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1 Introduction

Many complex systems can be modeled as networks. Informally, a network is
a collection of objects, referred to as nodes or vertices, that are connected to
each other in some fashion; the connections are referred to as edges. The edges
may be directed or undirected, and may be equipped with positive weights that
correspond to their importance. The nature of the nodes, edges, and weights
depends on the application. Some modeling situations require more than one
kind of nodes or more than one type of edges.

Multilayer networks are networks that consist of different kinds of edges
and possibly different types of nodes. This kind of networks arise when one
seeks to model a complex system that contains connections and objects with
different properties. For instance, when modeling train and bus connections

S. El-Halouy
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, and Labo-
ratory LAMAI, Faculty of Sciences and Technologies, Cadi Ayyad University, Marrakech,
Morocco
E-mail: elhalouysmahane@gmail.com

S. Noschese
Dipartimento di Matematica “Guido Castelnuovo”, SAPIENZA Università di Roma, P.le
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in a country, the train routes and bus routes define edges with distinctive
properties, and the train and bus stations may make up nodes with diverse
properties. The connections between a train station and an adjacent bus sta-
tion give rise to yet another kind of edges, along which travelers walk. Edge
weights may be chosen proportional to the number of travelers along an edge,
proportional to the distance between the nodes that the edge connects, or
proportional to the cost of traveling along an edge. Whether it is meaningful
to distinguish between the different kinds of edges and nodes, and using edge
weights, depends on the nature and purpose of the network model.

It is often of interest to determine the ease of communication between
nodes in a network, as well as how important a node is in some well-defined
sense. Also, it is desirable to be able to assess the sensitivity of the measure of
communication between the nodes to perturbations in the edge weights. For
instance, if the nodes represent cities, and the edges represent roads between
the cities, with edge weights proportional to the amount of traffic on each
road, then one may be interested in which road should be widened or made
narrower to increase or reduce, respectively, communication in the network
the most. The available data may be contaminated by measurement errors.
We are then interested in how sensitive to errors in the data our choice of road
to widen or make narrower is.

The investigation of the importance of nodes and edges, as well as the
sensitivity of the communicability within a network to changes in the edge
weights of the network with only one kind of nodes and edges has received
considerable attention in the literature; see, e.g., [4–8,11,13] and references
therein. The present paper extends the communicability and sensitivity anal-
ysis in [4,13] to multilayer networks. Since multilayer networks typically have
a large number of nodes and edges, we focus on techniques that are well suited
for large-scale networks.

We consider multilayer networks that are represented by graphs which
share the same set of vertices VN = {1, 2, . . . , N} and have edges both within
a layer and between layers. We will simply refer to this kind of networks
as multilayer networks. Nice recent discussions on multilayer networks are
provided by Bergermann and Stoll [2] and Tudisco et al. [15]. De Domenico
et al. [3] describe how multilayer networks with L layers can be modeled by a
fourth order tensor and introduce a supra-adjacency matrix B ∈ RNL×NL for

the representation of such networks. In detail, let A(`) = [w
(`)
ij ]Ni,j=1 ∈ RN×N be

the non-negative adjacency matrix for the graph in layer ` for ` = 1, 2, . . . , L.

Thus, the entry w
(`)
i,j ≥ 0 is the “weight” of the edge between node i and

node j in layer `. If the graph is “unweighted”, then all nonzero entries of
A(`) are set to one. The matrix B ∈ RNL×NL is a block matrix with N × N
blocks. The `th diagonal block is the adjacency matrix A(`) ∈ RN×N for layer
`, for ` = 1, 2, . . . , L; the off-diagonal N × N block in position (`1, `2), with
1 ≤ `1, `2 ≤ L and `1 6= `2 represents the inter-layer connections between the
layers `1 and `2; see Section 4 for details.
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We may consider B an adjacency matrix for a complex network with NL
nodes. Assuming this network is strongly connected, the Perron-Frobenius
theory applies, from which it follows that B has a unique eigenvalue ρ > 0
of largest magnitude (the Perron root) and that the associated right and left
eigenvectors, x and y, respectively, can be normalized to be of unit Euclidean
norm with all components positive. These normalized eigenvectors are com-
monly referred to as the right and left Perron vectors, respectively. Thus,

Bx = ρx, yTB = ρyT . (1)

We will assume throughout this paper that the Perron vectors x and y have
been normalized in the stated manner.

Following [4], we introduce the Perron network communicability,

CPN(B) = exp0(ρ)1T
NLyxT1NL = exp0(ρ)

NL∑
j=1

yj

NL∑
j=1

xj

 , (2)

where

exp0(t) = exp(t)− 1, x = [x1, x2, . . . , xNL]T , y = [y1, y2, . . . , yNL]T ,

and 1NL ∈ RNL denotes the vector of all entries one. The communicability
measure (2) is analogous to the total network communicability for a general
adjacency matrix M ∈ RNL×NL with NL nodes,

CTN(M) = 1T
NL exp(M)1NL,

introduced by Benzi and Klymko [1], but is cheaper to compute for networks
with many nodes or layers, i.e., when NL is large.

Due to the normalization of the Perron vectors x and y, we have

1 ≤
NL∑
j=1

xj ≤
√
NL, 1 ≤

NL∑
j=1

yj ≤
√
NL.

Therefore,
exp0(ρ) ≤ CPN(B) ≤ NL exp0(ρ). (3)

Typically, exp0(ρ)� NL. It then follows that the quantity exp0(ρ) is a fairly
accurate indicator of the Perron communicability of the graph represented by
B in the sense that it suffices to consider exp0(ρ) to determine whether the
total Perron communicability of a network is large or small. The right-hand
side bound in (3) will be sharpened slightly in Proposition 2 below.

Following the approach in [3], we form the leading eigentensors Y ∈ RN×L

and X ∈ RN×L for the multilayer network associated with B by reshaping
the Perron vectors y and x, respectively. Thus, the first column of the matrix
Y is made up of the first N components of the vector y, the second column
of Y are the next N components of the vector y, etc. The joint eigenvector
centrality of node i in layer ` is given by the entry in position (i, `) of Y . The
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rows of Y represent the eigenvector versatility of the nodes. Moreover, the
(scalar) versatility of node i is given by

νi = (Y 1L)i, i = 1, 2, . . . , N. (4)

The vector 1L may be replaced by some other vector in RL with nonnegative
entries if another weighting of the columns of Y is desired.

Remark 1 If we replace the matrix B in (1) by BBT , then we obtain analo-
gously to (2) the Perron hub communicability

CPN (BBT ) = exp0(ρBBT)1T
NLxxT1NL,

where ρBBT is the Perron root for BBT and x is the Perron vector for BBT .
Similarly, if we replace the matrix B in (1) by BTB, then we obtain the Perron
authority communicability

CPN (BTB) = exp0(ρBTB)1T
NLxxT1NL,

where ρBTB = ρBBT is the Perron root for BBT and x is the Perron vector
for BBT .

We turn to special multilayer networks with L layers that do not have
edges between nodes in different layers, and we will refer to these kinds of
networks as multiplex networks. They can be represented by a third-order
tensor. The graph for layer ` is associated with the non-negative adjacency
matrix A(`) ∈ RN×N , ` = 1, 2, . . . , L, and a mode-1 unfolding of the third-
order tensor that represents the network yields an L-vector of these adjacency
matrices:

A = [A(1), A(2), . . . , A(L)] ∈ RN×NL. (5)

The supra-adjacency matrix B ∈ RNL×NL for the multiplex network associ-
ated with (5) has the diagonal blocks A(`), ` = 1, 2, . . . , L, and every N ×N
off-diagonal block is the identity matrix IN ∈ RN×N ; see, e.g., [3]. Hence, the
coupling is diagonal and uniform. One may introduce a parameter γ ≥ 0 that
determines how strongly the layers influence each other. This yields the matrix

B :=B(γ) = diag[A(1), A(2), . . . , A(L)] + γ(1L1T
L ⊗ IN − INL), (6)

where ⊗ denotes the Kronecker product; see [2].
Due to the potentially large size of the matrices B in (1) and (6) one

typically computes their right and left Perron vectors by an iterative method,
which only require the evaluation of matrix-vector products with the matrices
B and BT . Clearly, does not have to store B, but only the matrix (5) to
evaluate matrix-vector products with the matrix (6) and its transpose.

Remark 2 If one is interested in the Perron hub or authority communicability
of the network, then the matrices A(`) in (5) should be replaced by A(`)(A(`))T

or (A(`))TA(`), respectively, for ` = 1, 2, . . . , L.
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Following [14, Definition 3.5], we define for future reference the L-dimensional
vectors of the marginal layer Y -centralities and the marginal layer X-centralities

cY = Y T1N and cX = XT1N , (7)

respectively.
It is the purpose of the present paper to investigate the Perron network

communicability of multilayer networks that can be represented by a supra-
adjacency matrix B ∈ RNL×NL, as well as the special case of multiplex net-
works that are represented by the matrix (5). We also are interested in the
sensitivity of the communicability to errors or changes in the entries of the
supra-adjacency matrix B and in the entries of (5) in the case of a multiplex
network. The particular structure of B in (6) for multiplex networks will be
exploited.

The organization of this paper is as follows. The Wilkinson perturbation
for a supra-adjacency matrix is defined in Section 2. This perturbation forms
the basis for our sensitivity analysis of multilayer networks. Section 3 discusses
some properties of the Perron and total network communicabilities. A sensi-
tivity analysis for multilayer networks based on the Wilkinson perturbation is
presented in Section 4. Both Sections 3 and 4 first discuss multilayer networks
that can be defined by general supra-adjacency matrices, and subsequently
describe simplifications that ensue for multiplex networks that can be defined
by (5). Section 5 presents a few computed examples, and Section 6 contains
concluding remarks.

2 Wilkinson perturbation for supra-adjacency matrices

Let B ∈ RNL×NL be the supra-adjacency matrix in (1). We assume that B is
irreducible. This is equivalent to that the graph associated with B is strongly
connected; see, e.g., [9]. Let ρ > 0 be the Perron root of B, and let x and y be
the associated right and left normalized Perron vectors. Thus, all entries of x
and y are positive, and ‖x‖2 = ‖y‖2 = 1. Throughout this paper ‖ ·‖2 denotes
the Euclidean vector norm or the spectral matrix norm, and ‖ · ‖F stands for
the Frobenius norm. The vectors x and y are uniquely determined.

Let E ∈ RNL×NL be a nonnegative matrix such that ‖E‖2 = 1, and let
ε > 0 be a small constant. Denote the Perron root of B + εE by ρ+ δρ. Then

δρ = ε
yTEx

yTx
+O(ε2); (8)

see [10]. Moreover,

yTEx

yTx
=
|yTEx|

yTx
≤ ‖y‖2‖E‖2‖x‖2

yTx
=

1

cos θ
, (9)

where θ is the angle between x and y. The quantity 1/ cos θ is referred to as
the condition number of ρ and denoted by κ(ρ); see Wilkinson [16, Section 2].
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Note that when B is symmetric, we have x = y and, hence, θ = 0. In this
situation ρ is well-conditioned. Equality in (9) is achieved for the Wilkinson
perturbation

E = yxT ∈ RNL×NL, (10)

which we will refer to as W . For E = W , the perturbation (8) of the Perron
root is δρ = εκ(ρ) +O(ε2).

We conclude this section by observing that all the above statements hold
true if everywhere the spectral norm is replaced by the Frobenius norm.

3 Some properties of the Perron and total network
communicabilities

This section discusses a few properties of the Perron communicability and how
it relates to the total network communicability.

Proposition 1

CPN(B) = exp0(ρ)cTY cX , (11)

where cX is the vector of the marginal layer X-centralities and cY is the vector
of the marginal layer Y -centralities in (7).

Proof The proof follows by (2), observing that

1T
NLyxT1NL = 1T

NY X
T1N = cTY cX .

Remark 3 When the network is undirected, according the definition in (7),
one has that cX = cY , because x = y. This gives, by (11), the symmetric
Perron communicability

CPN sym(B) = exp0(ρ)‖cY ‖22.

Proposition 2
CPN(B) ≤ NL exp0(ρ) cosφ,

where φ is the angle between the vector cY of the marginal layer Y -centralities
and the vector cX of the marginal layer X-centralities in (7).

Proof One has
cTY cX = ‖cX‖2‖cY ‖2 cosφ,

where φ is the angle between cY and cX . Let ‖ · ‖1 denote the vector 1-norm.
It is evident that

‖cX‖1 =

NL∑
j=1

xj = ‖x‖1, ‖cY ‖1 =

NL∑
j=1

yj = ‖y‖1.

Since

‖cX‖2 ≤ ‖cX‖1 = ‖x‖1 ≤
√
NL‖x‖2, ‖cY ‖2 ≤ ‖cY ‖1 = ‖y‖1 ≤

√
NL‖y‖2,
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we have the bound

‖cX‖2‖cY ‖2 ≤ NL‖x‖2‖y‖2 = NL,

which gives the proof, by using (11).

Remark 4 When the network is undirected, by Remark 3, Proposition 2 reads

CPN sym(B) ≤ NL exp0(ρ),

which is the same bound as (3).

Matrix function-based communicability measures have been generalized in
[2] to the case of layer-coupled multiplex networks that can be represented by
supra-adjacency matrices B of the form (6), i.e., by A defined by (5). Following
the argument in [4], assume that the Perron root ρ of a supra-adjacency matrix
B of the form (6) is significantly larger than the magnitude of its the other
eigenvalues. Then

CTN
0 (A) ≈ κ(ρ)CPN(A),

where CTN
0 (A) = 1T

NL exp0(B)1NL and CPN(A) refers to the Perron network
communicability (2) when B is of the form (6). Thus, the multiplex total
network communicability depends on the conditioning of the Perron root.

Remark 5 It is straightforward to see that if the network represented by the
matrix B of the form (6) is undirected, and the Perron root ρ is significantly
larger than the magnintude of the other eigenvalues of B, then one has

CTN sym
0 (A) ≈ CPN sym(A).

Indeed, the Perron vectors x and y coincide so that κ(ρ) = 1.

4 Multilayer network Perron root sensitivity

Let the supra-adjacency matrix B ∈ RNL×NL be associated with an L-layer
network as described above. Then an edge from node i in layer `i to node j in
layer `j , with i, j ∈ {1, 2, . . . , N}, i 6= j, and `i, `j ∈ {1, 2, . . . , L}, is associated

with the (i, j)th entry w
(`i,`j)
ij > 0 of the (`i, `j) block of order N ×N of the

matrix B.
Consider increasing [decreasing] the weight w

(`i,`j)
ij of an existing edge by

ε > 0 [ε < 0], or introducing a new edge from node i in layer `i to node j in
layer `j with weight ε > 0. This corresponds to perturbing the supra-adjacency
matrix B by the matrix εE, where the matrix E ∈ RNL×NL has entries zero
everywhere, except for the entry one in position (i, j) in the block (`i, `j). It
follows from (8) that the impact on the Perron root of this perturbation is

δρ = εκ(ρ) yN(`i−1)+i xN(`j−1)+j +O(ε2).
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The notion of multilayer network Perron root sensitivity with respect to
the direction (i, `i) −→ (j, `j), defined by

SPR
i, j, `i, `j (B) := κ(ρ) yN(`i−1)+i xN(`j−1)+j , (12)

is helpful for determining which edge(s) to insert in, or remove from, a multi-
layer network.

Remark 6 Notice that the largest entries of x and y are strictly smaller than
1, hence the multilayer network Perron root sensitivity (12) with respect of
any direction is less than κ(ρ). Indeed, x and y are unit vectors with positive
entries so that, if, e.g., xN(`j−1)+j = 1, this would imply that xk = 0 for all
k 6= N(`j − 1) + j, which is not possible.

We also introduce the multilayer network Perron root sensitivity matrix as-
sociated with B, denoted by SPR(B), whose entries are given by the quantities
SPR
i, j, `i, `j

(B). One easily derives the following result.

Proposition 3 The multilayer Perron root sensitivity matrix is given by

SPR(B) = κ(ρ)W ∈ RNL×NL, (13)

where W is the Wilkinson perturbation defined by (10).

Remark 7 Notice that both the spectral norm and the Frobenius norm of the
multilayer network Perron root sensitivity matrix are equal to the condition
number of the Perron root. Moreover, the Perron communicability (2) reads

CPN(B) =
exp0(ρ)

ρ
1T
NLS

PR(B)1NL.

Remark 8 Following [13, Eqs (2.1)-(2.2)], the spectral impact of each existing
edge in B can be analyzed by means of the matrix

−1

ρ
B ◦ SPR(B) ∈ RNL×NL,

where ◦ denotes the Hadamard product.

The exponential of the spectral radius of the graph associated with B often
is a fairly accurate relative measure of the Perron network communicability
of the graph; cf. (3). If we would like to modify the graph by adding an edge
that increases the Perron network communicability as much as possible, then
we should choose the indices i, j, `i, and `j for the new edge so that

xN(`j−1)+j = max
1≤k≤NL

xk, yN(`i−1)+i = max
1≤k≤NL

yk.

Conversely, assume that we wish to simplify a graph by removing an edge,
and we would like this simplification not to affect the Perron network commu-
nicability much. We then should choose the indices i, j, `i, and `j for the edge
to be discarded so that

xN(`j−1)+j = min
1≤k≤NL

xk, yN(`i−1)+i = min
1≤k≤NL

yk,
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where we only minimize over XXX: We remark that the perturbation bound
(8) only is valid for ε of small enough magnitude.

Example 4.1. Consider a monoplex network made up of a directed circu-
lar graph, whose associated adjacency matrix B = [wij ]

N
i,j=1 is the circulant

matrix defined by

wi,i+1 = 1, i = 1, 2, . . . , N − 1, wN,1 = 1,

with all other entries zero. The eigenvalues of B are equidistant on the unit
circle in the complex plane with Perron root ρ = 1. The perturbation E =
−eNeT

1 gives the downshift matrix; all its eigenvalues vanish. Thus, ρ(B+E) =
0. This perturbation is too large for the expansion (8) to be meaningful. �

Example 4.2. Removing an edge from a graph may make the graph discon-
nected. Then the bound (8) might not apply even if the removed edge only
has a tiny positive weight. This can be seen considering the graph in Example
4.1 with the weight wN,1 reduced to 10−4. �

Despite the limitations of the analysis illustrated by Examples 4.1 and
4.2, the perturbation result (8) is useful for choosing which edge(s) to remove
to simplify the multilayer graph. This is illustrated in Section 5. It may be
desirable that the graph obtained after removing an edge is connected. The
connectedness has to be verified separately.

Remark 9 Notice that when the network is undirected, it may be meaningful
to require the perturbation of the network also be symmetric. Thus, instead of
considering the network sensitivity (12) with regard to the direction (i, `i) −→
(j, `j), we investigate the sensitivity of the network with regard to perturbations
in the directions (i, `i) −→ (j, `j) and (j, `j) −→ (i, `i). This results in the
expression

SPR sym
i, j, `i, `j

(B) := κ(ρ) (yN(`i−1)+i xN(`j−1)+j + yN(`j−1)+j xN(`i−1)+i)

= 2xN(`i−1)+i xN(`j−1)+j ,

where we have used that x = y. This expression is analogous to (12).

We conclude this section with some comments on multiplex networks.
In such a network, an edge from node i to node j in layer `, with i, j ∈
{1, 2, . . . , N}, i 6= j, and ` ∈ {1, 2, . . . , L} is associated with the entry w

(`)
ij ≥ 0

of the adjacency matrix A(`). Increasing the weight w
(`)
ij > 0 of an existing

edge by ε > 0, or introducing a new edge by setting a zero weight wij to
ε > 0, means perturbing A in (5) by εP, where

P = [ON , . . . , ON , P
(`)
ij , ON , . . . , ON ] ∈ RN×NL with P

(`)
ij = eie

T
j ∈ RN×N .

(14)
Here ON ∈ RN×N denotes the zero matrix. The perturbation εP corresponds
to perturbing the supra-adjacency matrix B by an NL × NL block matrix
with all null N ×N blocks except for the `th diagonal block A(`) in which the
(i, j)-entry is set equal to ε.
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Introduce the multiplex Perron root sensitivity SPR
i, j, `(A) with respect to

the direction (i, j) in layer `,

SPR
i, j, `(A) := κ(ρ) yN(`−1)+i xN(`−1)+j .

which is analogous to the quantity (12) for more general multilayer networks.
Thus, if P is defined by (14) and A by (5), one has, from (8), δρ ≈ εSPR

i, j, `(A).

Analogously, consider reducing the (i, j)th entry w
(`)
ij > 0 of the adjacency

matrix A(`) by ε and assume that ε, 0 < ε � 1, is small enough so that
the multiplex associated with A − εP is nonnegative and connected. Then
δρ ≈ −εSPR

i, j, `(A).
Moreover, as shown in Remark 9, considering an undirected multiplex,

results in the expression

SPR sym
i, j, ` (A) := 2xN(`−1)+i xN(`−1)+j .

Recall that the Perron root sensitivity matrix (13) for general multilayer
networks depends on the maximal perturbation W ∈ RNL×NL of the supra-
adjacency B as well as on the condition number κ(ρ). By assuming that B is
of the type in (6), the results in the following section will lead to analogous
properties of the multiplex Perron root sensitivity matrix SPR(A), whose non-
null entries entries are given by the quantities SPR

i, j, `(A).

4.1 Exploiting the multiplex stucture

Consider the cone D of all nonnegative block-diagonal matrices in RNL×NL

with L blocks in RN×N and let M |D denote the matrix in D that is closest
to a given matrix M ∈ RNL×NL with respect to the Frobenius norm. It is
straightforward to verify that M |D is obtained by replacing all the entries
outside the block-diagonal structure by zero.

Let E ∈ D be such that ‖E‖F = 1, and let ε > 0 be a small constant. Then

yTEx

yTx
=
|yTEx|

yTx
≤ ‖y‖2‖yxT |D‖F ‖x‖2

yTx
=
‖yxT |D‖F

yTx
, (15)

with equality for the D-structured analogue of the Wilkinson perturbation

E =
yxT |D
‖yxT |D‖F

; (16)

see [12]. The quantity ‖yxT |D‖F /yTx = κ(ρ)‖yxT |D‖F will be referred to as
the D-structured condition number of ρ and denoted by κD(ρ). For E in (16),
the perturbation (8) of the Perron root is δρ = εκD(ρ) +O(ε2).

Thus, the D-structured analogue of the Wilkinson perturbation is the max-
imal perturbation for the Perron root ρ of a supra-adjacency matrix of the type
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in (6). It is intuitive that the multiplex Perron root sensitivity matrix should
consist in the projection into D of (13) and, in fact, it is straightforward de-
riving the following results.

Proposition 4 The multiplex Perron root sensitivity matrix is given by

SPR(A) = κ(ρ)W |D ,

where W is the Wilkinson perturbation defined by (10) and D is the cone of
all nonnegative block-diagonal matrices in RNL×NL with L blocks in RN×N .

Analogously to (13), the multiplex Perron root sensitivity matrix is the prod-
uct of the maximal admissible perturbation and the relevant condition number
of the Perron value. That is to say that SPR(A) is given by the product of the
D-structured condition number of ρ, κD(ρ), and the D-structured analogue of
the Wilkinson perturbation W :

SPR(A) = κ(ρ)‖W |D‖F
W |D
‖W |D‖F

.

Hence, the Frobenius norm of the multiplex Perron root sensitivity matrix is
equal to the structured condition number κD(ρ) of the Perron root; see Remark
7 for the general case of a multilayer network.

The above argument quantitatively shows that the Perron communicability
in multiplexes is less sensitive, both component-wise and norm-wise, than the
Perron communicability in more general multilayer networks.

Remark 10 Following the argument in Remark 7, we may claim that the
effective Perron communicability in a multiplex is

CPN(A) =
exp0(ρ)

ρ
1T
NLS

PR(A)1NL.

Moreover, observing that

1T
NLS

PR(A)1NL ≤ NL‖SPR(A)‖F = NLκD(ρ),

gives the following upper bound, which is sharper than (3),

CPN(A) ≤ NL exp0(ρ)‖W |D‖F .

We conclude by observing that the multiplex Perron root sensitivity matrix
may have the following alternative representation:

SPR(A) = κ(ρ)W ,

where
W := [W (1),W (2), . . . ,W (L)] ∈ RN×NL. (17)

Here W (`) ∈ RN×N is constructed by multiplying the `th column of Y by
the `th row of XT , for ` = 1, 2, . . . , L, where the matrices X,Y ∈ RNL are
determined by reshaping the right and left Perron vectors x and y of B; see
Section 1 for the definition of X and Y .
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Remark 11 Analogously to Remark 8, one notices that the analysis of the
spectral impact of each existing edge in A can be made, according to [13, Eqs
(2.1)-(2.2)], by means of

−1

ρ
A ◦ SPR(A).

4.2 Exploiting the sparsity structure of multiplexes

When considering perturbation of existing edges, in fact we take into account
the projection of W into the cone S of all matrices in D having the same
sparsity structure as the given diag(A(1), . . . , A(L)). The argument that lead
to the structured results in (15) and (16) holds true for any (further) sparsity
structure of the matrix diag(A(1), . . . , A(L)). Moreover, κS(ρ) ≤ κD(ρ) ≤ κ(ρ).
Thus, we easily derive the following result for the multiplex Perron root struc-
tured sensitivity matrix SPR struct(A), whose non-null entries entries are given
by the quantities SPR

i, j, `(A) relevant to the positive entries in B.

Proposition 5 The multiplex Perron root structured sensitivity matrix is given
by

SPR struct(A) = κ(ρ)W |S ,

where W is the Wilkinson perturbation defined by (10) and S is the cone of
all nonnegative block-diagonal matrices in RNL×NL with L blocks in RN×N

having the same sparsity structure as the diagonal block matrices of the given
B (6).

One has the following component-wise and norm-wise inequalities:

SPR struct(A) ≤ SPR(A),

‖SPR struct(A)‖F ≤ ‖SPR(A)‖F .

Remark 12 Following the argument in Remark 10, we are in a position to
introduce the notion of structured Perron communicability in a multiplex and
claim that

CPN struct(A) =
exp0(ρ)

ρ
1T
NLS

PN struct(A)1NL,

obtaining, by

1T
NLS

PR struct(A)1NL ≤ NL‖SPR struct(A)‖F = NLκS(ρ),

the following sharper upper bound

CPN struct(A) ≤ NL exp0(ρ)‖W |S‖F ≤ NL exp0(ρ)‖W |D‖F .
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Finally, one may alternatively represent SPR struct(A) as

SPR struct(A) = κ(ρ)W||S ,

where W||S is obtained from W in (17), by projecting each matrix W (`) into
the cone S(`) of all nonnegative matrices in RN×N having the same sparsity
structure as the given A(`), for ` = 1, 2, . . . L.

4.3 About the possible symmetry pattern of multiplexes

Assume the network be represented by a symmetric supra-adjacency matrix
B of the type in (6). Applying the arguments in the preceding subsections to
the cone of all the symmetric matrices in D [all the symmetric matrices in
S] would lead to the same structured analogue of the Wilkinson perturbation
as W |D [as W |S ]. Indeed, as the network is undirected the Perron vectors
coincide, so that the Wilkinson perturbation W = yxT = yyT is a symmetric
matrix itself.

5 Computed examples

5.1 Example 1 : Small synthetic multilayer network

We construct a small unweighted general multilayer network with n = 4 nodes
and L = 3 layers. The block diagonal matrices are obtained as the adjacency
matrices of the the graphs representing each layer. The off diagonal blocks
represent the edges connecting nodes from different layers. Some of the edges
are directed, which result in a non-symmetric supra adjacency matrix. The
perron root of the supra adjacency matrix is ρ(B) = 2.3471 and its condition
number is κ(ρ(B)) = 1.0248 Let ε = 0.4. The new Perron root ρ(B + εW ),
where W is the matrix in (10), is 2.7516. Thus the spectral radius increases
by 0.4045 as expected since εκ(ρ) = 0.4099 If we replace the matrix W by the
matrix of all ones, normalized to be of unit Frobenius norm, then the spectral
radius increases by 0.3452. Clearly, this is not an accurate estimate of the ac-
tual worst-case sensitivity of ρ(B) to perturbations.
Now, we compute the largest entry of the Perron root sensitivity matrix
SPR
2,3,4,2(B) = 0.2134 Increasing the flow of the edge connecting node 2 from

layer 3 and node 4 in layer 2 will result in an important change in the Perron
root.

5.2 Example 2 : ScotlandYard data set

In this example, we consider the Scotland Yard transportation network created
by the authors of [2]. It consists ofN = 199 nodes representing public transport
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stops in the city of London and L = 4 layers representing different mode of
transportation (boat, underground, bus and taxi). The edges are weighted and
undirected. We compute the perron root of the supra adjacency matrix ρ(B) =
17.6055 and its condition number is κ(ρ(B)) = 1 Let ε = 0.5. The new Perron
root ρ(B + εW ), where W is the matrix in (10), is 18.1055. Thus the spectral
radius increases by 0.5 as expected since εκ(ρ) = 0.5 If we replace the matrix
W by the matrix of all ones, normalized to be of unit Frobenius norm, then
the spectral radius increases by 0.009. Clearly, this is not an accurate estimate
of the actual worst-case sensitivity of ρ(B) to perturbations. Now, we compute
the largest entry of the Perron root sensitivity matrix SPR

89,2,67,2(B) = 0.2407
Increasing the weight of the edge connecting nodes 89 and 67 from layer 2
will result in an important change in the Perron root comparing to increasing
the weight of a random edge. ρ(B) increase by 0.2445 when Increasing the
weight of the edge connecting nodes 89 and 67 from layer 2 by 0.5 On the
other hand, the Perron root ρ(B) does not change when setting the entry
(162, 560) of B to zero. This corresponds to removing the edge connecting
the node 162 from layer 1 to its corresponding node 162 from layer 3. This
edge corresponds to the smallest entry of the Perron root sensitivity matrix
SPR
162,1,162,3(B) = 3.2279.10−5.

5.3 Example 3 : European Airlines data set

European Airlines data set consists of 450 nodes representing European air-
ports and 37 layers representing different airlines operating in Europe, with
3588 total number of edges. This network can be represented by a supra ad-
jacency matrix B as in (6) where the block diagonal matrices contain ones if
an airline offers a flight connection between two airports and zeros otherwise.
Each off diagonal block is the identity matrix, it reflects the effort added by
changing airlines on connecting flights. As mentioned in [], we only include
N = 417 nodes from the the largest connected component of the network
that is associated with the sum of the layers adjacency matrices to guar-
antee the existence of the Perron value. We compute the largest eigenvalue
ρ(B) = 38.3714. Let ε = 0.5, the new Perron root ρ(B + εW ), where W is
the matrix in (10), is 38.8714. Thus the spectral radius increases by 0.5 as
expected since εκ(ρ) = 0.5.
If we replace the matrix W by the matrix of all ones, normalized to be of unit
Frobenius norm, then the spectral radius increases by 0.1616. Clearly, this is
not an accurate estimate of the actual worst-case sensitivity of ρ(B) to per-
turbations.
Now, we compute the smallest entry of the Perron root sensitivity matrix
SPR
202,31,202,28(B) = 5.1845.10−13. This suggest that the cost of changing from

Czech airline to Niki airline at Valan Airport could be avoided without influ-
encing the communicability of the network.
On the other hand, we compute two largest entries of the Perron root sensitiv-
ity matrix SPR

38,1,2,1(B) = 0.004 and SPR
157,1,2,1(B) = 0.0036. This suggests that
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the Perron root may be increased the most by increasing the flow of flights op-
erated by Lufthansa airline between Munich airport and Frankfurt Am Main
airport and between Dusseldorf airport and Frankfurt Am Main airport.

5.4 Example 4 :General multilayer

We consider an example of a general multilayer with 180 nodes and 6 layers.
We compute the Perron root of the supra adjacency matrix ρ(B) = 8.1324 with
condition number κ(ρ) = 1.3277. Let ε = 0.5, the Perron root of B+εW , where
W is the Wilnkson matrix increased by 0.644 as expected since εκ(ρ) = 0.6639.
We compute the largest entry of the Perron root sensitivity matrix SPR

6,1,24,1(B) =
0.1922 Increasing the weight of the edge connecting node 6 and node 24 from
layer 1 by 0.5 increased in the Perron root by 0.1643.

6 Conclusion
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