the coefficients lie in the low-precision part of the illustration. Suppose
that we store those coefficients with only 8-bit numbers, and the remaining ones with 16-bit numbers. The
resulting data will only require about 55% of the storage space used by the original sample data set of entirely
16-bit numbers.

5



Exercise 14.5

What is the bit rate of the compressed audio sample discussed in the last paragraph, assuming 22,050 sam-
ples per second? 2

We can achieve higher compression by either widening the low-precision region, or by lowering the preci-
sion used to store the coefficients, or both. The algorithm used in mp3 compression uses similar techniques
to achieve up to a 10:1 compression of CD audio and still maintain a high perceived quality of sound.

14.7 Quantization in MATLAB and Octave

MATLAB and Octave do not easily represent quantized numbers internally. We can, however, simulate the
result of quantization in double precision arithmetic with the function quantize.m:

function y = quantize (x, bits)

m = max(abs(x));
y = x/m;
y = floor((2^bits - 1)*y/2);
y = 2*y/(2^bits -1);
y = m*y;

Exercise 14.6

Explain how the function quantize.m works. 2

6



14.8 MP3-like compression with MATLAB and Octave

The following code illustrates our discussion of audio data compression with an actual audio. The code
requires the function quantize.m.

% Load an audio sample data set
[b,R] = wavread (shostakovich.wav);
N = length(b);
% Compute the interpolation model coefficients
c = dct(b);
w = sqrt(2/N);
f = linspace(0,R/2,N)’;
% Lets look at the weighted coefficients and pick a cut-off value
plot (f,w*c)
% Pick a cut-off value and split the coefficients into low- and high-precision sets:
cutoff = 0.00015
mask = (abs(w*c)<cutoff);
low=mask.*c;
high=(1-mask).*c;
% This plot nicely illustrates the cut-off region:
plot(f,w*high,’-R’,f,w*low,’-b’)
% Now pick a precision (in bits) for the low precision data set:
lowbits=8
% We wont quantize the high-precision set of coefficients (high), only the
% low precision part (requires quantize.m):
low = quantize(low, lowbits);
% Finally, let’s reconstruct our compressed audio sample and listen to it!
y=idct(low+high);
sound (y,R);

Exercise 14.7

Experiment with the above code, trying out different cut-off values and precision values (lowbits). Listen to
your results. What is the lowest bit rate that you can find that still sounds good to you? 2

7


