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Abstract Gauss quadrature rules are commonly used to approximate inte-
grals determined by a measure with support on a real interval. These rules are
known to be internal, i.e., their nodes are in the convex hull of the support
of the measure. This allows the application of Gauss rules also when the inte-
grand only is defined on the convex hull of the support of the measure. It is
important to be able to estimate the quadrature error that is incurred when
using a Gauss rule. Averaged and generalized averaged Gauss quadrature for-
mulas are helpful in this respect. Given an n-node Gauss rule, the associated
(2n+ 1)-node averaged and generalized averaged Gauss rules are easy to com-
pute. However, they are not guaranteed to be internal, and in this situation
they cannot be used for integrands that are defined on the convex hull of the
support of the measure only. This paper investigates whether averaged and
generalized averaged Gauss quadrature formulas for modified Chebyshev mea-
sures of the third and fourth kinds are internal. We show that in situations
when this is not the case, truncated variants, that use fewer nodes, are in-
ternal. Computed examples that illustrate the performance of the quadrature
rules discussed are presented.
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1 Introduction

Let dλ be a nonnegative measure with infinitely many points of support on
the interval [a, b] ⊆ R, and assume that all the moments,

νk =

∫ b

a

xk dλ(x), k = 0, 1, 2, . . . ,

are well defined. We let {Pk}∞k=0 denote the sequence of monic orthogonal poly-
nomials with respect to the measure dλ, where deg(Pk) = k. The polynomials
Pk satisfy a three-term recurrence relation of the form

Pk+1(x) = (x− αk)Pk(x)− βkPk−1(x), k = 1, 2, . . . , (1)

where P−1(x) ≡ 0 and P0(x) ≡ 1, αk ∈ R, and βk > 0 for all k ≥ 1; see, e.g.,
[11,29] for many properties and examples of orthogonal polynomials.

It is well known that among all interpolatory quadrature rules with n nodes
for approximating the integral

I(f) =

∫ b

a

f(x) dλ(x), (2)

the rule with maximum degree of exactness is the n-node Gauss quadrature
rule with respect to the measure dλ,

QGn (f) =

n∑
i=1

w
(n)
i f(x

(n)
i ).

Its nodes x
(n)
i (i = 1, 2, . . . , n) are the zeros of the monic orthogonal polynomial

Pn and lie in the convex hull of the support of the measure dλ, and the

weights w
(n)
i (i = 1, 2, . . . , n) are positive; see [11,29] for proofs. The degree

of exactness of the Gauss rule QGn is 2n − 1, that is, QGn (p) = I(p) for all
polynomials p of degree not exceeding 2n− 1.

It is important to be able to estimate the magnitude of the quadrature
error

εn(f) = |(I −QGn )(f)|, (3)

because this helps determine a suitable value of n when applying the rule QGn
to approximate the integral (2) to desired accuracy. An unnecessarily large
value of n requires the computation of needlessly many nodes and weights, as
well as the evaluation of the integrand f at excessively many nodes, while a
too small value of n does not yield the required accuracy. The development
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of methods for estimating the error (3) therefore has received considerable
attention over many years.

A popular approach to estimate the error (3) is to use another quadrature
rule, A`, with ` > n nodes and degree of exactness larger than 2n − 1. One
then can use

|(A` −QGn )(f)| (4)

as an the estimate of (3).
A classical attractive choice for the rule A` with ` = 2n+ 1 is the Gauss-

Kronrod rule with 2n+ 1 nodes, n of which are the nodes of QGn , as its degree
of exactness is at least 3n + 1. However, the n + 1 extra nodes are neither
guaranteed to be real nor in the convex hull of the support of the measure
dλ(x); see [21] for a nice recent survey of Gauss-Kronrod rules. Moreover,
Gauss-Kronrod rules are somewhat complicated to compute; see [1,5,18].

Another approach to define a quadrature rule A` with ` = 2n + 1 is to
construct an (n + 1)-node quadrature formula Uθn+1 for approximating the
functional Iθ(f) = I(f)− θQGn (f) for some θ ∈ R\{0} and use the “stratified”
(2n+ 1)-node quadrature formula

A2n+1 = θQGn + Uθn+1 (5)

to estimate the error (3); see [16,22] for discussions of this approach. Here the
nodes of Uθn+1 are assumed to be distinct from the nodes of QGn .

We will refer to quadrature rules of the form (5) as Q2n+1. The nodes of
Q2n+1 are the n nodes of QGn and n + 1 extra nodes. We will let the latter
nodes be the zeros of the polynomial

Fn+1 = Pn+1 − β̄n+1Pn−1 (6)

for some constant β̄n+1 depending on θ. Polynomials of the form (6) are known
as quasi-orthogonal polynomials of order two. Their properties, and in partic-
ular, their zeros have been studied by Shohat [25] as well as by Joulak [14].

Two common choices of the coefficient β̄n+1 are

(i) β̄n+1 = βn. This gives the averaged rule QL2n+1, which was introduced by
Laurie [17]. It has degree of exactness at least 2n + 1. It corresponds to
θ = 1

2 .
(ii) β̄n+1 = βn+1. This leads to the generalized averaged rule QS2n+1 introduced

in [26,27]. Its degree of exactness is at least 2n+ 2.

Numerous computed examples that illustrate the high quality of the error
estimate (4) when ` = 2n + 1 and A2n+1 = QL2n+1 or A2n+1 = QL2n+1 for a
variety of measures dλ have recently been provided in [24].

The quadrature formulas QL2n+1 and QS2n+1 have real nodes and positive
weights, and are easy to compute; see [17,23]. However, they are not guaran-
teed to be internal, i.e., they may have nodes outside the convex hull of the
support of the measure dλ. In fact, it holds for both rules that they may have
at most one node to the left of the convex hull of the support dλ, and at most
one node to the right; see [17,26].
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The quadrature rules QL2n+1 and QS2n+1 are associated with symmetric
tridiagonal matrices of order 2n + 1 with positive off-diagonal entries. These
matrices are determined by the recursion coefficients of the monic orthogonal
polynomials (1); see, e.g., [23,28] for details. The eigenvalues of these matrices
are the nodes of the quadrature rules, and the square of suitably normalized
first components of the eigenvectors yield the weights; see [10,11]. This prop-
erty is used by the Golub-Welsch [12] algorithm for computing the nodes and
weights of Gauss-type quadrature rules.

When removing the last row and column of a symmetric tridiagonal matrix
with positive off-diagonal entries, the eigenvalues of the reduced matrix so
obtained strictly interlace the eigenvalues of the original matrix; see, e.g., [13].
It therefore may be possible to obtain internal quadrature rules with fairly high
degree of exactness by truncating the symmetric tridiagonal matrices that are
associated with the (2n+ 1)-node average Gauss rule or generalized averaged
Gauss rule. Specifically, we consider truncated generalized averaged quadrature
rules obtained by removing the r = n − 1 last rows and columns from the
symmetric tridiagonal matrix associated with the quadrature rule QS2n+1. We

refer to the (2n+ 2)-node quadrature rule so obtained as Q
(1)
n+2. Its nodes are

the zeros of the polynomial

tn+2(x) = (x− αn−1)Pn+1(x)− βn+1Pn(x).

This follows from the recursion relations (1).

The present paper is concerned with the internality of generalized averaged
Gauss quadrature rules associated with modifications of Chebyshev measures
of the third and fourth kinds. The measure for Chebyshev polynomials of the
third kind is given by

dλ(x) =

√
1 + x

1− x
dx, −1 < x < 1, (7)

and the measure for Chebyshev polynomials of the fourth kind is

dλ(x) =

√
1− x
1 + x

dx, −1 < x < 1. (8)

Chebyshev polynomials associated with these measures arise in the ap-
proximation of functions on the open interval −1 < x < 1, quadrature, and
the solution of differential equations; see [9,11,19]. We are interested in Gauss
quadrature rules associated with modifications of the measures (7) and (8). In
Section 2 we modify the measure (7) by a linear divisor, and in Section 3 by a
linear divisor and a linear factor. We are interested in studying whether aver-
aged and generalized averaged quadrature rules associated with these modified

measures are internal and, if not, whether truncated rules Q
(1)
n+2 associated

with generalized averaged quadrature rules are internal.
Orthogonal polynomials associated with modifications of Chebyshev mea-

sures of the second kind have been studied by Milovanović et al. [20], and
properties of averaged and generalized averaged Gauss quadrature associated
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with these measures are studied in [8]. Our investigation complements the
latter work as well as the study of averaged Gauss and generalized averaged
Gauss rules for modified Chebyshev measures of the first kind reported in
[6]. A few computed examples are presented in Sections 2-4, and concluding
remarks are provided in Section 5.

Claude Brezinski has made numerous profound contributions to orthogo-
nal polynomials, quadrature, function approximation, and extrapolation over
many years; see, e.g., [2–4] as well as his home page1. It is a great pleasure to
dedicate this work to him.

2 Modification by a linear divisor

Consider the Chebyshev measure of the third kind (7). The recurrence coeffi-
cients (1) for monic orthogonal polynomials associated with this measure are

α0 =
1

2
and

{
αk = 0,

βk = 1
4 ,

for k > 1;

see, e.g., [11,19]. The monic orthogonal polynomials are 1
2nVn(x), where the

Vn(x) are Chebyshev polynomials of the third kind. They are can be written
as

Vn(cos t) =
cos(n+ 1

2 )t

cos t2
.

We note that Vn(1) = 1 and Vn(−1) = (−1)n(2n+ 1).

This section discusses quadrature rules with respect to measures obtained
by modifying the measure (7) by a linear divisor. Thus, for a constant c ∈
R\{0}, define the modified Chebyshev measure

dλ̃(x) =

√
1 + x

1− x
· dx

x− δ
for − 1 < x < 1, (9)

where δ = − 1
2 (c+ c−1). We introduce

ć =

{
c, |c| < 1,

c−1, |c| > 1,
so that δ = −1

2
(ć+ ć−1). (10)

Everything in this section will be written solely in terms of ć. For instance,
the zeroth moment can be expressed as

µ0 = 2π · ć

1 + ć

for ć 6= −1. This moment is not defined for ć = −1.

We present derivations for the Chebyshev measures of the third kind. Re-
sults for Chebyshev measures of fourth kind follow from those for the third
kind by replacing x by −x and c by −c.

1 http://math.univ-lille1.fr/∼brezinsk
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2.1 Monic orthogonal polynomials

Let the measures dλ and dλ̃ be defined by (7) and (9), respectively. Let
the recurrence coefficients αk, βk of the monic orthogonal polynomials Pk
associated with the measure dλ be known; cf. (1). Kautsky and Golub [15]
and Gautschi [11, eqs. (2.4.24-25)] describe how the recurrence coefficients α̃k
and β̃k for the monic orthogonal polynomials P̃k associated with the measure
(9) can be computed from the coefficients αk and βk. Our discussion will follow
the description by Gautschi [11]. The algorithm described there uses the values

rk(δ) =
ρk+1(δ)

ρk(δ)
, ρk(δ) =

∫ 1

−1

Pk(x)

δ − x
dλ(x) (k = 0, 1, 2, . . .)

and ρ−1(δ) = 1. For the measures (7) and (9), we obtain the relations

rk = δ − 1

4rk−1
(k > 1),

α̃k = rk − rk−1, and β̃k =
rk−1

4rk−2
(k > 2),

with the initial values

r−1 = − 2πć

1 + ć
, r0 = −1

2
ć,

α̃0 =
1− ć

2
, α̃1 = 0, β̃0 =

2πć

1 + ć
, β̃1 =

1 + ć

4
.

An easy induction shows that rk = − 1
2 ć for all k > 1. This leads to the

following result.

Theorem 1 The recurrence coefficients for the monic orthogonal polynomials
associated with the measure dλ̃ in (9) are

α̃0 = 1−ć
2 , α̃k = 0 for k > 1,

β̃0 = 2πć
1+ć , β̃1 = 1+ć

4 , β̃k = 1
4 for k > 2.

The monic orthogonal polynomials P̃k with respect to dλ̃ are

P̃k(x) =
1

2k
(Vk(x) + ć Vk−1(x)) for k > 0. (11)

2.2 Internality of generalized averaged Gauss rules and truncated variants

The following result is a consequence of [28, Theorem 3.1]; related results can
be found in [6].

Theorem 2 The averaged Gauss formula QL2n+1 and the generalized avera-

ged Gauss formula QS2n+1 associated with the measure dλ̃, defined by (9),
both coincide with the Gauss-Kronrod formulas for n > 3. Consequently, the
polynomials Fn+1 in (6) are Stieltjes polynomials.
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We remark that for n = 1, the formulas QL2n+1 and QS2n+1 do not coincide,
whereas for n = 2 they do, but differ from the Gauss-Kronrod rule. For all
n ≥ 1, the quadrature rules QL2n+1 and QS2n+1 have n nodes that coincide
with the nodes of the Gauss rule QGn ; this follows from the construction of the
rules QL2n+1 and QS2n+1; see (5) as well as [23]. Consequently, these nodes are
internal. For n ≥ 2, the remaining n + 1 nodes, xF1 < xF2 < . . . < xFn+1, are
the zeros of the polynomial

Fn+1(x) = P̃n+1(x)− 1

4
P̃n−1(x);

cf. (6). Since the rules QL2n+1 and QS2n+1 coincide for n ≥ 2, we will simply
denote them by Q2n+1.

It suffices to investigate the location of the smallest and largest zeros, xF1
and xFn+1, respectively of Fn+1. Since Fn+1(1) = 0, we have by (11) that
xFn+1 = 1. Moreover, the condition xF1 > −1 is equivalent to

Vn+1(−1) + ćVn(−1)

Vn−1(−1) + ćVn−2(−1)
=

2n+ 1− (2n− 1)ć

2n− 3− (2n− 5)ć
> 1.

This inequality holds since ć 6 1. We have established the following result.

Theorem 3 For n > 2, the averaged quadrature rule Q2n+1 associated with

the measure dλ̃ defined by (9) is internal. The truncated variants of Q2n+1

have all nodes in the open interval (−1, 1). They therefore also are internal.

Example 1. Table 1 shows the smallest nodes x1 of averaged Gauss quadra-
ture rules Q2n+1 for several values of n and the parameter c for the measure

dλ̃ defined by (9). As predicted by the theory, the nodes xL1 are inside the
open interval (−1, 1). The largest node, xn+1, always is one. All computa-
tions reported in this paper were carried out using Matlab and high-precision
arithmetic.

c n x1 c n x1

5 −9.58144212765193(−1) 5 −9.51567627092748(−1)
10 −9.88635810821284(−1) 10 −9.87752883027287(−1)

−0.1 15 −9.94808737281532(−1) −0.9 15 −9.94541066229161(−1)
20 −9.97039635400724(−1) 20 −9.96925430010067(−1)
30 −9.98666154723967(−1) 30 −9.98631935917441(−1)

5 −9.61044001085879(−1) 5 −9.91110418792453(−1)
10 −9.89061954783418(−1) 10 −9.96163261105782(−1)

0.1 15 −9.94941871960338(−1) 0.9 15 −9.97760026932085(−1)
20 −9.97097295114571(−1) 20 −9.98509394574705(−1)
30 −9.98683690097044(−1) 30 −9.99192146304767(−1)

Table 1 Example 1: The smallest node of averaged Gauss rules Q2n+1 for the measure dλ̃
for several values of c and n.
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3 Modifications by a linear divisor and a linear factor

This section is concerned with the measure

dλ̂(x) = (x− γ) dλ̃(x) =
x− γ
x− δ

√
1 + x

1− x
dx for − 1 < x < 1, (12)

where

γ = −(
1

2
c+ c−1), δ = −1

2
(c+ c−1), (13)

and the constant c is the same as in Section 2; hence c ∈ R\{−1, 0}. Thus,

dλ̂(x) = (x− γ) dλ̃(x),

where dλ̃ is given by (9).

3.1 Monic orthogonal polynomials

Let the P̂k denote the monic orthogonal polynomials associated with the mea-
sure (12) and let α̂k, β̂k be the recurrence coefficients for these polynomials.

The polynomials P̂k are related to the polynomials P̃k associated with the
measure (9) for k > 0 by the relation

P̂k(x) =
P̃k+1(x)− rkP̃k(x)

x− γ
, where rk =

P̃k+1(γ)

P̃k(γ)
, (14)

under the assumption that P̃k(γ) 6= 0 for all k; see [11, Theorem 1.55].

Gautschi [11, eqs. (2.4.12-13)] describes an algorithm for computing the

recursion coefficients for the measure dλ̂ (12) by using the recursion coefficients

for the measure dλ̃ defined by (9). This algorithm yields

r0 = − c+2
2c , r1 = − c

2+2c+4
2c(c+2) , if |c| < 1, (15)

r0 = − c
2+c+1

2c , r1 = − c
4+c3+2c2+c+2

2c(c2+c+1) , if |c| > 1, (16)

and
rk = γ − 1

4rk−1
(k > 2). (17)

The initial recursion coefficients for |c| > 1 then are

α̂0 = c3+c2+c−1
2c(c2+c+1) , α̂1 = − c2+2c+2

2(c2+c+1)(c4+c3+2c2+c+2) ,

β̂1 = (c+1)(c4+c3+2c2+c+2)
4c(c2+c+1)2 ,

and for |c| < 1, we have

α̂0 = 1
c+2 , α̂1 = − c2(c2+2c+2)

2(c+2)(c2+2c+4) , β̂1 = (c+1)(c2+2c+4)
4(c+2)2 .



Internality of quadrature rules 9

Moreover,

α̂k = rk+1 − rk and β̂k =
rk

4rk−1
(k > 2). (18)

It is known (see e.g. [6, Theorem 4]) that every sequence (rk)∞k=1 that
satisfies (17) with r1 6= − 1

2z
−1 is of the form

rk = − 1

2z
· z

2k−2 +A

z2k−4 +A
(k ∈ N), (19)

where

z =
c2+2 +

√
c4+4

2c
(20)

and A is a real constant. When r1 is given by (15) or (16), we obtain

A =

{
z−5
(
c2+
√
c4+4

2

)2
, |c| < 1,

z−3
(
c2+
√
c4+4

2

)−2
, |c| > 1.

(21)

Note that in either case A has the same sign as z and c, and

0 < |A| < |z|−3. (22)

The relations (18) and (19) can be used to derive explicit expressions for

α̂k and β̂k. This yields the following result.

Theorem 4 The recurrence coefficients for the monic orthogonal polynomials
associated with the measure (12) are given by

α̂k = − Az2k−5(z2−1)2

2(z2k−2+A)(z2k−4+A)
and β̂k =

1

4
+
Az2k−6(z2−1)2

4(z2k−4+A)2
(23)

for k > 2, where z and A are defined by (20) and (21). Hence α̂k < 0 and

β̂k − 1
4 are of the same sign as c.

3.2 Internality of the averaged and generalized averaged Gauss formulas
QL2n+1 and QS2n+1

The non-Gaussian nodes of the formulas QL2n+1 and QS2n+1 are the zeros of
the polynomial

Tn+1(x) = P̂n+1(x)− β̂N P̂n−1(x), (24)

for N = n and N = n+ 1, respectively; cf. (6). Let xL1 and xS1 be the smallest
zeros of Tn+1 for N = n and N = n+ 1, respectively. Similarly, let xLn+1 and
xSn+1 be the largest zeros of Tn+1 for N = n and N = n + 1, respectively.
The quadrature rules QL2n+1 and QS2n+1 are internal if xL1 and xS1 are bounded
below by −1 and xLn+1 and xSn+1 are bounded above by 1. These conditions
are equivalent to xn+1Tn+1(x) > 0 for x = ±1, which is equivalent to
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P̂n+1(x)

P̂n−1(x)
> β̂N for x = ±1; (25)

see, e.g., [17] for an analogous discussion. By (11) and (14), we have

4 · P̂n+1(x)

P̂n−1(x)
=


1− 2rn+1

1− 2rn−1
if x = 1,

2(1− ć) +
(
2 + (2n+ 1)(1− ć)

)
(1 + 2rn+1)

2(1− ć) +
(
2 + (2n− 3)(1− ć)

)
(1 + 2rn−1)

if x = −1.

(26)

The following result on the relative sizes of the recursion coefficients β̂n
and β̂n+1 will be used below.

Lemma 1 β̂n > β̂n+1 if c > 0, and β̂n < β̂n+1 if c < 0.

Proof By (23) we have

β̂n − β̂n+1 =
Az2n−6(z2−1)3(z4n−6−A2)

4(z2n−2+A)2(z2n−4+A)2
,

which is of the same sign as z and c. �

Combining Lemma 1 with (24) yields the following result.

Corollary 1 (i) If c < 0, then xLn+1 > 1 implies xSn+1 > 1,
(ii) if c < 0, then xS1 > −1 implies xL1 > −1, and

(iii) if c > 0, then xL1 > −1 implies xS1 > −1.

We are in a position to show the main result of this section.

Theorem 5 Assume that n > 2. Then the quadrature formula QS2n+1 is in-
ternal if and only if c > 0. The quadrature rule QL2n+1 is not internal. More
precisely:

(i) xL1 > −1 and xLn+1 > 1,
(ii) xS1 > −1, but xSn+1 < 1 for c > 0 and xSn+1 > 1 for c < 0.

Proof (a) We first show that xLn+1 > 1. By Corollary 1, if c < 0, then this
implies that xSn+1 > 1. By (18) and (26), the condition (25) for x = 1 and
n > 2 reduces to

1− 2rn+1

1− 2rn−1
− rn
rn−1

> 0,

which by (19) can be expressed as

z + z2n+A
z2n−2+A

z + z2n−4+A
z2n−6+A

− (z2n−2 +A)(z2n−6 +A)

(z2n−4 +A)2
> 0

and expands into

Az(z − 1)2(z2 − 1)(A+ z2n−5)(A− z2n−3) > 0.



Internality of quadrature rules 11

This is false, because (22) implies that Az > 0, (A + z2n−5)(A − z2n−3) < 0,
and also z2 − 1 > 0.

(b) We next verify that if c > 0, then xSn+1 < 1. This is equivalent to

z + z2n+A
z2n−2+A

z + z2n−4+A
z2n−6+A

− (z2n +A)(z2n−4 +A)

(z2n−2 +A)2
> 0.

This expression expands into the inequality

Az2n−6(z − 1)(z2 − 1)(z3 − 1)(z2n−3 −A) > 0,

which is trivially correct.

(c) We proceed to show that xL1 , x
S
1 > −1. Assume that c > 0. By Corollary

1, it suffices to show that xL1 > −1, i.e., (25) for N = n and x = −1. This is
equivalent to

L− rn
rn−1

> 0, where L =
2(1−ć) +

(
2 + (2n+1)(1−ć)

)
(1+2rn+1)

2(1−ć) +
(
2 + (2n−3)(1−ć)

)
(1+2rn−1)

, (27)

and expands into

4(1− ć)R1 + (2 + (2n− 1)(1− ć))R2

rn−1

(
2(1−ć) + (2 + (2n−3)(1−ć))(1+2rn−1)

) > 0, (28)

where

R1 = rn−1(1+rn+rn+1) =
(z−1)

(
2z4n−5+Az2n−4(z−1)(z2+1)−2A2

)
4z2(z2n−2 +A)(z2n−6 +A)

> 0,

R2 = rn−1−rn+2rn−1(rn+1−rn) =
Az2n−7(z−1)2(z+1)3(z2n−3+A)

2(z2n−2+A)(z2n−4+A)(z2n−6+A)
> 0.

Moreover, since z >
√

2 + 1 and A < z−3, we have

−(1 + 2rn−1) = (z−1)

(
1− A(z+1)

z(z2n−6+A)

)
>

√
2

2
for n > 2.

This implies that

2(1−ć) + (2 + (2n−3)(1−ć))(1+2rn−1) < (1− ć)(2 + 3(1+2rn−1)) < 0.

It follows that both the numerator and denominator in the left-hand side of
(28) are positive for n > 2. Thus, (28) follows.

(d) Finally, in the case c < 0, we will show that xS1 > −1. By Corollary 1,
this implies that xL1 > −1. We need to prove that

L >
rn+1

rn
for n > 2,

where L is defined in (27). Since by (18) and (23), we have

rn+1

rn
= 4β̂n+1 < 1,

and it suffices to show that L > 1, i.e. that
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L− 1 =
4(1−ć)(1+rn−1+rn+1)− 2

(
2 + (2n−1)(1−ć)

)
(rn−1−rn+1)

2(1−ć) + (2 + (2n−3)(1−ć))(1+2rn−1)
> 0.

Since in this case rk > 0 for all k, the denominator is positive. Therefore, it
remains to prove that

4(1−ć)(1+rn−1+rn+1) > 2
(
2 + (2n−1)(1−ć)

)
(rn−1−rn+1),

i.e., that
1+rn−1+rn+1

rn−1−rn+1
> n− 1

2
+

1

1− ć
.

Since 1
1−ć < 1 (recall that ć < 0), it suffices to show that

rn−1+rn+1

rn−1−rn+1
> n+

1

2
,

which is equivalent to

(n+
3

2
)rn+1 > (n− 1

2
)rn−1.

Actually, we will prove that the sequence (k+ 1
2 )rk is increasing in k. Specifi-

cally, we will show that

(n+
1

2
)rn > (n− 1

2
)rn−1,

which is equivalent to
rn−1 + rn
rn−1 − rn

> 2n. (29)

We use induction over n. The base case is n = 2. Then, by (19), (29) simplifies
to the trivial inequality

2(A+ 1)2 + 5A(z − 1

z
)2 > 0.

For the inductive step, we verify that
rn + rn+1

rn − rn+1
>
rn−1 + rn
rn−1 − rn

+ 2.

This multiplies out into 2rn−1rn+1 > rn(rn−1 + rn+1), and by (19), when
expanded and simplified, reduces to

Az2n−6(z2 − 1)3(z2n−2 −A) < 0.

This inequality holds because z2 > 1 and A < 0, thus proving (29). �

Example 2. Table 2 shows the smallest and largest nodes, xL1 and xLn+1,
respectively, of averaged Gauss quadrature rules QL2n+1 for several values of

n and the parameter c for the measure dλ̂ defined by (12). As predicted by
the theory developed above, the smallest node xL1 is inside the interval [−1, 1],
while the largest node xLn+1 is not.

Example 3. Table 3 displays the extreme nodes xS1 and xSn+1 of the gener-

alized averaged Gauss quadrature rules QS2n+1 for the measure dλ̂(x) given
by (12) for several values of n and c. In agreement with the theory developed
above, the smallest node, xS1 , is inside the interval [−1, 1], while the largest
node, xSn+1, is inside this interval only if c > 0.
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c n xL1 xLn+1

5 −9.56252677710693(−1) 1 + 2.4854(−6)
10 −9.88375642391720(−1) 1 + 7.1313(−11)

−0.9 15 −9.94729022774889(−1) 1 + 2.2002(−15)
20 −9.97005429844440(−1) 1 + 7.0983(−20)
30 −9.98655844571235(−1) 1 + 8.0241(−29)

5 −9.58856005129239(−1) 1 + 4.7571(−15)
10 −9.88738301958147(−1) 1 + 2.3852(−28)

−0.1 15 −9.94840523653745(−1) 1 + 1.5417(−41)
20 −9.97053350474925(−1) 1 + 1.1112(−54)
30 −9.98670309976306(−1) 1 + 6.7814(−81)

5 −9.89801057715791(−1) 1 + 1.4330(−6)
10 −9.95868016309400(−1) 1 + 2.8739(−11)

0.9 15 −9.97638433414493(−1) 1 + 7.5439(−16)
20 −9.98445859437810(−1) 1 + 2.2173(−20)
30 −9.99167643851814(−1) 1 + 2.2594(−29)

5 −9.90420650413612(−1) 1 + 2.8099(−6)
10 −9.96118166775301(−1) 1 + 1.3923(−10)

1.1 15 −9.97767423021090(−1) 1 + 9.0197(−15)
20 −9.98521880161805(−1) 1 + 6.5413(−19)
30 −9.99200752415474(−1) 1 + 4.0571(−27)

Table 2 Example 2: The smallest and largest nodes of averaged Gauss rules QL
2n+1 for the

measure dλ̂ for several values of c and n.

3.3 Internality of the truncated quadrature formula Q
(1)
n+2

This subsection considers the truncated generalized averaged quadrature rule

Q
(1)
n+2 that is obtained by removing the last n − 1 rows and columns of the

symmetric tridiagonal matrix of order 2n+ 1, whose eigenvalues are the nodes

of QS2n+1. The nodes of Q
(1)
n+2 are the zeros of the polynomial

tn+2(x) = (x− α̂n−1)P̂n+1(x)− β̂n+1P̂n(x).

This formula is internal if its smallest zero, xt1, and its largest zero, xtn+2, both
lie in [−1, 1]. This is equivalent to

(x− α̂n−1)P̂n+1(x)

β̂n+1P̂n(x)
> 1 for x = ±1; (30)

see e.g. [7] for a related discussion. By (11) and (14), we have

2 · P̂n+1(x)

P̂n(x)
=


1−2rn+1

1−2rn
if x = 1,

− 2(1−ć)+
(

2+(2n+1)(1−ć)
)

(1+2rn+1)

2(1−ć)+
(

2+(2n−1)(1−ć)
)

(1+2rn)
if x = −1.

(31)

Theorem 6 The quadrature formula Q
(1)
n+2 is internal for all c and every

n > 2.
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c n xS1 xSn+1

5 −9.56266728289617(−1) 1 + 5.2764(−6)
10 −9.88375642682738(−1) 1 + 1.5134(−10)

−0.9 15 −9.94729022774896(−1) 1 + 4.6694(−15)
20 −9.97005429844440(−1) 1 + 1.5064(−19)
30 −9.98655844571235(−1) 1 + 1.7029(−28)

5 −9.58856005129407(−1) 1 + 9.0860(−14)
10 −9.88738301958147(−1) 1 + 4.5558(−27)

−0.1 15 −9.94840523653745(−1) 1 + 2.9446(−40)
20 −9.97053350474925(−1) 1 + 2.1224(−53)
30 −9.98670309976306(−1) 1 + 1.2952(−79)

5 −9.89791207698374(−1) 1 − 5.9056(−6)
10 −9.95868016106703(−1) 1 − 1.1847(−10)

0.9 15 −9.97638433414487(−1) 1 − 3.1097(−15)
20 −9.98445859437810(−1) 1 − 9.1401(−20)
30 −9.99167643851814(−1) 1 − 9.3136(−29)

5 −9.90401924412408(−1) 1 − 1.1005(−5)
10 −9.96118165838869(−1) 1 − 5.4551(−10)

1.1 15 −9.97767423021027(−1) 1 − 3.5341(−14)
20 −9.98521880161805(−1) 1 − 2.5630(−18)
30 −9.99200752415474(−1) 1 − 1.5896(−26)

Table 3 Example 3: The smallest and largest nodes of the generalized averaged Gauss rule
QS

2n+1 for the measure dλ̂ for several values of c and n.

Proof We will first show that xtn+2 6 1, i.e., that (30) holds for x = 1. It
follows from (18) and (31) that this is equivalent to

1 6
(1−α̂n−1)P̂n+1(1)

β̂n+1P̂n(1)
= 2(1−α̂n−1) · rn(1−2rn+1)

rn+1(1−2rn)
. (32)

By (19), we have

1− 2rk
rk

=
1

rk
− 2 = − (z + 1)(z2n−3 +A)

z2n−2 +A

and, hence, by using (22), it follows that

rn(1−2rn+1)

rn+1(1−2rn)
=

(z2n−1 +A)(z2n−2 +A)

(z2n +A)(z2n−3 +A)
= 1− Az2n−3(z − 1)2(z + 1)

(z2n +A)(z2n−3 +A)

> 1− A(z − 1)2(z + 1)

z2n +A
> 1− |z|

−3(|z|+ 1)3

z2n + |z|−3
>

1

2
.

Moreover, by (23), we have 1−α̂n−1 > 1, which together with the above in-
equality shows (32).

We proceed to show that xt1 > −1, i.e., that (30) holds for x = −1. We
will first prove that

− P̂n+1(−1)

P̂n(−1)
>

1 + 2rn+1

1 + 2rn
. (33)
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Introduce the quantities

a = 2(1−ć), b = 2+(2n−1)(1−ć), x = 1+2rn+1, y = 1+2rn.

Then using (31), the inequality (33) can be expressed as

a+ (a+ b)x

a+ by
>
x

y
,

which is equivalent to
a(xy + y − x)

y(a+ by)
> 0.

Since a is positive, y and a+ by are of the same sign, and

xy + y − x = 1 + 4rn + 4rnrn+1 = −2(z − 1)2

z
rn > 0,

the proof of (33) is complete.

The inequality (30) readily follows for x = −1 if we can show that

1 + α̂n−1

β̂n
· 1 + 2rn+1

1 + 2rn
= 2(1+rn−rn−1)

rn(1 + 2rn+1)

rn+1(1 + 2rn)
> 1.

In this case, it follows from (19) that

rn(1 + 2rn+1)

rn+1(1 + 2rn)
=

(z2n−1 −A)(z2n−2 +A)

(z2n−3 −A)(z2n +A)
= 1 +

Az2n−3(z + 1)(z2 − 1)

(z2n−3 −A)(z2n +A)
> 1.

Therefore, it suffices to show that

1+rn−rn−1 >
1

2
,

i.e., that

rn−1 − rn 6
1

2
.

The latter inequality is easy to verify. We have

rn−1 − rn =
Az2n−7(z2−1)2

2(z2n−4+A)(z2n−6+A)
6

z−3 · z2n−7(z2−1)2

2(z2n−4−z−3)(z2n−6−z−3)

=
z2n−4(z2−1)2

2(z2n−1−1)(z2n−3−1)
<

1

2z2n−4
6

1

2
.

�

Example 4. Table 4 displays the outermost nodes xt1 and xtn+2 of truncated

generalized averaged Gauss quadrature formulas Q
(1)
n+2 for the measure dλ̂

given by (12) computed in high-precision arithmetic. In agreement with the
results above, these nodes are inside the interval [−1, 1], making these rules
internal.

Finally, as noted in Section 1, we can obtain analogous results for the
Chebyshev measure of the fourth kind (8) by replacing c by −c. In particular,

the truncated quadrature rule Q
(1)
n+2 is internal for the measure (8), whereas

the formula QS2n+1 is internal if and only if c < 0.
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c n xt1 xtn+2

5 −9.12569364812230(−1) 9.78480361103346(−1)
10 −9.68366438732778(−1) 9.92187753480289(−1)

−0.1 15 −9.83850057500048(−1) 9.96001055730301(−1)
20 −9.90230550263921(−1) 9.97576672634387(−1)
30 −9.95319162343563(−1) 9.98836424622862(−1)

5 −9.56573294152220(−1) 9.76882963334918(−1)
10 −9.83332991704801(−1) 9.91846036346949(−1)

0.9 15 −9.90812105799422(−1) 9.95877013278884(−1)
20 −9.94057904178699(−1) 9.97518446981950(−1)
30 −9.96851060157643(−1) 9.98817155910107(−1)

5 −9.20005057726076(−1) 9.77811816443556(−1)
10 −9.70252427064411(−1) 9.92042412994509(−1)

2 15 −9.84575257020554(−1) 9.95947976675102(−1)
20 −9.90580316621724(−1) 9.97551676433712(−1)
30 −9.95437815551145(−1) 9.98828124534837(−1)

Table 4 Example 4: The two outermost nodes of truncated generalized averaged quadrature

rules Q
(1)
n+2 for the measure dλ̂ for several values of c and n.

4 The numerical performance of the quadrature rules

This section presents a few computed examples that illustrate the application

of the quadrature rules QL2n+1, QS2n+1, and Q
(1)
n+2 to estimate the magnitude of

the quadrature error (3) incurred when applying Gauss rules QGn . Specifically,
we will evaluate and compare the error estimates

EAG = |QL2n+1(f)−QGn (f)|,
EGA = |QS2n+1(f)−QGn (f)|, (34)

ETGA = |Q(1)
n+2(f)−QGn (f)|

with the actual error magnitude (3) for several values of n and parameter c.

Example 5. Consider the evaluation of the integral∫ 1

−1

g(x) dx (35)

with
g(x) =

exp(3x) sin(10x)

x− δ
·
√

1 + x

1− x
, −1 < x < 1,

and δ defined by (10). This integral can be expressed as the integral

I(f) =

∫ 1

−1

f(x) dλ̃(x), f(x) = exp(3x) sin(10x), (36)

with an analytic integrand by using the measure (9). We apply the quadrature
rules of Section 2 to approximate the integral (36). Table 5 displays the error
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c n EAG ≡ EGA ETGA Error I(f)

5 3.7614(−2) 8.7288(−2) 3.7678(−2)
10 1.2289(−4) 1.2269(−4) 1.2289(−4)

−2 15 2.2774(−11) 2.2768(−11) 2.2774(−11) 4.2632
20 1.2708(−19) 1.2707(−19) 1.2708(−19)
25 5.5115(−29) 5.5113(−29) 5.5115(−29)
30 3.1107(−39) 3.1106(−39) 3.1107(−39)

5 2.9851(−1) 2.8318(−1) 2.9851(−1)
10 2.3656(−5) 2.3636(−5) 2.3656(−5)

0.1 15 4.2795(−12) 4.2789(−12) 4.2795(−12) 1.5516(−1)
20 2.4317(−20) 2.4316(−20) 2.4317(−20)
25 1.0766(−29) 1.0766(−29) 1.0766(−29)
30 6.1886(−40) 6.1885(−40) 6.1886(−40)

5 2.7463 2.7105 2.7461
10 1.7011(−4) 1.7014(−4) 1.7011(−4)

0.9 15 3.2741(−11) 3.2742(−11) 3.2741(−11) 5.8310(-1)
20 1.9706(−19) 1.9706(−19) 1.9706(−19)
25 9.1082(−29) 9.1079(−29) 9.1082(−29)
30 5.4075(−39) 5.4074(−39) 5.4075(−39)

Table 5 Example 5: The error estimates (34) and the actual error “Error” (3) for some
values of c and n.

(3) in the column labeled “Error” in the Gauss formula QGn (f), as well as the
error estimates (34). All the error estimates can be seen to be very accurate.

Example 6. We illustrate the approximation of the integral (35) with the
integrand with

g(x) = exp(3x) sin(10x) · x− γ
x− δ

·
√

1 + x

1− x
, −1 < x < 1,

and δ and γ defined by (13). We express this integral as

I(f) =

∫ 1

−1

f(x) dλ̂(x) (37)

with the integrand given by (36) and the measure defined by (12). The quadra-
ture rules of Section 3 are applied to approximate the integral (37). Table 6
shows the error (3) in the Gauss rules QGn (f), in the columns labeled “Error”,
as well as the error estimates (34). The error estimates are seen to provide
very accurate estimates of the actual error (3).

Example 7. We seek to approximate the integral (35) with the integrand

g(x) = ln(2− x) ln(1− x) · x− γ
x− δ

·
√

1 + x

1− x
, −1 < x < 1.

The parameters δ and γ are defined by (13). Similarly as above, we simplify the
integrand by using the measure (12). Then our task becomes to approximate
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c n EAG EGA ETGA Error I(f)

5 1.4122 1.4122 1.2883 1.4122
10 1.5852(−4) 1.5852(−4) 1.5834(−4) 1.5852(−4)

−2 15 2.8774(−11) 2.8774(−11) 2.8768(−11) 2.8774(−11) −2.4628(−1)
20 1.6213(−19) 1.6213(−19) 1.6211(−19) 1.6213(−19)
25 7.1183(−29) 7.1183(−29) 7.1180(−29) 7.1183(−29)
30 4.0629(−39) 4.0629(−39) 4.0628(−39) 4.0629(−39)

5 2.8613 2.8613 2.6992 2.8613
10 2.3900(−4) 2.3900(−4) 2.3879(−4) 2.3900(−4)

0.1 15 4.3211(−11) 4.3211(−11) 4.3204(−11) 4.3211(−11) 1.5953
20 2.4495(−19) 2.4495(−19) 2.4494(−19) 2.4495(−19)
25 1.0822(−28) 1.0822(−28) 1.0822(−28) 1.0822(−28)
30 6.2102(−39) 6.2102(−39) 6.2101(−39) 6.2102(−39)

5 3.8160 3.8162 3.7047 3.8159
10 2.6207(−4) 2.6207(−4) 2.6199(−4) 2.6207(−4)

0.9 15 4.8845(−11) 4.8845(−11) 4.8843(−11) 4.8845(−11) 1.1435
20 2.8578(−19) 2.8578(−19) 2.8577(−19) 2.8578(−19)
25 1.2940(−28) 1.2940(−28) 1.2940(−28) 1.2940(−28)
30 7.5673(−39) 7.5673(−39) 7.5671(−39) 7.5673(−39)

5 3.5076 3.5080 3.4008 3.5076
10 2.4347(−4) 2.4347(−4) 2.4339(−4) 2.4347(−4)

1.1 15 4.5301(−11) 4.5301(−11) 4.5298(−11) 4.5301(−11) 1.0848
20 2.6458(−19) 2.6458(−19) 2.6457(−19) 2.6458(−19)
25 1.1964(−28) 1.1964(−28) 1.1964(−28) 1.1964(−28)
30 6.9897(−39) 6.9897(−39) 6.9896(−39) 6.9897(−39)

Table 6 Example 6: The error estimates (34) and the actual error “Error” (3) for some
values of c and n.

the integral

I(f) =

∫ 1

−1

f(x) dλ̂(x), f(x) = ln(2− x) ln(1− x), (38)

by quadrature rules of Section 3. Table 7 displays the error (3) in the Gauss
rules QGn (f) in the column labeled “Error”, as well as computable error esti-
mates (34). We note that the integrand in (38) is not defined for x > 1, and
recall that the averaged rules QL2n+1 have a node larger than one for all val-
ues of c. They therefore cannot be evaluated. The generalized averaged rules
QS2n+1 have a node larger than one for c < 0, but are interior for c > 0. They
therefore can be used to approximate (38) when c > 0. Finally, the truncated

rules Q
(1)
n+2(f) can be evaluated both for positive and negative values of c.

5 Conclusion

This paper studies quadrature rules associated with two kinds of modifications
of Chebyshev measures of the third and fourth kinds. The internality of aver-
aged and generalized averaged Gauss rules is established for some measures,
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c n EAG EGA ETGA Error I(f)

5 − − 8.9438(−2) 1.6648(−1)
10 − − 1.3056(−2) 3.7274(−2)

−0.9 15 − − 3.9011(−3) 1.4795(−2) -2.2311
20 − − 1.5916(−3) 7.4788(−3)
25 − − 7.7637(−4) 4.3369(−3)
30 − − 4.2578(−4) 2.7505(−3)

5 − 1.6426(−2) 8.8773(−3) 1.3939(−2)
10 − 2.1786(−3) 7.7454(−4) 1.8396(−3)

0.5 15 − 6.6314(−4) 1.7548(−4) 5.5956(−4) -3.3012(-1)
20 − 2.8392(−4) 5.9798(−5) 2.3953(−4)
25 − 1.4672(−4) 2.5659(−5) 1.2377(−4)
30 − 8.5446(−5) 1.2775(−5) 7.2081(−5)

5 − 6.7877(−3) 3.7641(−3) 5.8056(−3)
10 − 8.2640(−4) 2.9972(−4) 7.0359(−4)

1.1 15 − 2.4410(−4) 6.5609(−5) 2.0767(−4) 3.4925(−1)
20 − 1.0291(−4) 2.1952(−5) 8.7527(−5)
25 − 5.2680(−5) 9.3125(−6) 4.4801(−5)
30 − 3.0486(−5) 4.6003(−6) 2.5925(−5)

Table 7 Example 7: The error estimates (34) (when available) and the actual error (3),
labeled “Error”, for some values of c and n.

as well as for truncated generalized averaged Gauss rules. Computed examples
illustrate the theory and show the quality of the computed error estimates.
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