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Abstract. The Nelder–Mead simplex algorithm, first published in 1965, is an enormously pop-
ular direct search method for multidimensional unconstrained minimization. Despite its widespread
use, essentially no theoretical results have been proved explicitly for the Nelder–Mead algorithm.
This paper presents convergence properties of the Nelder–Mead algorithm applied to strictly convex
functions in dimensions 1 and 2. We prove convergence to a minimizer for dimension 1, and various
limited convergence results for dimension 2. A counterexample of McKinnon gives a family of strictly
convex functions in two dimensions and a set of initial conditions for which the Nelder–Mead algo-
rithm converges to a nonminimizer. It is not yet known whether the Nelder–Mead method can be
proved to converge to a minimizer for a more specialized class of convex functions in two dimensions.
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1. Introduction. Since its publication in 1965, the Nelder–Mead “simplex” al-
gorithm [6] has become one of the most widely used methods for nonlinear uncon-
strained optimization. The Nelder–Mead algorithm should not be confused with the
(probably) more famous simplex algorithm of Dantzig for linear programming; both
algorithms employ a sequence of simplices but are otherwise completely different and
unrelated—in particular, the Nelder–Mead method is intended for unconstrained op-
timization.

The Nelder–Mead algorithm is especially popular in the fields of chemistry, chem-
ical engineering, and medicine. The recent book [16], which contains a bibliography
with thousands of references, is devoted entirely to the Nelder–Mead method and vari-
ations. Two measures of the ubiquity of the Nelder–Mead method are that it appears
in the best-selling handbook Numerical Recipes [7], where it is called the “amoeba
algorithm,” and in Matlab [4].

The Nelder–Mead method attempts to minimize a scalar-valued nonlinear func-
tion of n real variables using only function values, without any derivative information
(explicit or implicit). The Nelder–Mead method thus falls in the general class of di-
rect search methods; for a discussion of these methods, see, for example, [13, 18]. A
large subclass of direct search methods, including the Nelder–Mead method, maintain
at each step a nondegenerate simplex, a geometric figure in n dimensions of nonzero
volume that is the convex hull of n+ 1 vertices.

Each iteration of a simplex-based direct search method begins with a simplex,
specified by its n + 1 vertices and the associated function values. One or more test
points are computed, along with their function values, and the iteration terminates
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PROPERTIES OF NELDER–MEAD 113

with a new (different) simplex such that the function values at its vertices satisfy some
form of descent condition compared to the previous simplex. Among such algorithms,
the Nelder–Mead algorithm is particularly parsimonious in function evaluations per
iteration, since in practice it typically requires only one or two function evaluations
to construct a new simplex. (Several popular direct search methods use n or more
function evaluations to obtain a new simplex.) There is a wide array of folklore
about the Nelder–Mead method, mostly along the lines that it works well in “small”
dimensions and breaks down in “large” dimensions, but very few careful numerical
results have been published to support these perceptions. Apart from the discussion
in [12], little attention has been paid to a systematic analysis of why the Nelder–Mead
algorithm fails or breaks down numerically, as it often does.

Remarkably, there has been no published theoretical analysis explicitly treating
the original Nelder–Mead algorithm in the more than 30 years since its publication.
Essentially no convergence results have been proved, although in 1985 Woods [17]
studied a modified1 Nelder–Mead algorithm applied to a strictly convex function.
The few known facts about the original Nelder–Mead algorithm consist mainly of
negative results. Woods [17] displayed a nonconvex example in two dimensions for
which the Nelder–Mead algorithm converges to a nonminimizing point. Very recently,
McKinnon [5] gave a family of strictly convex functions and a starting configuration
in two dimensions for which all vertices in the Nelder–Mead method converge to a
nonminimizing point.

The theoretical picture for other direct search methods is much clearer. Torczon
[13] proved that “pattern search” algorithms converge to a stationary point when ap-
plied to a general smooth function in n dimensions. Pattern search methods, including
multidirectional search methods [12, 1], maintain uniform linear independence of the
simplex edges (i.e., the dihedral angles are uniformly bounded away from zero and π)
and require only simple decrease in the best function value at each iteration. Rykov
[8, 9, 10] introduced several direct search methods that converge to a minimizer for
strictly convex functions. In the methods proposed by Tseng [15], a “fortified descent”
condition—stronger than simple descent—is required, along with uniform linear in-
dependence of the simplex edges. Depending on a user-specified parameter, Tseng’s
methods may involve only a small number of function evaluations at any given itera-
tion and are shown to converge to a stationary point for general smooth functions in
n dimensions.

Published convergence analyses of simplex-based direct search methods impose
one or both of the following requirements: (i) the edges of the simplex remain uni-
formly linearly independent at every iteration; (ii) a descent condition stronger than
simple decrease is satisfied at every iteration. In general, the Nelder–Mead algorithm
fails to have either of these properties; the resulting difficulties in analysis may explain
the long-standing lack of convergence results.

Because the Nelder–Mead method is so widely used by practitioners to solve
important optimization problems, we believe that its theoretical properties should be
understood as fully as possible. This paper presents convergence results in one and two
dimensions for the original Nelder–Mead algorithm applied to strictly convex functions
with bounded level sets. Our approach is to consider the Nelder–Mead algorithm

1The modifications in [17] include a contraction acceptance test different from the one given
in the Nelder–Mead paper and a “relative decrease” condition (stronger than simple decrease) for
accepting a reflection step. Woods did not give any conditions under which the iterates converge to
the minimizer.
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114 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

as a discrete dynamical system whose iterations are “driven” by the function values.
Combined with strict convexity of the function, this interpretation implies restrictions
on the allowed sequences of Nelder–Mead moves, from which convergence results can
be derived. Our main results are as follows:

1. In dimension 1, the Nelder–Mead method converges to a minimizer (Theorem 4.1),
and convergence is eventually M -step linear2 when the reflection parameter ρ = 1
(Theorem 4.2).

2. In dimension 2, the function values at all simplex vertices in the standard Nelder–
Mead algorithm converge to the same value (Theorem 5.1).

3. In dimension 2, the simplices in the standard Nelder–Mead algorithm have diam-
eters converging to zero (Theorem 5.2).

Note that Result 3 does not assert that the simplices converge to a single point x∗.
No example is known in which the iterates fail to converge to a single point, but the
issue is not settled.

For the case of dimension 1, Torczon [14] has recently informed us that some
convergence results for the original Nelder–Mead algorithm can be deduced from the
results in [13]; see section 4.4. For dimension 2, our results may appear weak, but the
McKinnon example [5] shows that convergence to a minimizer is not guaranteed for
general strictly convex functions in dimension 2. Because the smoothest McKinnon
example has a point of discontinuity in the fourth derivatives, a logical question is
whether or not the Nelder–Mead method converges to a minimizer in two dimensions
for a more specialized class of strictly convex functions—in particular, for smooth
functions. This remains a challenging open problem. At present there is no function
in any dimension greater than 1 for which the original Nelder–Mead algorithm has
been proved to converge to a minimizer.

Given all the known inefficiencies and failures of the Nelder–Mead algorithm (see,
for example, [12]), one might wonder why it is used at all, let alone why it is so
extraordinarily popular. We offer three answers. First, in many applications, for ex-
ample in industrial process control, one simply wants to find parameter values that
improve some performance measure; the Nelder–Mead algorithm typically produces
significant improvement for the first few iterations. Second, there are important ap-
plications where a function evaluation is enormously expensive or time-consuming,
but derivatives cannot be calculated. In such problems, a method that requires at
least n function evaluations at every iteration (which would be the case if using finite-
difference gradient approximations or one of the more popular pattern search meth-
ods) is too expensive or too slow. When it succeeds, the Nelder–Mead method tends
to require substantially fewer function evaluations than these alternatives, and its rel-
ative “best-case efficiency” often outweighs the lack of convergence theory. Third, the
Nelder–Mead method is appealing because its steps are easy to explain and simple to
program.

In light of weaknesses exposed by the McKinnon counterexample and the analysis
here, future work involves developing methods that retain the good features of the
Nelder–Mead method but are more reliable and efficient in theory and practice; see,
for example, [2].

The contents of this paper are as follows. Section 2 describes the Nelder–Mead
algorithm, and section 3 gives its general properties. For a strictly convex function

2By M -step linear convergence we mean that there is an integer M , independent of the function
being minimized, such that the simplex diameter is reduced by a factor no less than 1/2 after M
iterations.
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PROPERTIES OF NELDER–MEAD 115

with bounded level sets, section 4 analyzes the Nelder–Mead method in one dimen-
sion, and section 5 presents limited convergence results for the standard Nelder–Mead
algorithm in two dimensions. Finally, section 6 discusses open problems.

2. The Nelder–Mead algorithm. The Nelder–Mead algorithm [6] was pro-
posed as a method for minimizing a real-valued function f(x) for x ∈ Rn. Four scalar
parameters must be specified to define a complete Nelder–Mead method: coefficients
of reflection (ρ), expansion (χ), contraction (γ), and shrinkage (σ). According to the
original Nelder–Mead paper, these parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, and 0 < σ < 1.(2.1)

(The relation χ > ρ, while not stated explicitly in the original paper, is implicit in
the algorithm description and terminology.) The nearly universal choices used in the
standard Nelder–Mead algorithm are

ρ = 1, χ = 2, γ = 1
2 , and σ = 1

2 .(2.2)

We assume the general conditions (2.1) for the one-dimensional case but restrict our-
selves to the standard case (2.2) in the two-dimensional analysis.

2.1. Statement of the algorithm. At the beginning of the kth iteration, k ≥ 0,
a nondegenerate simplex ∆k is given, along with its n + 1 vertices, each of which is
a point in Rn. It is always assumed that iteration k begins by ordering and labeling

these vertices as x
(k)
1 , . . . , x

(k)
n+1, such that

f
(k)
1 ≤ f (k)

2 ≤ · · · ≤ f (k)
n+1,(2.3)

where f
(k)
i denotes f(x

(k)
i ). The kth iteration generates a set of n + 1 vertices that

define a different simplex for the next iteration, so that ∆k+1 6= ∆k. Because we seek

to minimize f , we refer to x
(k)
1 as the best point or vertex, to x

(k)
n+1 as the worst point,

and to x
(k)
n as the next-worst point. Similarly, we refer to f

(k)
n+1 as the worst function

value, and so on.
The 1965 paper [6] contains several ambiguities about strictness of inequalities

and tie-breaking that have led to differences in interpretation of the Nelder–Mead
algorithm. What we shall call “the” Nelder–Mead algorithm (Algorithm NM) includes
well-defined tie-breaking rules, given below, and accepts the better of the reflected
and expanded points in step 3 (see the discussion in section 3.1 about property 4 of
the Nelder–Mead method).

A single generic iteration is specified, omitting the superscript k to avoid clutter.
The result of each iteration is either (1) a single new vertex—the accepted point—
which replaces xn+1 in the set of vertices for the next iteration, or (2) if a shrink is
performed, a set of n new points that, together with x1, form the simplex at the next
iteration.

One iteration of Algorithm NM (the Nelder–Mead algorithm).
1. Order. Order the n + 1 vertices to satisfy f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1),

using the tie-breaking rules given below.
2. Reflect. Compute the reflection point xr from

xr = x̄ + ρ(x̄− xn+1) = (1 + ρ)x̄− ρxn+1,(2.4)
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116 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

where x̄ =
∑n
i=1 xi/n is the centroid of the n best points (all vertices except for

xn+1). Evaluate fr = f(xr).
If f1 ≤ fr < fn, accept the reflected point xr and terminate the iteration.

3. Expand. If fr < f1, calculate the expansion point xe,

xe = x̄ + χ(xr − x̄) = x̄ + ρχ(x̄− xn+1) = (1 + ρχ)x̄− ρχxn+1,(2.5)

and evaluate fe = f(xe). If fe < fr, accept xe and terminate the iteration; otherwise
(if fe ≥ fr), accept xr and terminate the iteration.

4. Contract. If fr ≥ fn,
perform a contraction between x̄ and the better of xn+1 and xr.
a. Outside. If fn ≤ fr < fn+1 (i.e., xr is strictly better than xn+1), perform an
outside contraction: calculate

xc = x̄ + γ(xr − x̄) = x̄ + γρ(x̄− xn+1) = (1 + ργ)x̄− ργxn+1,(2.6)

and evaluate fc = f(xc). If fc ≤ fr, accept xc and terminate the iteration; otherwise,
go to step 5 (perform a shrink).
b. Inside. If fr ≥ fn+1, perform an inside contraction: calculate

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄ + γxn+1,(2.7)

and evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and terminate the iteration;
otherwise, go to step 5 (perform a shrink).

5. Perform a shrink step. Evaluate f at the n points vi = x1 + σ(xi − x1),
i = 2, . . . , n+ 1. The (unordered) vertices of the simplex at the next iteration consist
of x1, v2, . . . , vn+1.

Figures 1 and 2 show the effects of reflection, expansion, contraction, and shrink-
age for a simplex in two dimensions (a triangle), using the standard coefficients ρ = 1,
χ = 2, γ = 1

2 , and σ = 1
2 . Observe that, except in a shrink, the one new vertex always

lies on the (extended) line joining x̄ and xn+1. Furthermore, it is visually evident that
the simplex shape undergoes a noticeable change during an expansion or contraction
with the standard coefficients.

The Nelder–Mead paper [6] did not describe how to order points in the case of
equal function values. We adopt the following tie-breaking rules, which assign to

the new vertex the highest possible index consistent with the relation f(x
(k+1)
1 ) ≤

f(x
(k+1)
2 ) ≤ · · · ≤ f(x

(k+1)
n+1 ).

Nonshrink ordering rule. When a nonshrink step occurs, the worst vertex

x
(k)
n+1 is discarded. The accepted point created during iteration k, denoted by v(k),

becomes a new vertex and takes position j + 1 in the vertices of ∆k+1, where

j = max
0≤`≤n

{ ` | f(v(k)) < f(x
(k)
`+1) };

all other vertices retain their relative ordering from iteration k.

Shrink ordering rule. If a shrink step occurs, the only vertex carried over

from ∆k to ∆k+1 is x
(k)
1 . Only one tie-breaking rule is specified, for the case in which

x
(k)
1 and one or more of the new points are tied as the best point: if

min{f(v
(k)
2 ), . . . , f(v

(k)
n+1)} = f(x

(k)
1 ),
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PROPERTIES OF NELDER–MEAD 117

x̄

xr

x3

x̄

xr

xe

x3

Fig. 1. Nelder–Mead simplices after a reflection and an expansion step. The original simplex is
shown with a dashed line.

x̄

xr

xc

x3

x̄

xcc

x3

x1

Fig. 2. Nelder–Mead simplices after an outside contraction, an inside contraction, and a shrink.
The original simplex is shown with a dashed line.

then x
(k+1)
1 = x

(k)
1 . Beyond this, whatever rule is used to define the original ordering

may be applied after a shrink.

We define the change index k∗ of iteration k as the smallest index of a vertex
that differs between iterations k and k + 1:

k∗ = min{ i | x
(k)
i 6= x

(k+1)
i }.(2.8)

(Tie-breaking rules are needed to define a unique value of k∗.) When Algorithm NM
terminates in step 2, 1 < k∗ ≤ n; with termination in step 3, k∗ = 1; with termination
in step 4, 1 ≤ k∗ ≤ n + 1; and with termination in step 5, k∗ = 1 or 2. A statement
that “xj changes” means that j is the change index at the relevant iteration.

The rules and definitions given so far imply that, for a nonshrink iteration,
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f
(k+1)
j = f

(k)
j and x

(k+1)
j = x

(k)
j , j < k∗;

f
(k+1)
k∗ < f

(k)
k∗ and x

(k+1)
k∗ 6= x

(k)
k∗ ;(2.9)

f
(k+1)
j = f

(k)
j−1 and x

(k+1)
j = x

(k)
j−1, j > k∗.

Thus the vector (f
(k)
1 , . . . , f

(k)
n+1) strictly lexicographically decreases at each nonshrink

iteration.
For illustration, suppose that n = 4 and the vertex function values at a nonshrink

iteration k are (1, 2, 2, 3, 3). If f(v(k)) = 2, the function values at iteration k + 1 are

(1, 2, 2, 2, 3), x
(k+1)
4 = v(k), and k∗ = 4. This example shows that, following a single

nonshrink iteration, the worst function value need not strictly decrease; however, the
worst function value must strictly decrease after at most n+ 1 consecutive nonshrink
iterations.

2.2. Matrix notation. It is convenient to use matrix notation to describe
Nelder–Mead iterations. The simplex ∆k can be represented as an n× (n+ 1) matrix
whose columns are the vertices

∆k =
(

x
(k)
1 · · · x

(k)
n+1

)
=
(
Bk x

(k)
n+1

)
, where Bk =

(
x

(k)
1 · · · x(k)

n

)
.

For any simplex ∆k in Rn, we define Mk as the n × n matrix whose jth column

represents the “edge” of ∆k between x
(k)
j and x

(k)
n+1:

Mk ≡
(

x
(k)
1 − x

(k)
n+1 x

(k)
2 − x

(k)
n+1 · · · x(k)

n − x
(k)
n+1

)
= Bk − x

(k)
n+1e

T ,(2.10)

where e = (1, 1, . . . , 1)T . The n-dimensional volume of ∆k is given by

vol(∆k) =
|det(Mk)|

n!
.(2.11)

A simplex ∆k is nondegenerate if Mk is nonsingular or, equivalently, if vol(∆k) > 0.
The volume of the simplex obviously depends only on the coordinates of the vertices,
not on their ordering. For future reference, we define the diameter of ∆k as

diam(∆k) = max
i 6=j
‖x(k)

i − x
(k)
j ‖,

where ‖·‖ denotes the two-norm.
During a nonshrink iteration, the function is evaluated only at trial points of the

form

z(k)(τ) := x̄(k) + τ(x̄(k) − x
(k)
n+1) = (1 + τ)x̄(k) − τx(k)

n+1,(2.12)

where the coefficient τ has one of four possible values:

τ = ρ (reflection); τ = ρχ (expansion);(2.13)

τ = ργ (outside contraction); τ = −γ (inside contraction).

In a nonshrink step, the single accepted point is one of the trial points, and we let
τk denote the coefficient associated with the accepted point at iteration k. Thus the

new vertex v(k) produced during iteration k, which will replace x
(k)
n+1, is given by

v(k) = z(k)(τk). We sometimes call τk the type of move for a nonshrink iteration k.
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PROPERTIES OF NELDER–MEAD 119

During the kth Nelder–Mead iteration, (2.12) shows that each trial point (reflection,
expansion, contraction) may be written as

z(k)(τ) = ∆kt(τ), where t(τ) =

(
1 + τ

n
, . . . ,

1 + τ

n
,−τ

)T
.(2.14)

Following the kth Nelder–Mead iteration, the (unordered) vertices of the next
simplex are the columns of ∆kSk, where Sk is an (n+ 1)× (n+ 1) matrix given by In

(1 + τk)

n
e

0T −τk

 for a step of type τ and by

(
1 (1− σ)eT

0 σIn

)

for a shrink step, with 0 being an n-dimensional zero column and In being the n-
dimensional identity matrix. After being ordered at the start of iteration k + 1, the
vertices of ∆k+1 satisfy

∆k+1 = ∆kTk, with Tk = SkPk,(2.15)

where Pk is a permutation matrix chosen to enforce the ordering and tie-breaking
rules (so that Pk depends on the function values at the vertices).

The updated simplex ∆k+1 has a disjoint interior from ∆k for a reflection, an
expansion, or an outside contraction, while ∆k+1 ⊆ ∆k for an inside contraction or a
shrink.

By the shape of a nondegenerate simplex, we mean its equivalence class under
similarity, i.e., ∆ and λ∆ have the same shape when λ > 0. The shape of a simplex
is determined by its angles, or equivalently by the singular values of the associated
matrix M (2.10) after scaling so that ∆ has unit volume. The Nelder–Mead method
was deliberately designed with the idea that the simplex shapes would “adapt to the
features of the local landscape” [6]. The Nelder–Mead moves apparently permit any
simplex shape to be approximated—in particular, arbitrarily flat or needle-shaped
simplices (as in the McKinnon examples [5]) are possible.

3. Properties of the Nelder–Mead algorithm. This section establishes var-
ious basic properties of the Nelder–Mead method. Although there is a substantial
level of folklore about the Nelder–Mead method, almost no proofs have appeared in
print, so we include details here.

3.1. General results. The following properties follow immediately from the
definition of Algorithm NM.

1. A Nelder–Mead iteration requires one function evaluation when the iteration
terminates in step 2, two function evaluations when termination occurs in step 3 or
step 4, and n+ 2 function evaluations if a shrink step occurs.

2. The “reflect” step is so named because the reflection point xr (2.4) is a
(scaled) reflection of the worst point xn+1 around the point x̄ on the line through
xn+1 and x̄. It is a genuine reflection on this line when ρ = 1, which is the standard
choice for the reflection coefficient.

3. For general functions, a shrink step can conceivably lead to an increase in

every vertex function value except f1, i.e., it is possible that f
(k+1)
i > f

(k)
i for 2 ≤ i ≤

n+ 1. In addition, observe that with an outside contraction (case 4a), the algorithm
takes a shrink step if f(xc) > f(xr), even though a new point xr has already been
found that strictly improves over the worst vertex, since f(xr) < f(xn+1).
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4. In the expand step, the method in the original Nelder–Mead paper accepts
xe if f(xe) < f1 and accepts xr otherwise. Standard practice today (which we follow)
accepts the better of xr and xe if both give an improvement over x1. The proofs of
Lemmas 4.6 and 5.2 depend on the rule that the expansion point is accepted only if
it is strictly better than the reflection point.

It is commonly (and correctly) assumed that nondegeneracy of the initial simplex
∆0 implies nondegeneracy of all subsequent Nelder–Mead simplices. We first give
an informal indication of why this property holds. By construction, each trial point
(2.12) in the Nelder–Mead method lies strictly outside the face defined by the n best
vertices, along the line joining the worst vertex to the centroid of that face. If a
nonshrink iteration occurs, the worst vertex is replaced by one of the trial points. If
a shrink iteration occurs, each current vertex except the best is replaced by a point
that lies a fraction of the step to the current best vertex. In either case it is clear
from the geometry that the new simplex must be nondegenerate. For completeness,
we present a proof of nondegeneracy based on a useful result about the volumes of
successive simplices.

Lemma 3.1. (Volume and nondegeneracy of Nelder–Mead simplices.)
(1) If the initial simplex ∆0 is nondegenerate, so are all subsequent Nelder–Mead

simplices.
(2) Following a nonshrink step of type τ , vol(∆k+1) = |τ | vol(∆k).
(3) Following a shrink step at iteration k, vol(∆k+1) = σn vol(∆k).

Proof. A simplex ∆ is nondegenerate if it has nonzero volume. Result (1) will
follow immediately from (2) and (3) because τ 6= 0 (see (2.13)) and σ 6= 0.

When iteration k is a nonshrink, we assume without loss of generality that the
worst point is the origin. In this case, it follows from (2.14) that the new vertex is

v(k) = Mkw, where w =

(
1 + τ

n
, · · · , 1 + τ

n

)T
,(3.1)

so that the vertices of ∆k+1 consist of the vector Mkw and the columns of Mk. Since
the volume of the new simplex does not depend on the ordering of the vertices, we
may assume without affecting the volume that the new vertex is the worst. Applying
the form of M in (2.10), we have

|det(Mk+1)| = |det(Mk −MkweT )| = |det(Mk)| |det(I −weT )|.

The matrix I − weT has n − 1 eigenvalues of unity and one eigenvalue equal to
1−wTe = −τ , so that det(I −weT ) = −τ . Application of (2.11) gives result (2).

If iteration k is a shrink step, each edge of the simplex is multiplied by σ. Thus
Mk+1 is a permutation of σMk and result (3) for a shrink follows from a standard
property of determinants for n× n matrices.

Lemma 3.1 shows that, in any dimension, a reflection step with ρ = 1 preserves
volume. The choice ρ = 1 is natural geometrically, since a reflection step is then a
genuine reflection. A reflected simplex with ρ = 1 is necessarily congruent to the
original simplex for n = 1 and n = 2, but this is no longer true for n ≥ 3.

Note that, although the Nelder–Mead simplices are nondegenerate in exact arith-
metic, there is in general no upper bound on cond(Mk). In fact, the algorithm permits
cond(Mk) to become arbitrarily large, as it does in the McKinnon example [5].

Our next result involves affine-invariance of the Nelder–Mead method when both
the simplex and function are transformed appropriately.
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PROPERTIES OF NELDER–MEAD 121

Lemma 3.2. (Affine-invariance.) The Nelder–Mead method is invariant under
affine motions of Rn, i.e., under a change of variables φ(x) = Ax + b in which A
is invertible, in the following sense: when minimizing f(x) starting with simplex ∆0,
the complete sequence of Nelder–Mead steps and function values is the same as when
minimizing the function f̃(z) = f(φ(z)) with initial simplex ∆̃0 defined by

∆̃0 = φ−1(∆0) = A−1(∆0)−A−1b.

Proof. At the vertices of ∆̃0, f̃(x̃
(0)
i ) = f(x

(0)
i ). We proceed by induction,

assuming for simplicity that b = 0. If ∆̃k = A−1∆k and f̃(x̃
(k)
i ) = f(x

(k)
i ) for

1 ≤ i ≤ n + 1, then relation (2.14) shows that the trial points generated from ∆̃k

satisfy z̃(τ) = A−1z(τ), which means that f̃(z̃(τ)) = f(z(τ)). The matrix Tk of (2.15)
will therefore be the same for both ∆k and ∆̃k, so that ∆̃k+1 = A−1∆k+1. It follows

that f̃(x̃
(k+1)
i ) = f(x

(k+1)
i ) for 1 ≤ i ≤ n + 1, which completes the induction. A

similar argument applies when b 6= 0.

Using Lemma 3.2, we can reduce the study of the Nelder–Mead algorithm for
a general strictly convex quadratic function on Rn to the study of f(x) = ‖x‖2 =
x2

1 + · · ·+ x2
n.

The next lemma summarizes several straightforward results.

Lemma 3.3. Let f be a function that is bounded below on Rn. When the Nelder–
Mead algorithm is applied to minimize f , starting with a nondegenerate simplex ∆0,
then

(1) the sequence {f (k)
1 } always converges;

(2) at every nonshrink iteration k, f
(k+1)
i ≤ f

(k)
i for 1 ≤ i ≤ n + 1, with strict

inequality for at least one value of i;
(3) if there are only a finite number of shrink iterations, then

(i) each sequence {f (k)
i } converges as k →∞ for 1 ≤ i ≤ n+ 1,

(ii) f∗i ≤ f (k)
i for 1 ≤ i ≤ n+ 1 and all k, where f∗i = limk→∞ f

(k)
i ,

(iii) f∗1 ≤ f∗2 ≤ · · · ≤ f∗n+1;
(4) if there are only a finite number of nonshrink iterations, then all simplex

vertices converge to a single point.

We now analyze the Nelder–Mead algorithm in the case when only nonshrink steps
occur. Torczon [12] observes that shrink steps essentially never happen in practice (she
reports only 33 shrink steps in 2.9 million Nelder–Mead iterations on a set of general
test problems), and the rarity of shrink steps is confirmed by our own numerical
experiments. We show in Lemma 3.5 that no shrink steps are taken when the Nelder–
Mead method is applied to a strictly convex function. All of our results that assume
no shrink steps can obviously be applied to cases when only a finite number of shrink
steps occur.

Assuming that there are no shrink steps, the next lemma gives an important
property of the n+1 limiting vertex function values whose existence is verified in part
(3) of Lemma 3.3.

Lemma 3.4. (Broken convergence.) Suppose that the function f is bounded below
on Rn, that the Nelder–Mead algorithm is applied to f beginning with a nondegenerate
initial simplex ∆0, and that no shrink steps occur. If there is an integer j, 1 ≤ j ≤ n,
for which

f∗j < f∗j+1, where f∗j = lim
k→∞

f
(k)
j ,(3.2)

D
ow

nl
oa

de
d 

04
/1

1/
14

 to
 1

31
.1

23
.4

6.
14

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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then there is an iteration index K such that for all k ≥ K, the change index satisfies

k∗ > j,(3.3)

i.e., the first j vertices of all simplices remain fixed after iteration K. (We refer to
property (3.2) as broken convergence for vertex j.)

Proof. The lemma is proved by contradiction. By hypothesis (3.2), f∗j + δ = f∗j+1

for some δ > 0. Pick ε > 0 such that δ − ε > 0. Since f∗j = limk→∞ f
(k)
j , there exists

K such that for all k ≥ K, f
(k)
j − ε ≤ f∗j . Then, for all k ≥ K,

f
(k)
j < f

(k)
j − ε+ δ ≤ f∗j + δ = f∗j+1.

But, from Lemma 3.3, part (3), for any index `, f∗j+1 ≤ f (`)
j+1. Therefore, for all k ≥ K

and any `,

f
(k)
j < f

(`)
j+1.(3.4)

But if k∗ ≤ j for any k ≥ K, then, using the third relation in (2.9), it must be true

that f
(k+1)
j+1 = f

(k)
j , which contradicts (3.4). Thus k∗ > j for all k ≥ K.

The following corollary is an immediate consequence of Lemma 3.4.
Corollary 3.1. Assume that f is bounded below on Rn, the Nelder–Mead algo-

rithm is applied beginning with a nondegenerate initial simplex ∆0, and no shrink steps
occur. If the change index is 1 infinitely often, i.e., the best point changes infinitely
many times, then f∗1 = · · · = f∗n+1.

3.2. Results for strictly convex functions. Without further assumptions,
very little more can be said about the Nelder–Mead algorithm, and we henceforth
assume that f is strictly convex.

Definition 3.1. (Strict convexity.)The function f is strictly convex on Rn if,
for every pair of points y, z with y 6= z and every λ satisfying 0 < λ < 1,

f(λy + (1− λ)z) < λf(y) + (1− λ)f(z).(3.5)

When f is strictly convex on Rn and

c =
∑̀
i=1

λizi, with 0 < λi < 1 and
∑̀
i=1

λi = 1,

then f(c) <
∑̀
i=1

λif(zi) and hence f(c) < max{f(z1), . . . , f(z`)}.(3.6)

We now use this property to show that, when the Nelder–Mead method is applied
to a strictly convex function, shrink steps cannot occur. (This result is mentioned
without proof in [12].)

Lemma 3.5. Assume that f is strictly convex on Rn and that the Nelder–Mead
algorithm is applied to f beginning with a nondegenerate initial simplex ∆0. Then no
shrink steps will be taken.

Proof. Shrink steps can occur only if the algorithm reaches step 4 of Algorithm
NM and fails to accept the relevant contraction point. When n = 1, f(x̄) = fn. When
n > 1, application of (3.6) to x1, . . . , xn shows that f(x̄) < fn.
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PROPERTIES OF NELDER–MEAD 123

Consider an outside contraction, which is tried if fn ≤ fr < fn+1. Since the
contraction coefficient γ satisfies 0 < γ < 1, xc as defined by (2.6) is a convex
combination of x̄ and the reflection point xr. Thus, by (3.6),

f(xc) < max{f(x̄), fr}.
We know that f(x̄) ≤ fn and fn ≤ fr, so that max{f(x̄), fr} = fr. Hence f(xc) < fr,
xc will be accepted, and a shrink step will not be taken.

A similar argument applies for an inside contraction, since fn+1 ≤ fr and xcc is
a convex combination of x̄ and xn+1.

Note that simple convexity of f (for example, f constant) is not sufficient for this
result, which depends in the case of an inside contraction on the fact that f(xcc) is
strictly less than f(xn+1).

By combining the definition of a Nelder–Mead iteration, Lemma 3.4, and a mild
further restriction on the reflection and contraction coefficients, we next prove that
the limiting worst and next-worst function values are the same. (For n = 1, the result
holds without the additional restriction; see Lemma 4.4).

Lemma 3.6. Assume that f is strictly convex on Rn and bounded below. If, in
addition to the properties ρ > 0 and 0 < γ < 1, the reflection coefficient ρ and the
contraction coefficient γ satisfy ργ < 1, then

(1) f∗n = f∗n+1; and

(2) there are infinitely many iterations for which x
(k+1)
n 6= x

(k)
n .

Proof. The proof is by contradiction. Assume that f∗n < f∗n+1. From Lemma 3.4,
this means that there exists an iteration index K such that the change index k∗ = n+1
for k ≥ K. Without loss of generality, we may take K = 0. Since k∗ = n + 1 for all
k ≥ 0, the best n vertices, which must be distinct, remain constant for all iterations;
thus the centroid x̄(k) = x̄, a constant vector, and f(xn) is equal to its limiting value
f∗n. Because f is strictly convex, f(x̄) ≤ f(xn) = f∗n. (This inequality is strict if
n > 1.)

The change index will be n + 1 at every iteration only if a contraction point is

accepted and becomes the new worst point. Therefore, the vertex x
(k+1)
n+1 satisfies one

of the recurrences

x
(k+1)
n+1 = (1 + ργ)x̄− ργx

(k)
n+1 or x

(k+1)
n+1 = (1− γ)x̄ + γx

(k)
n+1.(3.7)

The homogeneous forms of these equations are

y
(k+1)
n+1 = −ργy

(k)
n+1 or y

(k+1)
n+1 = γy

(k)
n+1.(3.8)

Since 0 < γ < 1 and 0 < ργ < 1, we have limk→∞ y
(k)
n+1 = 0, so that the solutions of

both equations in (3.8) are zero as k →∞.
Now we need only to find a particular solution to the inhomogeneous forms of

(3.7). Both are satisfied by the constant vector x̄, so that their general solutions are

given by x
(k)
n+1 = y

(k)
n+1 + x̄, where y

(k)
n+1 satisfies one of the relations (3.8). Since

limk→∞ y
(k)
n+1 = 0, it follows that

lim
k→∞

x
(k)
n+1 = x∗n+1 = x̄, with f∗n+1 = f(x̄).

But we know from the beginning of the proof that f(x̄) ≤ f∗n, which means that
f∗n+1 ≤ f∗n. Lemma 3.3, part (3), shows that this can be true only if f∗n = f∗n+1, which
gives part (1).
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The result of part (2) is immediate because we have already shown a contradiction

if there exists K such that x
(k)
1 , . . . , x

(k)
n remain constant for k ≥ K.

In analyzing convergence, we know from Lemma 3.4 that, if broken convergence

occurs, there exists an index j such that all vertices {x(k)
i }, for 1 ≤ i ≤ j, remain

constant from some point on. If this happens, the best point x
(k)
1 will not be changed,

and hence expansion steps cannot occur. (Nor can reflection steps in which a strict
improvement is found over f1.) For this reason, it is interesting to consider a restricted
Nelder–Mead algorithm in which expansion steps are not taken; the analysis of the
restricted algorithm is simpler because both vol(∆k) and diam(∆k) are nonincreasing
if ρ ≤ 1. We do not discuss the restricted algorithm further in this paper, but see [3].

In the remainder of this paper we consider strictly convex functions f with
bounded level sets. The level set Γµ(f) is defined as

Γµ(f) = { x : f(x) ≤ µ }.(3.9)

A function f has bounded level sets if Γµ(f) is bounded for every µ; this restriction
excludes strictly convex functions like e−x. The point of this restriction is that a
strictly convex function with bounded level sets has a unique minimizer xmin.

4. Nelder–Mead in dimension 1 for strictly convex functions. We an-
alyze the Nelder–Mead algorithm in dimension 1 on strictly convex functions with
bounded level sets. The behavior of the Nelder–Mead algorithm in dimension 1 de-
pends nontrivially on the values of the reflection coefficient ρ, the expansion coefficient
χ, and the contraction coefficient γ. (The shrink coefficient σ is irrelevant because
shrink steps cannot occur for a strictly convex function; see Lemma 3.5.) We show
that convergence to xmin always occurs as long as ρχ ≥ 1 (Theorem 4.1) and that
convergence is M -step linear when ρ = 1 (Theorem 4.2). The algorithm does not
always converge to the minimizer xmin if ρχ < 1. An interesting feature of the analy-
sis is that M -step linear convergence can be guaranteed even though infinitely many
expansion steps may occur.

4.1. Special properties in one dimension. In one dimension, the “next-
worst” and the “best” vertices are the same point, which means that the centroid x̄(k)

is equal to x
(k)
1 at every iteration. A Nelder–Mead simplex is a line segment, so that,

given iteration k of type τk,

diam(∆k+1) = |τk|diam(∆k).(4.1)

Thus, in the special case of the standard parameters ρ = 1 and χ = 2, a reflection step
retains the same diameter and an expansion step doubles the diameter of the simplex.
To deal with different orderings of the endpoints, we use the notation int(y, z) to
denote the open interval with endpoints y and z (even if y > z), with analogous
notation for closed or semiopen intervals.

The following lemma summarizes three important properties, to be used repeat-
edly, of strictly convex functions in R1 with bounded level sets.

Lemma 4.1. Let f be a strictly convex function on R1 with a unique minimizer
xmin.

(1) Let y1, y2, and y3 be three distinct points such that y2 ∈ int(y1, y3). Then

f(y1) ≥ f(y2) and f(y2) ≤ f(y3) =⇒ xmin ∈ int(y1, y3).
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PROPERTIES OF NELDER–MEAD 125

(2) If xmin ∈ int[y1, y2], then f(y2 + ξ2(y1 − y2)) > f(y2 + ξ1(y1 − y2)) if ξ2 >
ξ1 ≥ 1.

(3) f is continuous.

A special property of the one-dimensional case is that a Nelder–Mead iteration
can never terminate in step 2 of Algorithm NM (see section 2): either a contraction
will be taken (step 4), or an expansion step will be tried (step 3). Using the rule
in step 3 that we must accept the better of the reflection and expansion points, a
reflection step will be taken only if fr < f1 and fe ≥ fr.

4.2. Convergence to the minimizer. We first consider general Nelder–Mead
parameters satisfying (2.1) and show that the condition ρχ ≥ 1 is necessary for the
global convergence of the algorithm to xmin. If ρχ < 1, the so-called “expand” step
actually reduces the simplex diameter, and the endpoints of the Nelder–Mead interval

can move a distance of at most diam(∆0)/(1− ρχ) from the initial vertex x
(0)
1 . Thus

convergence to xmin will not occur whenever

ρχ < 1 and |xmin − x(0)
1 | > diam(∆0)/(1− ρχ).

We next show the general result that the condition ρχ ≥ 1, combined with the
requirements (2.1), is sufficient for global convergence to xmin of the Nelder–Mead
algorithm in one dimension.

Theorem 4.1. (Convergence of one-dimensional Nelder–Mead method.) Let f
be a strictly convex function on R1 with bounded level sets. Assume that the Nelder–
Mead algorithm is applied to f with parameters satisfying ρ > 0, χ > 1, χ > ρ,
ρχ ≥ 1, and 0 < γ < 1, beginning with a nondegenerate initial simplex ∆0. Then both
endpoints of the Nelder–Mead interval converge to xmin.

The proof of this theorem depends on several intermediate lemmas. First we
show that the Nelder–Mead algorithm finds, within a finite number of iterations, an
“interval of uncertainty” in which the minimizer must lie.

Lemma 4.2. (Bracketing of xmin.) Let f be a strictly convex function on R1 with
bounded level sets. Assume that the Nelder–Mead algorithm is applied to f beginning
with a nondegenerate initial simplex ∆0 and that the reflection and expansion coeffi-
cients satisfy ρ > 0, χ > 1, χ > ρ, and ρχ ≥ 1. Then there is a smallest integer K
satisfying

K ≤ |xmin − x(0)
1 |

diam(∆0)
, such that f

(K)
2 ≥ f (K)

1 and f
(K)
1 ≤ f (K)

e .(4.2)

In this case, xmin ∈ int(x
(K)
2 , x

(K)
e ) and we say that xmin is bracketed by x

(K)
2 and

x
(K)
e .

Proof. To reduce clutter, we drop the superscript k and use a prime to denote
quantities associated with iteration k + 1. By definition, f2 ≥ f1, so that the first
inequality in the “up–down–up” relation involving f in (4.2) holds automatically for
every Nelder–Mead interval. There are two possibilities.

(i) If f1 ≤ fe, the “up–down–up” pattern of f from (4.2) holds at the current
iteration.

(ii) If f1 > fe, we know from strict convexity that fr < f1, and the expansion
point is accepted. At the next iteration, x′2 = x1 and x′1 = xe. There are two cases
to consider.
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First, suppose that xmin lies in int(x′2, x
′
1] = int(x1, xe]. Using result (2) of

Lemma 4.1, both f(x′r) and f(x′e) must be strictly larger than f(x′1). Hence the
“up–down–up” pattern of (4.2) holds at the next iteration.

Alternatively, suppose that xmin lies “beyond” xe, i.e., beyond x′1. Then

|xmin − x′1| = |xmin − x1| − diam(∆′).

It follows from (4.1) and the inequality ρχ ≥ 1 that diam(∆′) = ρχdiam(∆) ≥
diam(∆). Thus the distance from xmin to the current best point is reduced by an
amount bounded below by ∆0, the diameter of the initial interval. This gives the
upper bound on K of (4.2).

The next result shows that, once xmin lies in a specified interval defined by the
current Nelder–Mead interval and a number depending only on the reflection, expan-
sion, and contraction coefficients, it lies in an analogous interval at all subsequent
iterations.

Lemma 4.3. Let f be a strictly convex function on R1 with bounded level sets.
Assume that the Nelder–Mead algorithm with parameters satisfying ρ > 0, χ > 1,
χ > ρ, ρχ ≥ 1, and 0 < γ < 1, is applied to f beginning with a nondegenerate initial
simplex. We define NNM as

NNM = max
( 1

ργ
,
ρ

γ
, ρχ, χ− 1

)
,(4.3)

and we say that the proximity property holds at iteration k if

xmin ∈ int
(
x

(k)
2 , x

(k)
1 +NNM(x

(k)
1 − x(k)

2 )
]
.(4.4)

Then, if the proximity property holds at iteration k, it holds at iteration k + 1.
Proof. To reduce clutter, we omit the index k and use a prime to denote quantities

associated with iteration k + 1. The proof considers all possible cases for location
of xmin in the interval defined by (4.4). We have either x2 < x1 < xr < xe or
xe < xr < x1 < x2.

Case 1. xmin ∈ int(x2, x1].
Lemma 4.1, part (2), implies that fr > f1, which means that a contraction step

will be taken.
1a. If fr ≥ f2, an inside contraction will occur, with xcc = x1 − γ(x1 − x2). Strict
convexity implies that fcc < f2.

(i) If fcc ≥ f1, xmin lies in int(xcc, x1]. The next Nelder–Mead interval is given
by x′2 = xcc and x′1 = x1, which means that xmin ∈ int(x′2, x

′
1], and the proximity

property holds at the next iteration.
(ii) If fcc < f1, the next Nelder–Mead interval is x′2 = x1 and x′1 = xcc. We also

know that xmin 6= x1, so that xmin ∈ int(x2, x1) = int(x2, x
′
2). To check whether (4.4)

holds, we express x2 in terms of the new Nelder–Mead interval as x2 = x′1 +ξ(x′1−x′2).
Using the definition of xcc gives

x2 = xcc + ξ(xcc − x1) = x1 + γ(x2 − x1) + ξγ(x2 − x1), so that ξ = 1/γ − 1.

For ρ > 1, we have 1/γ − 1 < ρ/γ ≤ NNM , while for 0 < ρ ≤ 1 we have 1/γ − 1 <
1/(ργ) ≤ NNM , so that the proximity property (4.4) holds at the next iteration.

1b. If fr < f2, an outside contraction will occur, with xc = x1 + ργ(x1 − x2). Since
xmin ∈ int(x2, x1], part (2) of Lemma 4.1 implies that fc > f1. The new Nelder–Mead
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PROPERTIES OF NELDER–MEAD 127

interval is given by x′2 = xc and x′1 = x1, and the interval of uncertainty remains
int(x2, x

′
1]. Expressing x2 as x′1 + ξ(x′1 − x′2) gives

x2 = x1 + ξ(x1 − xc) = x1 − ξργ(x1 − x2), so that ξ = 1/ργ ≤ NNM ,
and (4.4) holds at the next iteration.

Case 2. xmin ∈ int(x1, xr].
2a. If fr < f1, we try the expansion step xe. Part (2) of Lemma 4.1 implies that
fe > fr, which means that the reflection step is accepted, and the new Nelder–Mead
interval is x′2 = x1 and x′1 = xr. Then xmin ∈ int(x′2, x

′
1], and (4.4) holds at the next

iteration.

2b. If fr ≥ f2, an inside contraction will be taken, xcc = x1 − γ(x1 − x2). We also
know that xmin 6= xr, so that xmin ∈ int(x1, xr). Part (2) of Lemma 4.1 implies
that fcc > f1, and the next Nelder–Mead interval is x′2 = xcc and x′1 = x1, with
xmin ∈ int(x′1, xr). We express xr as x′1 + ξ(x′1 − x′2), which gives

xr = x1 +ρ(x1−x2) = x1 +ξ(x1−xcc) = x1 +ξγ(x1−x2), so that ξ = ρ/γ ≤ NNM ,
and (4.4) holds at the next iteration.

2c. If fr ≥ f1 and fr < f2, an outside contraction will be taken, xc = x1 +ργ(x1−x2).
We also know that xmin 6= xr, so that xmin ∈ int(x1, xr).

(i) If fc > f1, the new Nelder–Mead interval is x′2 = xc and x′1 = x1. Because
fc > f1, xmin ∈ int(x1, xc) = int(x′2, x

′
1), and (4.4) holds at the next iteration.

(ii) If fc < f1, the new Nelder–Mead interval is x′2 = x1 and x′1 = xc, and
xmin 6= x1. The interval of uncertainty remains int(x1, xr) = int(x′2, xr). We thus
write xr as x′1 + ξ(x′1 − x′2):

xr = xc+ξ(xc−x1) = x1 +ργ(x1−x2)+ξργ(x1−x2), so that ξ = 1/γ−1 < NNM ,

and (4.4) holds at the next iteration.
Case 3. xmin ∈ int(xr, xe].

3a. If fe ≥ fr, the new Nelder–Mead interval is x′2 = x1 and x′1 = xr; furthermore,
xmin 6= xe and xmin ∈ int(x′1, xe). Expressing xe as x′1 + ξ(x′1 − x′2) gives

xe = x1 + ρχ(x1 − x2) = x1 + ρ(x1 − x2) + ξρ(x1 − x2), so that ξ = χ− 1.

Since ξ ≤ NNM , (4.4) holds at the next iteration.

3b. If fe < fr, we accept xe. The new Nelder–Mead interval is x′2 = x1 and x′1 = xe.
Since xr lies between x1 and xe, xmin ∈ int(x′2, x

′
1) and (4.4) holds at the next iteration.

Case 4. xmin ∈ int(xe, x1 +NNM(x1 − x2)].
Case 4 can happen only if NNM > ρχ, since xe = x1 + ρχ(x1 − x2). Thus it

must be true that f1 > fr > fe, and the expansion point will be accepted. The new
Nelder–Mead interval is defined by x′2 = x1 and x′1 = xe. Writing x1 +NNM(x1 − x2)
as xe + ξ(xe − x1) gives

x1 +NNM(x1 − x2) = x1 + ρχ(x1 − x2) + ξρχ(x1 − x2), so that ξ = (NNM − ρχ)/ρχ.

Since ρχ ≥ 1, ξ < NNM and the proximity property holds at the next iteration.
Cases 1–4 are exhaustive, and the lemma is proved.
We prove that the Nelder–Mead simplex diameter converges to zero by first show-

ing that the result of Lemma 3.6 holds, i.e., the function values at the interval end-
points converge to the same value, even when ργ ≥ 1.
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Lemma 4.4. Let f be a strictly convex function on R1 with bounded level sets.
Assume that the Nelder–Mead algorithm with parameters satisfying ρ > 0 and 0 <
γ < 1 is applied to f beginning with a nondegenerate initial simplex. Then f∗1 = f∗2 .

Proof. If ργ < 1, the result follows from Lemma 3.6. Hence we assume that
ργ ≥ 1, which means that ρ > 1. The proof is by contradiction, beginning as in the
proof of Lemma 3.6. If f∗1 < f∗2 , there is an iteration index K such that, for k ≥ K,
every iteration k is a contraction and x1 does not change. (Without loss of generality,
we may take K = 0.)

If iteration k is an inside contraction, diam(∆k+1) = γ diam(∆k) < diam(∆k). If
iteration k is an outside contraction, diam(∆k+1) = ργ diam(∆k) ≥ diam(∆k). Thus
limk→∞ diam(∆k)→ 0 if there are a finite number of outside contractions, and so we
need to consider only the case of an infinite number of outside contractions.

Suppose that iteration k is an outside contraction. Then f
(k)
r ≥ f (k)

1 , f
(k)
r < f

(k)
2 ,

and the contraction point is x
(k)
c = x

(k)
1 + ργ(x

(k)
1 − x(k)

2 ). Since the best point does

not change, f
(k)
c ≥ f (k)

1 and x
(k+1)
2 = x

(k)
c . By strict convexity, f

(k)
c < f

(k)
r .

Define z(ξ) as

z(ξ) ≡ x(k)
1 + ξ

(
x

(k)
1 − x(k)

2

)
,

so that x
(k)
2 = z(−1) and x

(k)
r = z(ρ). Expressing f

(k)
2 , f

(k)
1 , and f

(k)
c in this form, we

have

f
(
z(−1)

)
> f

(
z(0)

) ≤ f
(
z(ργ)

)
= f

(k+1)
2 ,(4.5)

so that xmin ∈ int
(
z(−1), z(ργ)

)
. The relation f(z(−1)) = f

(k)
2 > f

(k+1)
2 and result

(2) of Lemma 4.1 then imply that

f(z(ξ)) > f
(k+1)
2 if ξ ≤ −1.(4.6)

The next reflection point x
(k+1)
r is given by

x(k+1)
r = x

(k)
1 + ρ(x

(k)
1 − x(k+1)

2 ) = x
(k)
1 − ρ2γ(x

(k)
1 − x(k)

2 ) = z(−ρ2γ).

Since ργ ≥ 1 and ρ > 1, we have ρ2γ > 1, and we conclude from (4.6) that f
(k+1)
r

strictly exceeds f
(k+1)
2 . Iteration k + 1 must therefore be an inside contraction, with

x(k+1)
cc = x

(k+1)
1 + γ(x

(k+1)
1 − x(k+1

2 ) = x
(k)
1 + ργ2(x

(k)
1 − x(k)

2 ) = z(ργ2).

Because x1 does not change, x
(k+2)
2 = x

(k+1)
cc and the reflection point at iteration k+2

is given by

x(k+2)
r = x

(k)
1 + ρ(x

(k)
1 − x(k+2)

2 ) = x
(k)
1 − ρ2γ2(x

(k)
1 − x(k)

2 ) = z(−ρ2γ2).

Since ρ2γ2 ≥ 1, (4.6) again implies that the value of f at x
(k+2)
r exceeds f

(k+2)
2 ,

and iteration k + 2 must be an inside contraction. Continuing, if iteration k is an
outside contraction followed by j inside contractions, the (rejected) reflection point
at iteration k + j is z(−ρ2γj) and the (accepted) contraction point is z(ργj+1).

Because of (4.6), iteration k+j must be an inside contraction as long as ρ2γj ≥ 1.
Let c∗ denote the smallest integer such that ρ2γc

∗
< 1; note that c∗ > 2. It follows

that the sequence of contractions divides into blocks, where the jth block consists of
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PROPERTIES OF NELDER–MEAD 129

a single outside contraction followed by some number cj of inside contractions, with
cj ≥ c∗ in each case. Letting kj denote the iteration index at the start of the jth such
block, we have

diam(∆kj ) = ργcj diam(∆kj−1
) ≤ θ diam(∆kj−1

), with θ = ργc
∗
< 1.

The simplex of largest diameter within each block occurs after the outside contraction,
and has diameter ργ diam(∆kj ). Thus we have

lim
k→∞

diam(∆k)→ 0, lim
k→∞

x
(k)
2 = x

(k)
1 , and f∗2 = f∗1 ,

contradicting our assumption that f∗1 < f∗2 and giving the desired result.
We next show that in all cases the simplex diameter converges to zero, i.e., the

simplex shrinks to a point.
Lemma 4.5. Let f be a strictly convex function on R1 with bounded level sets.

Assume that the Nelder–Mead algorithm with parameters satisfying ρ > 0 and 0 <
γ < 1 is applied to f beginning with a nondegenerate initial simplex ∆0. Then
limk→∞ diam(∆k) = 0.

Proof. Lemma 4.4 shows that f∗1 = f∗2 . If f∗1 = fmin, this function value is
assumed at exactly one point, xmin, and the desired result is immediate. If f∗1 > fmin,
we know from strict convexity that f takes the value f∗1 at exactly two distinct points,
denoted by x∗1 and x∗2, with x∗1 < xmin < x∗2. The vertex function values converge
from above to their limits and f is continuous. Thus for any ε > 0 there is an iteration

index K̃ such that, for k ≥ K̃, x
(k)
1 and x

(k)
2 are confined to Iε1 ∪ Iε2, where

Iε1 = [x∗1 − ε, x∗1] and Iε2 = [x∗2, x
∗
2 + ε].(4.7)

There are two cases to consider.
Case 1. Both endpoints x

(k)
1 and x

(k)
2 lie in the same interval for infinitely many

iterations, i.e., for one of j = 1, 2, the relation

x
(k)
1 ∈ Iεj and x

(k)
2 ∈ Iεj(4.8)

holds for infinitely many k.
In this case we assert that both endpoints remain in one of these intervals for all

sufficiently large k. This result is proved by contradiction: assume that for any ε > 0

and iteration K1 where (4.8) holds, there is a later iteration K2 at which x
(K2)
1 and

x
(K2)
2 are in different intervals. Then, since diam(∆K1

) ≤ ε and diam(∆K2
) ≥ x∗2−x∗1,

we may pick ε so small that diam(∆K2
) > max(1, ρχ) diam(∆K1

). The simplex
diameter can be increased only by reflection, expansion, or outside contraction, and
the maximum factor by which the diameter can increase in a single iteration is ρχ.

If x
(K1)
1 and x

(K1)
2 are both in Iε1, then strict convexity implies that any reflection,

expansion, or outside contraction must move toward Iε2 (and vice versa if the two
vertices lie in Iε2). But if ε is small enough so that ερχ < x∗2 − x∗1, then some trial
point between iterationsK1 andK2 must lie in the open interval (x∗1, x

∗
2), and by strict

convexity its associated function value is less than f∗1 , a contradiction. We conclude

that, since the Nelder–Mead endpoints x
(k)
1 and x

(k)
2 are in Iεj for all sufficiently large

k, and since f
(k)
2 → f

(k)
1 → f∗1 , both endpoints must converge to the point x∗j , and

diam(∆k)→ 0.
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130 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

Case 2. Both endpoints x
(k)
1 and x

(k)
2 are in separate intervals Iε1 and Iε2 for all

k ≥ K1.
We show by contradiction that this cannot happen because an inside contraction

eventually occurs that generates a point inside (x∗1, x
∗
2). Let x∗r denote the reflection

point for the Nelder–Mead interval [x∗1, x
∗
2], where either point may be taken as the

“best” point; we know from strict convexity that f(x∗r) > f∗1 , with f∗r = f∗1 + δr for

some δr > 0. Because f is continuous and x
(k)
r is a continuous function of x

(k)
1 and

x
(k)
2 , it follows that, given any δ > 0, eventually f

(k)
1 , f

(k)
2 , and f

(k)
r are within δ of

their limiting values. Thus, for sufficiently large k, f
(k)
r > f

(k)
2 ≥ f

(k)
1 and an inside

contraction will be taken.
Since x

(k)
1 and x

(k)
2 are in different intervals, the inside contraction point x

(k)
cc

satisfies

x∗1 − ε+ γ
(
x∗2 − (x∗1 − ε)

) ≤ x(k)
cc ≤ x∗2 + ε+ γ

(
x∗1 − (x∗2 + ε)

)
.

If ε is small enough, namely, ε < γ(x∗2 − x∗1)/(1− γ), then

x∗1 < x∗1 + γ(x∗2 − x∗1)− (1− γ)ε ≤ x(k)
cc ≤ x∗2 − γ(x∗2 − x∗1) + (1− γ)ε < x∗2,

i.e., x
(k)
cc lies in the open interval (x∗1, x

∗
2) and f(x

(k)
cc ) < f∗1 , a contradiction.

We now combine these lemmas to prove Theorem 4.1.
Proof of Theorem 4.1. (Convergence of Nelder–Mead in one dimension.) Lemma

4.2 shows that xmin is eventually bracketed by the worst vertex and the expansion
point, i.e., for some iteration K,

xmin ∈ int
(
x

(K)
2 , x

(K)
1 + ρχ(x

(K)
1 − x(K)

2 )
)
.

Since the constant NNM of (4.3) satisfies NNM ≥ ρχ, Lemma 4.3 shows that, for all
k ≥ K, xmin satisfies the proximity property (4.4),

xmin ∈ int
(
x

(k)
2 , x

(k)
1 +NNM(x

(k)
1 − x(k)

2 )
)
,

which implies that

|xmin − x(k)
1 | ≤ NNM diam(∆k).(4.9)

Lemma 4.5 shows that diam(∆k) → 0. Combined with (4.9), this gives the desired
result.

4.3. Linear convergence with ρ = 1. When the reflection coefficient is the
standard choice ρ = 1, the Nelder–Mead method not only converges to the minimizer,
but its convergence rate is eventually M -step linear, i.e., the distance from the best
vertex to the optimal point decreases every M steps by at least a fixed multiplicative
constant less than one. This result follows from analyzing the special structure of
permitted Nelder–Mead move sequences.

Theorem 4.2. (Linear convergence of Nelder–Mead in one dimension with ρ = 1.)
Let f be a strictly convex function on R1 with bounded level sets. Assume that the
Nelder–Mead algorithm with reflection coefficient ρ = 1, and expansion and contrac-
tion coefficients satisfying χ > 1 and 0 < γ < 1, is applied to f beginning with a
nondegenerate initial simplex ∆0. Then there is an integer M depending only on χ
and γ such that

diam(∆k+M ) ≤ 1
2 diam(∆k) for all k ≥ K,

where K is the iteration index defined in Lemma 4.2.
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PROPERTIES OF NELDER–MEAD 131

As the first step in proving this theorem, we obtain two results unique to dimen-
sion 1 about sequences of Nelder–Mead iterations.

Lemma 4.6. Let f be a strictly convex function on R1 with bounded level sets, and
assume that the Nelder–Mead method with parameters ρ = 1, χ > 1, and 0 < γ < 1,
is applied to f beginning with a nondegenerate initial simplex. Then

(1) the number of consecutive reflections is bounded by r∗ = dχ− 1e;
(2) the iteration immediately following a reflection cannot be an expansion.

Proof. For any iteration k, define z(k)(ξ) as

z(k)(ξ) ≡ x(k)
1 + ξ

(
x

(k)
1 − x(k)

2

)
,(4.10)

so that x
(k)
2 = z(k)(−1), x

(k)
r = z(k)(1), and x

(k)
e = z(k)(χ).

If iteration k is a reflection,

f (k)
r < f

(k)
1 , f (k)

e ≥ f (k)
r , x

(k+1)
1 = x(k)

r , and x
(k+1)
2 = x

(k)
1 .(4.11)

Applying Lemma 4.1 to the first two relations in (4.11), we can see that xmin ∈
int(x

(k)
1 , x

(k)
e ) and

f
(
z(k)(ξ)

) ≥ f (k+1)
1 if ξ ≥ χ.(4.12)

Starting with iteration k, the (potential) `th consecutive reflection point is given by

x(k+`−1)
r = x

(k)
1 + `(x

(k)
1 − x(k)

2 ) = z(k)(`),(4.13)

which can be accepted only if its function value is strictly less than f(x
(k+`−1)
1 ). Strict

convexity and (4.12) show that any point z(k)(ξ) with ξ ≥ χ cannot be an accepted
reflection point. Thus the number of consecutive reflections is bounded by the integer
r∗ satisfying

r∗ < χ and r∗ + 1 ≥ χ, i.e., r∗ = dχ− 1e.
This completes the proof of (1).

If iteration k is a reflection, the expansion point at iteration k + 1 is given by

x(k+1)
e = x

(k+1)
1 + χ(x

(k+1)
1 − x(k+1)

2 ) = x
(k)
1 + (1 + χ)(x

(k)
1 − x(k)

2 ) = z(k)(1 + χ).

Relation (4.12) implies that the function value at x
(k+1)
e exceeds f

(k+1)
1 , so that x

(k+1)
e

will not be accepted. This proves result (2) and shows that the iteration immediately
following a successful reflection must be either a reflection or a contraction.

Note that r∗ = 1 whenever the expansion coefficient χ ≤ 2; thus there cannot
be two consecutive reflections with the standard Nelder–Mead coefficients (2.2) for
n = 1.

As a corollary, we show that a contraction must occur no later than iteration
K + r∗, where K is the first iteration at which the minimizer is bracketed by x2 and
the expansion point (Lemma 4.2).

Corollary 4.1. Let f be a strictly convex function on R1 with bounded level
sets. Assume that the Nelder–Mead algorithm with ρ = 1 is applied to f beginning
with a nondegenerate initial simplex ∆0, and let K denote the iteration index defined

by Lemma 4.2 at which, for the first time, f
(K)
1 ≤ f

(K)
e . Then a contraction must

occur no later than iteration K + r∗.
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Proof. There are two cases. If f
(K)
r ≥ f (K)

1 , iteration K is a contraction, and the

result is immediate. Otherwise, if f
(K)
r < f

(K)
1 , iteration K is a reflection. Lemma 4.6

shows that there cannot be more than r∗ consecutive reflections, and any sequence of
consecutive reflections ends with a contraction. Hence a contraction must occur no
later than iteration K + r∗.

The next lemma derives a bound on the number of consecutive expansions imme-
diately following a contraction.

Lemma 4.7. (Bounded consecutive expansions.) Let f be a strictly convex func-
tion on R1 with bounded level sets. Assume that the Nelder–Mead algorithm with
ρ = 1, χ > 1, and 0 < γ < 1 is applied to f beginning with a nondegenerate initial
simplex ∆0. Let NNM = max(χ, 1/γ), which is equivalent to its general definition (4.3)
when ρ = 1. If iteration k is a contraction, then for all subsequent iterations there
can be no more than j∗ consecutive expansion steps, where j∗ is defined as follows:

(a) if χ = NNM , j∗ = 0;
(b) if χ < NNM , j∗ is the largest integer satisfying χ+ χ2 + · · ·+ χj

∗
< NNM .

Proof. Since iteration k is a contraction, xmin ∈ int(x
(k)
2 , x

(k)
r ). Thus the prox-

imity property (4.4) is satisfied at iteration k and, by Lemma 4.3, for all subsequent
iterations. The first expansion in a sequence of consecutive expansions must immedi-
ately follow a contraction (see result (2) of Lemma 4.6), and strict convexity imposes
a bound on the number of subsequent consecutive expansions.

Using the notation of (4.10), we consider inequalities that apply to the best func-

tion value f
(k+1)
1 at the next iteration, which is (possibly) the first expansion step in

a sequence of consecutive expansions.

Case 1. If f
(k)
r < f

(k)
2 , iteration k is an outside contraction with x

(k)
c = x

(k)
1 +

γ(x
(k)
1 − x(k)

2 ).

(i) If f
(k)
c ≥ f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
c

and x
(k+1)
1 = x

(k)
1 , and xmin ∈ int(x

(k)
2 , x

(k+1)
2 ). (The tie-breaking rule in section 2 is

invoked if f
(k)
c = f

(k)
1 .) If an expansion occurs, the interval will expand toward x

(k)
2 ,

which satisfies

x
(k)
2 = x

(k+1)
1 +

(
xk+1

1 − x(k+1)
2

)
/γ = z(k+1)(1/γ), with f

(k)
2 > f

(k+1)
1 .(4.14)

(ii) If f
(k)
c < f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
1

and x
(k+1)
1 = x

(k)
c , and xmin ∈ int(x

(k+1)
2 , x

(k)
r ). Any expansion will be toward x

(k)
r ,

which satisfies

x(k)
r = x

(k+1)
1 + (1/γ − 1)

(
x

(k+1)
1 − x(k+1)

2

)
= z(k+1)(1/γ − 1),(4.15)

with f
(k)
r > f

(k+1)
1 .

Case 2. If f
(k)
r ≥ f

(k)
2 , iteration k is an inside contraction with x

(k)
cc = x

(k)
1 −

γ(x
(k)
1 − x(k)

2 ).

(i) If f
(k)
cc ≥ f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
cc

and x
(k+1)
1 = x

(k)
1 , and xmin ∈ int(x

(k+1)
2 , x

(k)
r ). (The tie-breaking rule in section 2 is

invoked if f
(k)
cc = f

(k)
1 .) If an expansion occurs, the interval will expand toward x

(k)
r ,

which satisfies

x(k)
r = x

(k+1)
1 +

(
x

(k+1)
1 − x(k+1)

2

)
/γ = z(k+1)(1/γ),(4.16)
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PROPERTIES OF NELDER–MEAD 133

with f
(k)
r > f

(k+1)
1 .

(ii) If f
(k)
cc < f

(k)
1 , the next Nelder–Mead interval is defined by x

(k+1)
2 = x

(k)
1

and x
(k+1)
1 = x

(k)
cc , and xmin ∈ int(x

(k)
2 , x

(k+1)
2 ). Any expansion will be toward x

(k)
2 ,

which satisfies

x
(k)
2 = x

(k+1)
1 + (1/γ − 1)

(
xk+1

1 − x(k+1)
2

)
= z(k+1)(1/γ − 1),(4.17)

with f
(k)
2 > f

(k+1)
1 .

For each of the four cases 1(i)–2(ii), the value of f at z(k+1)(ξ) exceeds f
(k+1)
1 for

some ξ that is equal to or bounded above by NNM . Applying result (2) of Lemma 4.1
to the interval in which xmin lies and the corresponding expression from (4.14)–(4.17),
we conclude that, if a sequence of consecutive expansions begins at iteration k + 1,
then

f(z(k+1)(ξ)) > f(x
(k+1)
1 ) whenever ξ ≥ NNM .(4.18)

The remainder of the proof is similar to that of Lemma 4.6. The expansion point

at iteration k + 1 is x
(k+1)
e = z(k+1)(χ). If χ = NNM , it follows from (4.18) that this

point will not be accepted, and consequently iteration k + 1 cannot be an expansion;
this corresponds to the case j∗ = 0. If χ < NNM , then, starting with iteration k + 1,
the (potential) jth consecutive expansion point for j ≥ 1 is given by

x(k+j)
e = z(k+1)

(
χ+ χ2 + · · ·+ χj

)
.(4.19)

This point can be accepted only if its function value is strictly less than f(x
(k+j)
1 ),

which strictly decreases after each accepted expansion. Relations (4.18) and (4.19)

together show that, for j ≥ 1, x
(k+j)
e might be accepted only if

χ+ χ2 + · · ·+ χj < NNM .

Applying the definition of j∗, it follows that the value of j must be bounded above
by j∗.

For the standard expansion coefficient χ = 2, the value of NNM is max(2, 1/γ) and
the values of j∗ for several ranges of γ are

j∗ = 0 when 1
2 ≤ γ < 1; j∗ = 1 when 1

6 ≤ γ < 1
2 ; j∗ = 2 when 1

14 ≤ γ < 1
6 .

In the “standard” Nelder–Mead algorithm with contraction coefficient γ = 1
2 , the zero

value of j∗ means that no expansion steps can occur once the minimizer is bracketed
by the worst point and the reflection point at any iteration.

We now examine the effects of valid Nelder–Mead move sequences on the simplex
diameter.

Lemma 4.8. Let f be a strictly convex function on R1 with bounded level sets.
Assume that the Nelder–Mead algorithm with ρ = 1, χ > 1, and 0 < γ < 1 is applied
to f beginning with a nondegenerate initial simplex ∆0. Let ∆ denote the simplex
immediately following any contraction, and ∆′ the simplex immediately following the
next contraction. Then there exists a value ϕ depending only on χ and γ such that
diam(∆′) ≤ ϕdiam(∆), where ϕ < 1.

Proof. Lemma 4.7 shows that the number of consecutive expansions between any
two contractions cannot exceed j∗. Since NNM = max(1/γ, χ) and reflection does not
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134 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

change the diameter, the worst-case growth occurs when j∗ expansions are followed
by a contraction, which corresponds to ϕ = χj

∗
γ. If j∗ = 0, ϕ = γ and is consequently

less than 1. If NNM = χ, j∗ must be zero. In the remaining case when NNM = 1/γ
and j∗ > 0, the condition defining j∗ (part (b) of Lemma 4.7) may be written as

γ(χ+ · · ·+ χj
∗
) < 1, which implies that ϕ = γχj

∗
< 1, the desired result.

Combining all these results, we prove M -step linear convergence of Nelder–Mead
in dimension 1 when ρ = 1.

Proof of Theorem 4.2. In proving M -step linear convergence, we use a directed
graph to depict the structure of valid Nelder–Mead move sequences. We have shown
thus far that the minimizer is bracketed at iteration K (Lemma 4.2) and that a
contraction must occur no later than iteration K+r∗ (Lemmas 4.6 and Corollary 4.1).
Thereafter, no more than j∗ consecutive expansions can occur (Lemma 4.7), and
any sequence of consecutive expansions must end with either a contraction alone
or a sequence of at most r∗ consecutive reflections followed by a contraction (see
Lemma 4.6).

The structure of legal iteration sequences following a contraction can thus be
represented by a directed graph with four states (nodes): expansion, reflection, and the
two forms of contraction. Each state is labeled by the absolute value of its move type,
so that an inside contraction is labeled “γ”, an outside contraction is labeled “ργ”,
a reflection is labeled “ρ”, and an expansion is labeled “ρχ”. For example, Figure 3
shows the graph corresponding to ρ = 1, χ = 2, and any contraction coefficient
satisfying 1

14 ≤ γ < 1
6 . For these coefficients, at most two consecutive expansion steps

can occur (j∗ = 2), and at most one consecutive reflection (r∗ = 1). (Because ρ = 1,
we have not distinguished between inside and outside contractions.)

2 2 γ

1

Fig. 3. Directed graph depicting legal Nelder–Mead moves for ρ = 1, χ = 2, and 1
14
≤ γ < 1

6
.

According to (4.1), the simplex diameter is multiplied by ρ for a reflection, ρχ
for an expansion, ργ for an outside contraction, and γ for an inside contraction.
Starting in the contraction state with initial diameter 1, the diameter of the Nelder–
Mead interval after any sequence of moves is thus the product of the state labels
encountered. The first contraction in the Nelder–Mead method can occur no later
than iteration K + r∗. Thereafter, Lemmas 4.6 and 4.7 show that any minimal cycle
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PROPERTIES OF NELDER–MEAD 135

in the graph of valid Nelder–Mead moves (i.e., a cycle that does not pass through
any node twice) has length at most j∗ + r∗ + 1; Lemma 4.8 shows that the product
of state labels over any cycle in the Nelder–Mead graph cannot exceed ϕ. For any
integer m, a path of length m(j∗ + r∗ + 1) must contain at least m minimal cycles.
Given any such path, we can remove minimal cycles until at most j∗ + r∗ edges are
left over. Consequently, the simplex diameter at the end of the associated sequence
of Nelder–Mead iterations must be multiplied by a factor no larger than χj

∗+r∗ϕm.
If we choose m as the smallest value such that

χj
∗+r∗ϕm ≤ 1

2 , then M = m(j∗ + r∗ + 1) satisfies diam(∆k+M ) ≤ 1
2 diam(∆k),

which gives the desired result.
M -step linear convergence can also be proved for certain ranges of parameter

values with ρ 6= 1 by imposing restrictions that guarantee, for example, that j∗ = 0
and r∗ = 1.

4.4. A pattern search method interpretation of Nelder–Mead for n = 1.
Pattern search methods [13] are direct search methods that presuppose a lattice grid
pattern for search points. Torczon [14] has recently informed us that the analysis
[13] for pattern search methods can be adapted in dimension 1 to the Nelder–Mead
method when

ρ = 1 and χ and γ are rational.(4.20)

(These restrictions are satisfied for the standard coefficients ρ = 1, χ = 2, and γ = 1
2 .)

The condition ρ = 1 is needed to guarantee that, following an outside contraction at
iteration k, the reflection point at iteration k+ 1 is identical to the inside contraction
point at iteration k (and vice versa). Rationality of χ and γ is needed to retain
the lattice structure that underlies pattern search methods. When (4.20) holds and
f is once-continuously differentiable, the Nelder–Mead method generates the same
sequence of points as a (related) pattern search method with relabeled iterations.
Consequently, the results in [13] imply that lim inf |∇f(xk)| → 0, where xk denotes
the best point in ∆k.

5. Standard Nelder–Mead in dimension 2 for strictly convex functions.
In this section we consider the standard Nelder–Mead algorithm, with coefficients
ρ = 1, χ = 2, and γ = 1

2 , applied to a strictly convex function f(x) on R2 with
bounded level sets. The assumption that ρ = 1 is essential in our analysis.

We denote the (necessarily unique) minimizer of f by xmin, and let fmin =
f(xmin). Note that the level set {x | f(x) ≤ µ} is empty if µ < fmin, the single
point xmin if µ = fmin, and a closed convex set if µ > fmin.

5.1. Convergence of vertex function values. Our first result shows that, for
the standard Nelder–Mead algorithm, the limiting function values at the vertices are
equal.

Theorem 5.1. (Convergence of vertex function values for n = 2.) Let f be a
strictly convex function on R2 with bounded level sets. Assume that the Nelder–Mead
algorithm with reflection coefficient ρ = 1 and contraction coefficient γ = 1

2 is applied
to f beginning with a nondegenerate initial simplex ∆0. Then the three limiting vertex
function values are the same, i.e.,

f∗1 = f∗2 = f∗3 .
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Proof. Corollary 3.1, which applies in any dimension, gives the result immediately

if the best vertex x
(k)
1 changes infinitely often. The following lemma treats the only

remaining case, in which x
(k)
1 eventually becomes constant.

Lemma 5.1. Let f be a strictly convex function on R2 with bounded level sets.
Assume that the Nelder–Mead algorithm with ρ = 1 and γ = 1

2 is applied to f beginning

with a nondegenerate initial simplex ∆0. If the best vertex x
(k)
1 is constant for all k,

then the simplices ∆k converge to the point x
(0)
1 as k →∞.

Proof. Without loss of generality, the (constant) best vertex x1 may be taken as
the origin. The proof that x2 and x3 converge to the origin has four elements: (i)
a matrix recursion that defines the Nelder–Mead vertices at the infinite subsequence
of iterations when x2 changes; (ii) a special norm that measures progress toward
the origin; (iii) bounds on this norm obtained from the singular values of a matrix
constrained to a subspace; and (iv) the illegality of certain patterns of Nelder–Mead
move types in the iteration subsequence.

(i) The matrix recursion. We know from Lemma 3.6 that the next-worst vertex

x
(k)
2 must change infinitely often. There is thus a subsequence of iterations {k`},
` = 0, 1, . . . , with k0 = 0, where x2 changes, i.e.,

x
(k`+1)
2 6= x

(k`)
2 and x

(i)
2 = x

(i−1)
2 , i = k` + 1, . . . , k`+1 − 1.

We then define new sequences x̃2 and x̃3 from

x̃
(`)
2 = x

(k`)
2 and x̃

(`)
3 = x

(k`)
3 .(5.1)

Because x1 is constant and x2 changes at iteration k`, x3 thereupon becomes the
“old” x2, i.e.,

x̃
(`)
3 = x̃

(`−1)
2 .(5.2)

For each iteration strictly between k` and k`+1, only x3 changes, so that

x
(i)
3 = 1

2x
(i−1)
2 + τi−1( 1

2x
(i−1)
2 − x

(i−1)
3 ) for i = k` + 1, . . . , k`+1 − 1,(5.3)

where τi is the type of iteration i. Note that any iteration in which only x3 changes
must be a contraction, so that τi is necessarily ± 1

2 when k` < i < k`+1; the value of
τk` , however, can be 1 or ±1

2 . Since only x3 is changing between iterations k` and
k`+1, relation (5.3) implies that

x
(k`+j)
3 = 1

2x
(k`)
2 + (−1)j−1

j−1∏
i=0

τk
`
+i

(
1
2x

(k`)
2 − x

(k`)
3

)
(5.4)

for j = 1, . . . , k`+1 − k` − 1.

Using (5.1), (5.2) and (5.4), we obtain an expression representing x̃
(`+1)
2 entirely

in terms of x̃
(`)
2 and x̃

(`−1)
2 :

x̃
(`+1)
2 = 1

2 x̃
(`)
2 + τ̃`

(
1
2 x̃

(`)
2 − x̃

(`−1)
2

)
,(5.5)

where

τ̃` = (−1)
˜̀

˜̀∏
i=0

τk`+i, with ˜̀= k`+1 − k` − 1.
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PROPERTIES OF NELDER–MEAD 137

Because reflections cannot occur between iterations k` and k`+1, we know that |τ̃`| ≤ 1
2

or τ̃` = 1. (The latter happens only when iterations k` and k`+1 are consecutive).
Using matrix notation, we have

x̃
(`)
2 =

(
x̃

(`)
21

x̃
(`)
22

)
=

(
u`
v`

)
; (5.1) then gives x̃

(`)
3 = x̃

(`−1)
2 =

(
u`−1

v`−1

)
.(5.6)

The Nelder–Mead update embodied in (5.5) can be written as a matrix recursion in
u and v: (

u`+1 v`+1

u` v`

)
=

(
1
2 (1 + τ̃`) −τ̃`

1 0

)(
u` v`
u`−1 v`−1

)
.(5.7)

Define u` and v` by

u` =

(
u`
u`−1

)
and v` =

(
v`
v`−1

)
,

so that u` contains the x-coordinates of the current second-worst and worst ver-

tices, x̃
(`)
2 and x̃

(`)
3 , and v` contains their y coordinates. The desired conclusion of

Lemma 5.1 follows if we can show that

lim
`→∞

u` = 0 and lim
`→∞

v` = 0.(5.8)

We shall prove only the first relation in (5.8); the proof of the second is similar.
(ii) Measuring progress toward the origin. To prove convergence of u` to the

origin, it might appear that we could simply apply norm inequalities to the matrix
equation (5.7). Unfortunately, the two-norm of the matrix in (5.7) exceeds one for all
valid τ̃`, which means that ‖u`+1‖ can be larger than ‖u`‖. Hence we need to find a
suitable nonincreasing size measure associated with each Nelder–Mead iteration (5.7).

Such a size measure is given by a positive definite quadratic function Q of two
scalar arguments (or, equivalently, of a 2-vector):

Q(a, b) = 2(a2 − ab+ b2) = a2 + b2 + (a− b)2.(5.9)

Evaluating Q(u`+1) using (5.7) gives

Q(u`+1) = (3
2 + 1

2 τ̃
2
` )u2

` − 2τ̃2
` u`u`−1 + 2τ̃2

` u
2
`−1.

After substitution and manipulation, we obtain

Q(u`)−Q(u`+1) = 2(1− τ̃2
` )( 1

2u` − u`−1)2,(5.10)

which shows that

Q(u`+1) ≤ Q(u`) when − 1 ≤ τ̃` ≤ 1.(5.11)

It follows that Q is, as desired, a size measure that is nonincreasing for all valid values
of τ̃`. Furthermore, because Q is positive definite, we can prove that u` → 0 by
showing that Q(u`)→ 0.

An obvious and appealing geometric interpretation of Q in terms of the Nelder–
Mead simplices is that the quantity Q(u`) + Q(v`) is the sum of the squared side
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138 J. C. LAGARIAS, J. A. REEDS, M. H. WRIGHT, AND P. E. WRIGHT

lengths of the Nelder–Mead triangle at iteration k`, with vertices at the origin, x̃
(`)
2 ,

and x̃
(`)
3 . Relation (5.11) indicates that, after a reflection or contraction in which x2

changes, the sum of the squared side lengths of the new Nelder–Mead triangle cannot
increase, even though ‖u`+1‖ may be larger. Figure 4 depicts an example in which,
after an outside contraction, both ‖u`+1‖ and ‖v`+1‖ increase. Nonetheless, the sum
of the squared triangle side lengths is reduced.

x2

x3

sum of squared sides = 3.895

x2
21 + x2

31 = 0.9925

x2
22 + x2

32 = 0.85

x′2

x′3

sum of squared sides = 2.9003

(x′21)2 + (x′31)2 = 1.646

(x′22)2 + (x′32)2 = 1.1406

Fig. 4. A triangle and its outside contraction.

(iii) Singular values in a subspace. To obtain worst-case bounds on the size of
Q, it is convenient to interpret Q as the two-norm of a specially structured 3-vector
derived from u`. Within the context of a Nelder–Mead iteration (5.6), we use the
notation

ξ` =

 u`
u`−1

u` − u`−1

 , so that Q(u`) = ‖ξ`‖2.(5.12)

The structure of ξ (5.12) can be formalized by observing that it lies in the two-
dimensional null space of the vector (1,−1,−1). Let Z denote the following 3 × 2
matrix whose columns form a (nonunique) orthonormal basis for this null space:

Z =
(
z1 z2

)
, where z1 =

1√
6

 2
1
1

 and z2 =
1√
2

 0
1
−1

 .

Let q` denote the unique 2-vector satisfying

ξ` = Zq` =

 u`
u`−1

u` − u`−1

 .(5.13)

Since ZTZ = I, we have

‖ξ`‖ = ‖q`‖ and Q(u`) = ‖ξ`‖2 = ‖q`‖2,(5.14)

so that we may use ‖q`‖ to measure Q.
The Nelder–Mead move (5.7) can be written in terms of a 3×3 matrix M` applied

to ξ`:

ξ`+1 = M`ξ`, where M` =


1
2 (1 + τ̃`) −τ̃` 0

1 0 0

− 1
2 − 1

2 τ̃`
1
2 τ̃`

 .(5.15)D
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PROPERTIES OF NELDER–MEAD 139

As we have already shown, the special structure of the vector ξ` constrains the effects
of the transformation M` to a subspace. To analyze these effects, note that, by
construction of M`, its application to any vector in the column space of Z produces
a vector in the same column space, i.e.,

M`Z = ZW`, where W` = ZTM`Z.(5.16)

A single Nelder–Mead move (5.7) is thus given by

ξ`+1 = M`ξ` = M`Zq` = ZW`q`,

so that, using (5.14),

Q(u`+1) = ‖ξ`+1‖2 = ‖W`q`‖2,

and we may deduce information about the behavior of Q from the structure of the
2× 2 matrix W .

Direct calculation shows that, for any τ̃`, W` is the product of an orthonormal

matrix Z̃ and a diagonal matrix:

W` = Z̃Σ`, where Z̃ =

(
1
2

√
3

2√
3

2 − 1
2

)
and Σ` =

(
1 0
0 −τ̃`

)
,(5.17)

with Z̃ representing a rotation through 60 degrees. The form (5.17), analogous to
the singular value decomposition apart from the possibly negative diagonal element
of Σ`, reveals that the extreme values of ‖W`q`‖ are

max
‖q‖=1

‖W`q‖ = 1 when q =

(
1
0

)
and

min
‖q‖=1

‖W`q‖ = |τ̃`| when q =

(
0
1

)
.(5.18)

For a reflection (τ̃` = 1), the value of Q is unchanged for all q and hence for all
u. When |τ̃`| = 1

2 , relationship (5.13) indicates how the extremes of (5.18) map into
u-space. The value of Q remains constant, i.e., Q(u`+1) = Q(u`), only when u` has
the form (2α, α) for some nonzero α; this can also be seen directly in (5.10). The
maximum reduction in Q, by a factor of τ̃2

` , occurs only when u` has the form (0, α)
for some nonzero α.

A geometric interpretation of reflection and contraction moves is depicted in Fig-
ure 5. The plane in each case represents u-space. The first figure shows an elliptical
level curve of points (u`, u`−1) for which Q = 2 ; three particular points on the level
curve are labeled as ui. The second figure shows the image of this level curve follow-
ing the reflection move (5.7) with τ̃ = 1. Points on the level curve are transformed
by a reflection to rotated points on the same level curve; the image points of ui are
labeled as u′i. The third figure shows the image of the level curve in the first figure
after a Nelder–Mead contraction move (5.7) with τ̃ = 1

2 . The transformed points are
not only rotated, but their Q-values are (except for two points) reduced. The points
u2 = (2/

√
3, 1/

√
3) and u3 = (0, 1) represent the extreme effects of contraction, since

Q(u′2) = Q(u2), and Q(u′3) = 1
4Q(u3).
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u1

u2

u3

Original level curve

u′1
u′2

u′3

Image under reflection

u′1

u′2

u′3

Image under contraction

Fig. 5. The effects of reflection and contraction moves in u-space on a level curve of constant Q.

Our next step is to analyze what can happen to the value of Q following a sequence
of Nelder–Mead iterations and to show that even in the worst case Q must eventually
be driven to zero. Relation (5.17) implies that, for any vector q,

‖Wjq‖ ≤ ‖Wkq‖ if |τ̃j | ≤ |τ̃k|.
In determining upper bounds on Q, we therefore need to consider only the two values
τ̃` = 1 and τ̃` = 1

2 (the latter corresponding to the largest possible value of |τ̃ | when
τ̃ 6= 1).

Using (5.16) repeatedly to move Z to the left, we express a sequence of N Nelder–
Mead moves (5.7) starting at iteration ` as

ξ`+N = M`+N−1 · · ·M`Zq` = ZW`+N−1 · · ·W`q`.

Substituting for each W from (5.17), the Euclidean length of q`+N is bounded by

‖q`+N‖ ≤ ‖Z̃Σ`+N−1 · · · Z̃Σ`‖ ‖q`‖.(5.19)

A relatively straightforward calculation shows that ‖q`+N‖ is strictly smaller than
‖q`‖ after any of the move sequences:

(c, c) for N = 2, (c, 1, c) for N = 3,

(c, 1, 1, 1, c) for N = 5, (c, 1, 1, 1, 1, c) for N = 6,(5.20)

where “c” denotes τ̃ = 1
2 and “1” denotes τ̃ = 1. For these sequences,

‖q`+N‖ ≤ βcc ‖q`‖, where βcc ≈ 0.7215.

(The quantity βcc is the larger root of the quadratic λ2 + 41
64λ + 1

16 .) Following any
of the Nelder–Mead type patterns (5.20), the size measure Q must be decreased by a
factor of at least β2

cc ≈ 0.5206.
(iv) Illegal patterns of Nelder–Mead move types. At this point we add the final

element of the proof: certain patterns of Nelder–Mead move types cannot occur in
the subsequence (5.1). Recall that a new point can be accepted only when its func-
tion value is strictly less than the current worst function value. Now consider five
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PROPERTIES OF NELDER–MEAD 141

consecutive Nelder–Mead iterations (5.7) of types (1, 1, τ̃3, 1, 1) in which x2 changes.
After such a pattern, the newly accepted vertex is defined by(

u`+5 v`+5

u`+4 v`+4

)
=

(
1 −1

1 0

)2(
1
2 (1 + τ̃3) −τ̃3

1 0

)(
1 −1

1 0

)2(
u` v`
u`−1 v`−1

)

=

(
0 1

−τ̃3 1
2 (1 + τ̃3)

)(
u` v`
u`−1 v`−1

)
.(5.21)

The first row of this relation gives

(u`+5, v`+5) = (u`−1, v`−1), so that x̃
(`+5)
2 = x̃

(`)
3 ,

which implies the impossible result that the newly accepted vertex is the same as
the worst vertex in a previous simplex. Hence the type sequence (1, 1, τ̃3, 1, 1) cannot
occur.

x3 (start)

x2 (start)
0

1

2
3

4

5

x3 (start)

x2 (start)
0

1

2
3

4

5

x3 (start)

x2 (start)0

1

2
3

4

5

Fig. 6. Returning to the original worst point with Nelder–Mead type patterns (1, 1, 1, 1, 1),
(1, 1, 1

2
, 1, 1), and (1, 1,− 1

2
, 1, 1).

Figure 6 depicts these unacceptable move sequences geometrically. From left
to right, we see five consecutive reflections; two reflections, an outside contraction,
and two further reflections; and two reflections, an inside contraction, and two more
reflections.

If we eliminate both the norm-reducing patterns (5.20) and the illegal pattern
(1, 1, ∗, 1, 1), only three valid 6-move sequences remain during which Q might stay
unchanged:

(1, 1, 1, 1, c, 1), (1, c, 1, 1, 1, 1), and (1, c, 1, 1, c, 1).

Examination of these three cases shows immediately that no legal sequence of 7 steps
exists for which Q can remain constant, since the next move creates either a norm-
reducing or illegal pattern. In particular, for all legal sequences of 7 steps it holds
that

‖q`+7‖ ≤ βcc‖q`‖ < 0.7216‖q`‖.
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We conclude that ‖q`‖ → 0 and hence, using (5.14), that Q(u`)→ 0, as desired. This
completes the proof of Lemma 5.1.

To finish the proof of Theorem 5.1, we note that, in the case when x
(k)
1 eventually

becomes constant, the just-completed proof of Lemma 5.1 implies convergence of x2

and x3 to x1, which gives f∗1 = f∗2 = f∗3 , as desired.

5.2. Convergence of simplex diameters to zero. Knowing that the vertex
function values converge to a common value does not imply that the vertices them-
selves converge. We next analyze the evolution of the shapes of the triangles ∆k

produced by the Nelder–Mead algorithm on a strictly convex function in R2. First,
we show that they “collapse” to zero volume, i.e., to either a point or a line segment.

Lemma 5.2. (Convergence of simplex volumes to zero.) Assume that f is a strictly
convex function on R2 with bounded level sets and that the Nelder–Mead algorithm
with reflection coefficient ρ = 1, expansion coefficient χ = 2, and contraction coeffi-
cient γ = 1

2 is applied to f beginning with a nondegenerate initial simplex ∆0. Then
the simplices {∆k} generated by the algorithm satisfy

lim
k→∞

vol(∆k) = 0.(5.22)

Proof. We know from Theorem 5.1 that the limiting function values at the vertices
are equal, say to f∗. If f∗ = fmin, then by strict convexity this value is assumed at a
unique point, in which case the desired result (5.22) follows immediately and the proof
is complete. Furthermore, Lemma 5.1 shows that, if the best vertex x1 eventually
becomes constant, then the remaining two vertices converge to x1, and (5.22) holds
in this case also.

In the rest of the proof we assume that f∗ > fmin and that x1 changes infinitely
often. Corresponding to f∗, we define the level set L∗ and its boundary Γ∗:

L∗ = {x | f(x) ≤ f∗} and Γ∗ = {x | f(x) = f∗}.(5.23)

It follows from our assumptions about f that L∗ is nonempty, closed, and strictly
convex.

The proof is obtained by contradiction. Suppose that (5.22) does not hold, so
that

lim sup
k→∞

vol(∆k) > 0.(5.24)

We know that all Nelder–Mead simplices ∆k lie inside the compact level set {x |
f(x) ≤ f(x

(0)
3 )}, and that all vertex function values converge to f∗. Hence we can

extract at least one subsequence {kj} of iterations such that the simplices ∆kj satisfy

lim
j→∞

∆kj = T,(5.25)

where T is a triangle of nonzero volume whose vertices all lie on Γ∗.
Next we consider properties of the set T∗ of all triangles T satisfying (5.25) for

some subsequence kj . Since shrink steps cannot occur, a Nelder–Mead iteration on a
given triangle is specified by two values: a distinguished (worst) vertex and a move
type τ , where τ is one of (1, 2, 1

2 ,− 1
2 ). For each sequence kj satisfying (5.25) with

limit triangle T , there is a sequence of pairs of distinguished vertices and move types
associated with moving from ∆kj to the next simplex ∆kj+1. For any such pair that
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PROPERTIES OF NELDER–MEAD 143

occurs infinitely often in the sequence of iterations {kj}, the vertices of ∆kj+1, the
successor simplices, are a continuous function of the vertices of ∆kj . Since all limit
vertex function values are equal to f∗, so that all limit vertices lie on Γ∗, there is a
subsequence {kji} of {kj} such that

lim
i→∞

∆kji+1 → T̃ ∈ T∗.

We conclude that for every triangle T in T∗, there is a Nelder–Mead move which,
applied to T , yields a new triangle T̃ in T∗. A similar argument shows that every
triangle in T∗ is the result of applying a Nelder–Mead move to another triangle in T∗.

Next we consider sequences of possible Nelder–Mead moves among elements of
T∗. Observe first that no move of type −1

2 (inside contraction) can occur, since the
new vertex would lie inside the convex hull of the original three vertices, contradicting
the fact that the original three vertices and the new vertex must lie on Γ∗.

The volumes of triangles in T∗ are bounded above because all vertices of such
triangles lie on the boundary of L∗. Define

V = sup { vol(T ) | T ∈ T∗ },(5.26)

where V > 0 because of assumption (5.24), and choose a triangle T ′ in T∗ for which

vol(T ′) > 1
2V.(5.27)

Let V∗ be the volume of the level set L∗, and define the integer h∗ as

h∗ = 1 +
⌈V∗
V

⌉
.(5.28)

Now consider all sequences of h∗ consecutive simplices produced by the Nelder–Mead
algorithm applied to the initial simplex ∆0,

∆r+1,∆r+2, . . . ,∆r+h∗ ,(5.29)

and define a sequence {Ti} of h∗ triangles in T∗, ending with the triangle T ′ of (5.27),
by extracting a subsequence {mj} for which

lim ∆mj+i = Ti for i = 1, . . . , h∗, with Ti ∈ T∗ and Th∗ = T ′.(5.30)

During any sequence of consecutive Nelder–Mead moves of type 1 (reflections),
volume is preserved (see Lemma 3.1) and all triangles are disjoint; no triangle can
be repeated because of the strict decrease requirement on the vertex function values.
Suppose that there is a sequence of consecutive reflections in the set of iterations
mj + 1, . . . , mj + h∗; then the associated limiting triangles have disjoint interiors,
cannot repeat, and lie inside the curve Γ∗. Since the volume enclosed by Γ∗ is V∗,
there can be at most h∗ − 1 consecutive reflections (see (5.28)), and it follows that,
for some i, the move from Ti to Ti+1 is not a reflection.

Consider the first predecessor Ti of Th∗ in the sequence (5.30) for which vol(Ti) 6=
vol(Th∗). The Nelder–Mead move associated with moving from Ti to Ti+1 cannot be
a contraction; if it were, then

vol(Ti) = 2 vol(T ′) > V,

which is impossible by definition of V (5.26) and T ′ (5.27). Thus, in order to satisfy
(5.30), the move from Ti to Ti+1 must be an expansion step, i.e., a move of type 2.
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We now show that this is impossible because of the strict convexity of L∗ and the
logic of the Nelder–Mead algorithm.

For the sequence {mj} of (5.30), the function value at the (accepted) expansion

point must satisfy f(x
(mj+i)
e ) ≥ f∗, since the function values at all vertices converge

from above to f∗. The reflection point ri for Ti is outside Ti and lies strictly inside
the triangle Ti+1, all of whose vertices lie on the curve Γ∗. (See Figure 7.) Since the
level set L∗ is strictly convex, f(ri) must be strictly less than f∗, the value of f on
Γ∗, and there must be a small open ball around ri within which the values of f are
strictly less than f∗.

ri

Ti Ti+1

Fig. 7. Position of the reflection point ri when the vertices of Ti and the expansion point (the new
vertex of Ti+1) lie on the boundary of a bounded strictly convex set.

The test reflection points x
(mj+i)
r converge to ri, and hence eventually f(x

(mj+i)
r )

must be strictly less than f∗. It follows that the Nelder–Mead algorithm at step mj+i
could have chosen a new point (the reflection point) with a lower function value than
at the expansion point, but failed to do so; this is impossible, since the Nelder–Mead
method accepts the better of the reflection and expansion points. (Note that this
conclusion would not follow for the Nelder–Mead algorithm in the original paper [6],
where the expansion point could be chosen as the new vertex even if the value of
f at the reflection point were smaller.) Thus we have shown that the assumption
lim supk→∞ vol(∆k) > 0 leads to a contradiction. This gives the desired result that
the Nelder–Mead simplex volumes converge to zero.

Having shown that the simplex volumes converge to zero, we now prove that the
diameters converge to zero, so that the Nelder–Mead simplices collapse to a point.

Theorem 5.2. (Convergence of simplex diameters to zero.) Let f be a strictly
convex function on R2 with bounded level sets. Assume that the Nelder–Mead algo-
rithm with reflection coefficient ρ = 1, expansion coefficient χ = 2, and contraction
coefficient γ = 1

2 is applied to f beginning with a nondegenerate initial simplex ∆0.
Then the simplices {∆k} generated by the algorithm satisfy

lim
k→∞

diam(∆k) = 0.(5.31)

Proof. The proof is by contradiction. Lemma 5.2 shows that vol(∆k)→ 0. Since
reflection preserves volume, infinitely many nonreflection steps must occur.

Suppose that the conclusion of the theorem is not true, i.e., that diam(∆k) does
not converge to zero. Then we can find a infinite subsequence {kj} for which the
associated simplices ∆kj have diameters bounded away from zero, so that

diam(∆kj ) ≥ α > 0.(5.32)
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PROPERTIES OF NELDER–MEAD 145

For each kj in this subsequence, consider the sequence of iterations kj , kj + 1, . . . ,
and let k′j denote the first iteration in this sequence that immediately precedes a
nonreflection step. Then the simplex ∆k′

j
is congruent to ∆kj , so that diam(∆k′

j
) ≥ α,

and a nonreflection step occurs when moving from ∆k′
j

to ∆k′
j
+1.

Now we define a subsequence k′′j of k′j with the following properties:
1. ∆k′′

j
converges to a fixed line segment [v0,v1], with v0 6= v1 and ‖v1 − v0‖2 ≥ α;

2. each Nelder–Mead step from ∆k′′
j

to ∆k′′
j

+1 has the same combination of dis-

tinguished (worst) vertex and move type among the nine possible pairs of three
vertices and three nonreflection moves.

Note that the vertices of ∆k′′
j

+1 are continuous functions of the vertices of ∆k′′
j

and

that the values of f at all vertices of ∆k′′
j

+1 must converge monotonically from above

to f∗.
The points v0 and v1 must lie on the boundary of the strictly convex level set

L∗ (5.23). If the vertices of ∆k′′
j

converge to three distinct points on the line segment

[v0,v1], strict convexity would imply that the function value at the interior point is
strictly less than f∗, which is impossible. Thus two of the three vertices must converge
to one of v0 and v1, which means that two of the vertices of ∆k′′

j
will eventually lie

close to one of v0 or v1. Without loss of generality we assume that two of the vertices
are near v0 and the remaining vertex is near v1.

To obtain a contradiction, we show that all nonreflection steps are unacceptable.
(i) An inside contraction applied to ∆k′′

j
with distinguished vertex near v0 produces

a (limit) vertex for ∆k′′
j

+1 at 3
4v0 + 1

4v1; an inside contraction with distinguished

vertex near v1 produces a limit vertex at 1
2v0 + 1

2v1. In either case, the limit
vertex for ∆k′′

j
+1 lies strictly between v0 and v1, giving a function value smaller

than f∗, a contradiction.
(ii) An outside contraction applied to ∆k′′

j
with distinguished vertex near v0 produces

a limit vertex for ∆k′′
j

+1 at 1
4v0 + 3

4v1, giving a contradiction as in (i). With

distinguished vertex near v1, an outside contraction produces a limit vertex at
− 1

2v1 + 3
2v0. Since v0 and v1 lie on the boundary of the strictly convex set

L∗, this limit vertex point lies outside the level set and hence has function value
greater than f∗. This contradicts the fact that the associated vertex function
values in ∆k′′

j
+1 must converge to f∗.

(iii) An expansion step with distinguished vertex near v0 produces a limit vertex for
∆k′′

j
+1 at 3v1 − 2v0, and an expansion step with distinguished vertex near v1

produces a limit vertex at 3v0 − 2v1. In both cases, the limit vertex lies outside
L∗. This means that its function value exceeds f∗, giving a contradiction.
Since a contradiction arises from applying every possible non-reflection move to

the simplex ∆k′′
j

, the sequence kj of (5.32) cannot exist. Thus we have shown that

lim diam(∆k) → 0, namely that each Nelder–Mead simplex eventually collapses to a
point.

Note that this theorem does not imply that the sequence of simplices {∆k} con-
verges to a limit point x∗. We do know, however, that all vertices converge to x1 if
this vertex remains constant (see Lemma 5.1); this situation occurs in the McKinnon
examples [5].

6. Conclusions and open questions. In dimension 1, the generic Nelder–
Mead method converges to the minimizer of a strictly convex function with bounded
level sets if and only if the expansion step is a genuine expansion (i.e., if ρχ ≥ 1).
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It is interesting that, apart from this further requirement, the conditions (2.1) given
in the original Nelder–Mead paper suffice to ensure convergence in one dimension.
The behavior of the algorithm in dimension 1 can nonetheless be very complicated;
for example, there can be an infinite number of expansions even when convergence is
M -step linear (Theorem 4.2).

In two dimensions, the behavior of even the standard Nelder–Mead method (with
ρ = 1, χ = 2, and γ = 1

2 ) is more difficult to analyze for two reasons:
1. The space of simplex shapes is not compact, where the shape of a simplex

is its similarity class; see the discussion at the end of section 2. It appears that the
Nelder–Mead moves are dense in this space, i.e., any simplex can be transformed by
some sequence of Nelder–Mead moves to be arbitrarily close to any other simplex
shape; this property reflects the intent expressed by Nelder and Mead [6] that the
simplex shape should “adapt itself to the local landscape.” This contrasts strongly
with the nature of many pattern search methods [13], in which the simplex shapes
remain constant.

2. The presence of the expansion step means that vol(∆) is not a Lyapunov
function3 for the iteration.

The two-dimensional results proved in section 5 seem very weak but conceivably
represent the limits of what can be proved for arbitrary strictly convex functions.
In particular, Theorem 5.2 leaves open the possibility that the ever-smaller simplices
endlessly “circle” the contour line f(x) = f∗. Since no examples of this behavior
are known, it may be possible to prove the stronger result that the simplices always
converge to a single point x∗.

An obvious question concerns how the Nelder–Mead method can fail to converge
to a minimizer in the two-dimensional case. Further analysis suggests that, for suitable
strictly convex functions (C1 seems to suffice), failure can occur only if the simplices
elongate indefinitely and their shape goes to “infinity” in the space of simplex shapes
(as in the McKinnon counterexample).

An interesting open problem concerns whether there exists any function f(x)
in R2 for which the Nelder–Mead algorithm always converges to a minimizer. The
natural candidate is f(x, y) = x2 + y2, which by affine-invariance is equivalent to
all strictly convex quadratic functions in two dimensions. A complete analysis of
Nelder–Mead for x2 + y2 remains an open problem.

Our general conclusion about the Nelder–Mead algorithm is that the main mys-
tery to be solved is not whether it ultimately converges to a minimizer—for general
(nonconvex) functions, it does not—but rather why it tends to work so well in practice
by producing a rapid initial decrease in function values.
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