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Abstract The solution of nonlinear inverse problems is a challenging task in
numerical analysis. In most cases, this kind of problems is solved by iterative
procedures that, at each iteration, linearize the problem in a neighborhood of
the currently available approximation of the solution. The linearized problem
is then solved by a direct or iterative method. Among this class of solution
methods, the Gauss-Newton method is one of the most popular ones. We pro-
pose an efficient implementation of this method for large-scale problems. Our
implementation is based on projecting the nonlinear problem into a sequence of
nested subspaces, referred to as Generalized Krylov Subspaces (GKS), whose
dimension increases with the number of iterations, except for when restarts
are carried out. When the computation of the Jacobian matrix is expensive,
we combine our iterative method with secant (Broyden) updates to further
reduce the computational cost. We show convergence of the proposed solution
methods and provide a few numerical examples that illustrate their perfor-
mance.
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1 Introduction

This paper is concerned with the solution of nonlinear least-squares problems
of the form

min [y = £GOI, (11

where f: R™ — R™ is a differentiable nonlinear function, x € R™ denotes the
unknown vector that we would like to determine, y € R™ represents measured
data, and ||-|| stands for the Euclidean vector norm. This kind of problems
arises in several fields of science and engineering, such as in image reconstruc-
tion and geophysics. In some applications, the solution of the problem
is very sensitive to perturbations, e.g., to errors in the data vector y; these
errors may, for instance, be caused by measurement inaccuracies. In this pa-
per, we only consider problems that are not overly sensitive to perturbations;
if the given problem is very sensitive to perturbations in y, then we assume
that the problem has been regularized to make the solution less sensitive. For
an example of well-posed problem of the form we refer the reader to
the so-called Bratu problem; see, e.g., [29] and Section [4} If the problem is
ill-posed, a simple approach to regularize it is to use Tikhonov regularization
(see, e.g., [21]), i.e., to substitute with

. 2 2
min {lly = FGOI* + e l1x}
for a suitable u > 0. In the following, we will assume that this substitution, if
required, has been performed.

We consider the Gauss-Newton method [20}34] for the solution of (L.I)).
This is an iterative method that at each step solves a linear least-squares
problem obtained from a first-order Taylor expansion of the nonlinear function
r(x) = y — f(x). Convergence is assured thanks to the use of the Armijo-
Goldstein condition; see below. In case the problem is underdetermined,
i.e., when n is larger than m, the solution is not unique. Pes and Rodriguez |32,
33| describe a modification of the Gauss-Newton method that can be applied in
this situation to determine the minimal-norm solution; also some regularized
variants of the Gauss-Newton method are described.

Nevertheless, we would like to briefly discuss the situation when the Jaco-
bian matrix is severely ill-conditioned or even rank-deficient. Since we project
a linearization of the (large) problem into solution subspaces of fairly
small dimensions, the projected problems usually are better conditioned than
the original large problem. As it will be illustrated by numerical examples
in Section [ we are able to quite accurately solve ill-conditioned problems,
when the data y are not corrupted by noise, by employing as the only type



of regularization the projection into a small linear subspace. This assump-
tion corresponds to committing an inverse crime. Nevertheless, we illustrate
that our solution method is less sensitive to ill-conditioning than the stan-
dard Gauss-Newton method, and that, when the problem is severely
ill-conditioned, the standard Gauss-Newton method may fail to determine an
accurate solution even under the scenario of an inverse crime.

The main computational effort of the Gauss-Newton method is the solution
of linear least-squares problems of possibly large dimensions at each iteration.
We would like to address this issue by using Generalized Krylov Subspaces
(GKS). The subspaces we consider were first applied by Lampe et al. [30] to
the solution of large linear discrete ill-posed problems by Tikhonov regulariza-
tion. Subsequently they were used for the solution of nonconvex minimization
problems in imaging and statistics; see, e.g., [94/10,[27,/31]. The approximate
solution x(*) € R™ computed at iteration k lives in a generalized Krylov sub-
space Vx_1, and a projected residual error is included in the next generalized
Krylov subspace Vi. The solution subspaces generated in this manner are
nested and typically contain accurate approximations of the desired solution
of already when they are of fairly small dimension; in particular, the use
of generalized Krylov subspaces performs better than using standard Krylov
subspaces; see |7,[31] for illustrations.

Another possible bottleneck of the Gauss-Newton method for large-scale
problems is the computation of the Jacobian matrix at each iteration. If this
is very time-consuming, then instead of forming the Jacobian by evaluating all
of its entries at each iteration, we approximate the Jacobian by using a secant
(Broyden) update; see [6,20]. When the iterates x*) and x(*+1) are close, the
secant update allows us to approximate the Jacobian of f at x(**1) by the
Jacobian (or an approximation thereof) at x(*) plus a low-rank correction.
Therefore, we update the Jacobian for k iterations, and compute the Jacobian
“from scratch” only when k£ = 0 mod k.

Finally, we observe that, if many iterations of the algorithms are performed,
the dimension of the space Vj;, may increase significantly and this, in turn, can
slow down the computations. To avoid this situation, we propose a restarted
variant based on the algorithms proposed in |11]. Every kst iterations the
space Vy, is restarted, i.e., it is replaced by a one-dimensional space; see below.
This strategy ensures that the dimension of the space Vy, is bounded regardless
of the number of iterations. We will illustrate that this reduces the computing
time.

It is the purpose of this paper to show that projection into generalized
Krylov subspaces may be beneficial when solving large nonlinear least-squares
problems . This approach is compared to a standard implementation of
the Gauss-Newton method. We remark that many approaches to Newton-
Krylov methods have been discussed in the literature; among the first papers
on this topic are those written by Brown and Saad [4,[5], who consider the
application of Arnoldi methods, which requires m = n. Darvishi and Shin [13]
and Kan et al. [28] provide more recent contributions. However, these methods



do not focus on nonlinear least-squares problems and, moreover, consider the
application of standard Krylov subspaces.

This paper is organized as follows. Section [2] briefly recalls the classical
Gauss-Newton method. Our new solution approaches are described in Section 3]
and there we also show some of properties of these methods. Section [4] presents
a few numerical examples that illustrate the performance of our methods, and
concluding remarks can be found in Section [5]

2 The Gauss-Newton method

This section reviews the classical Gauss-Newton method applied to the solution
of nonlinear least-squares problems (L.)). Let r(x) =y — f(x) be the residual
function, where x € R™ represents an approximate solution of the problem
7 the function f : R™ — R™ is nonlinear and Fréchet differentiable, and
the vector y € R"™ represents available data. We disregard for the moment
that in some applications, the problem might be severely ill-conditioned.
The Gauss-Newton method computes the solution x* of by minimizing
the Euclidean norm of the residual r(x), i.e., it solves

* . 2
x* = arg min [[r(x)|", (2.1)
where, for simplicity, let us assume that the solution x* is unique. The Gauss-
Newton method is an iterative procedure that, at each iteration, linearizes
the problem and minimizes the norm of the residual of the linearized
problem. Since we assumed that f is Fréchet differentiable, it follows that
r(x) satisfies this property as well. Therefore, we use the approximation

r (X(k+1)) ~r (X(k)) Ny ONOS

where x(¥) is the current approximation of x*. The vector q(*) is referred to
as the step, and J*) = J(x(*)) € R™*" represents the Jacobian matrix of
r(x) = [ri(x),...,rm(x)]T at x = x*)_ Tt is defined by

[J(x)];; = agx(j) )

i=1,....m, j=1...,n.

Let x(©) € R™ be an initial approximation of the solution x* of the nonlinear
least-squares problem ([2.1)). We determine, for k = 0,1,2,... , the step q®
by solving the linear least-squares problem
2
min ||r (x(k)) + J(k)qH ,
qER™

and we compute the next approximation x**1 of x* as

X(k+1) — X(k) + O[(k)q(k)7 k‘ = O, 1, 27 e



where the coefficient a®) is determined according to the Armijo-Goldstein
principle, see below, to ensure convergence to a stationary point of

J(x) = |Ir())*;

see, e.g., |20,25] for discussions. Since the functional [J might not be convex, it
is in general not possible to show that the iterates x(*) converge to a minimizer
of J. We remark that if one knows that the solution x* is nonnegative, then
it is possible to determine a® such that x¥) > 0 for all k. We will not dwell
on this situation here, but we note that it is straightforward to extend our
solution method to compute nonnegative solutions.

We say that a%) satisfies the Armijo-Goldstein condition if

L R SR FEO S

1
2

To determine a suitable a*), we apply a line search. Let agk) > 0 be large

enough. If oz(()k) satisfies the condition (2.2)), then we set (%) = aék), otherwise
we let
al®
o — 2o
! 2

We iterate in this manner until we find an 045» ) that satisfies the condition (12.2)

and then set a(®) = a§k). The Gauss-Newton method with line search based
on the Armijo-Goldstein condition yields a converging sequence of iterates
x®) k= 0,1,2,..., for any differentiable function f; see [25] for a proof.
Algorithm [I] summarizes the computations.

Theorem 1 Let f : R™ — R™ be a Fréchet differentiable function and let
x®) k=1,2,..., denote the iterates generated by Algorithm . There exists
x* such that

lim Hx(k) —x*
k—o0

:O’

and x* is a stationary point of J(x) = |ly — fF(x)|*. If J is convez, then x*
is a global minimizer of J. Moreover, if J is strictly convex, then there is a
unique global minimizer that coincides with x*.

Proof Proofs can be found in [3}[25].

3 The Gauss-Newton method in generalized Krylov subspaces

We would like to reduce the computational cost of the iterations with Algo-
rithm when applied to the solution of large-scale problems . We achieve
this by determining approximate solutions of the problem in a sequence of
fairly low-dimensional solution subspaces Vi, k = 1,2,... , whose dimensions
increase with k. At iteration k, we first compute the approximation x*t1) e v,
of the solution x* of , and then expand the solution subspace by including



Algorithm 1: The classical Gauss-Newton method

input : Nonlinear function f, data y, initial guess for the approximate solution
x(0) | initial guess for the damping parameter ag, tolerance 7, maximum
number of iterations K.

output: Approximate solution x*.

Define the function r(x) =y — f(x);

2 for k=0,1,2,...,K do

[

3 Compute the Jacobian J*) of f in x(F);

*) = i (k) ® gl
o | 0 =esgmin (<) + /]
5 ol® = ag;

0 05
6 7 =0

2
v | while [l (x3)|* = [|r (x® + afPa®) " < Lo |7B4®)|* do
w _ o

8 Qi1 = T3
2 Jj=Ji+1
10 alk) = a;k);
11 x(k+1) = x(F) 4 (k) q(k),
12 if Hx(k> — x<k+1>H <rT Hx(k>|| then
13 L exit;

14 x* = x(k+1),

an appropriately chosen vector in V. This defines the next solution subspace
Vi41. Since di, = dim(Vy) < n, the computation of x(F+1) g less expensive
than computing a new iterate with the standard Gauss-Newton method, which
seeks to determine a solution in R”.

Assume that at the k-th step an approximation x*) € V;,_; C V,, of the
solution x* is known. Let the columns of the matrix V; € R®*% form an
orthonormal basis for the subspace Vi. Then

VIV, =15 and x® =1v,z®),

where I, denotes the identity matrix of order d, z*) € R%  and the last
entry of z(®) vanishes since z*) € V,_;.
The residual at the k-th step is given by

r (sz(k)> =y—f (x(k)) =y—f (sz(k)> . (3.1)

We determine a new approximate solution xk+tD) e Yy as

(k1) g4

where the vector z(**1) is computed by applying the Gauss-Newton method

to " i'e'7
2D — () 4 () gk (3.2)

and the step q*) is obtained by solving the least-squares problem

r (sz(k)) + J(k)qH2 .

min
qcER%




With slight abuse of notation, we denote the step by q, similarly as in the
previous section, even though the vectors q are of different dimensions; in this
section, the dimension depends on k. The matrix J*) € R”*d represents the
Jacobian of r in evaluated at the point z(*). We have

J® = _J, (sz<k>) Vi,

where J; denotes the Jacobian matrix of the nonlinear function f. To ensure
convergence, the parameter a®) in is determined by applying the Armijo-
Goldstein principle, i.e., a®) is the largest member of the sequence (9277,
i=0,1,..., for which

()] -

In our numerical experiments we set o(?) = 1.

Once the new iterate x(*+1) has been evaluated, we enlarge the solution
subspace V;, by determining a vector v(**1) that is orthogonal to Vj. To this
end, let us first compute the Jacobian J (x(k+1)) of f at x**1)_ This com-

putation also is required for determining x(*+2) and, therefore, is carried out

only once. Let
T
gkt = J, (X(k+1)) (y —f (Xu«))) .

The intuition is that g(*+1) is the residual of the normal equations associated
with the linearized problem. However, in general, this vector is not orthogonal
to the subspace V. We therefore explicitly orthogonalize it to this subspace,
i.e., we compute

. (Vk (Zw) n a<k>q<k>)> H2 > %aw) HJ(’C)q(k)HQ.

g(k-irl) — g(k+1) _ Vkvag(kJrl)7
and then normalize the vector so obtained,

k1) g(k+1)

( 5
M FEST

We store an orthonormal basis for Vi4; as columns of the matrix Vi1, =
[Vk,V(k+1)] c Rnx(di+1)

Although it is an extremely rare event when solving problems that arise
from a real application, it is possible that g(*t1) = 0, i.e., that g**1) € V.
In this case, we simply do not enlarge the solution subspace in this iteration
and proceed with the computations. Differently from Krylov methods for the
solution of linear systems of equations, such as GMRES, this is not a case of
a “lucky breakdown” and one generally cannot terminate the iterations.

The last point to address is how to determine Vj, i.e., the basis for the initial
subspace. In our computed examples, we will choose an initial approximate
solution x(©) # 0 and set

x(0)

o= ko

The computations are summarized by Algorithm [2}



Algorithm 2: A Gauss-Newton method using generalized Krylov sub-
spaces

input : Nonlinear function f, data vector y, initial guess for the approximate
solution x(O), initial guess for the damping parameter ag, tolerance 7,
maximum number of iterations K.
output: Approximation x* of the solution x*.
1 Vo=x0)/ ||x(0)||;
0 = <]

N

s Compute the Jacobian Jy of f at x(0);
a for k=0,1,2,...,K do
5 JE) = — TV
6 rd) =y — f (sz(’f));
7 q® = arg min ||r® + J(k)qH2;
qeR%
aék> = ao;
9 7=0;
2
w0 | while [|r (Vie®)| = [l (Vi (+9 + 0f”a®) ) || < 3o [70a®)|* do
k

» RO

J+1 2
12 J=i+1
14 z(k+1) = z(F) 4 oK) k),
15 if Hz(k) — z(k“'l)” <rT ||Z(k)H then
16 L exit;
17 Compute the Jacobian J; of f at Vyz(k+1);
18 gk+l) = J}“r(k);
19 gkt = g(ktl) _ 1 T g(ktl),
20 | Vigr = [Vi, gFFD/[|lgEHD];
2 |z = [z )T

22 X* = Vjz(k+1);

We are now in position to show some theoretical results.

Lemma 1 Let f be a Fréchet differentiable function. With the notation of
Algorithm[g, it holds that for every k, there is a finite positive integer j such

that
Jr (Vi) [ [ (v (=9 + 020 ®)) [ 2 30 [0

Proof This result follows from |25 Proposition 4.1].

Theorem 2 Let f be Fréchet differentiable and let z%), k =1,2,... , denote

the iterates generated by Algorithm[3 Define
x®) = 20,
Then there is a vector x* such that

:0’

lim Hx(k) —x*
k— oo
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and x* is a stationary point of J(x) = |ly — fF(X)|>. If T is convez, then x*
is a global minimizer of J. Moreover, if J 1is strictly convex, then X* is the
unique global minimizer.

Proof We first discuss the case when there is an index kg such that g(®) € Vy,
for all k > ko and dim (Vx,) < n. Then, after iteration kg, all subsequent iter-
ates belong to Vj,. However, since the Armijo-Goldstein principle is satisfied,
this means that Algorithm [2] reduces to Algorithm [I] after k( iterations and,
therefore, the iterates converge to a stationary point of J by Theorem

On the other hand, if there is no index ko such that g*) e Vi, for all
k > ko and dim (Vy,) < n, then there is an index k7 such that dim (Vi,) =n
and, therefore, V;, = R" for all k£ > k;. Convergence to a stationary point now
follows from Theorem [II

Remark 1 The proof of Theorem [2] would appear to suggest that one may need
n iterations with Algorithm [2]to obtain an accurate approximation of the limit
point. However, in problems that stem from real applications, typically only a
few iterations are required to satisfy the stopping criterion. This is illustrated
by numerical experiments in Section [

3.1 Secant acceleration

In some applications the evaluation of the Jacobian Jy of f may be compu-
tationally expensive. We therefore discuss the updating strategy proposed by
Broyden [6] that makes it possible to avoid the computation of J; from scratch
every iteration. A nice discussion of this updating strategy is provided by Den-
nis and Schnabel [20, Chapter 8]. Broyden [6] proposed the following secant
update of the Jacobian matrix

Jy (VkHz(k“)) ~ J; (sz<k>) +H®, (3.3)

where H(®) generally is a rank-two matrix defined by

g = A = s (a) (Ax(k))Ta (3.4)
lax® )|

with Ax(®) = x(F+1D) — x(*¥) and Ar*) = r(++1) — r(*) We then can compute
an approximation of J; (Vi 4125+ Vi1; as follows

T (Va2 )Wy = [Jf(Vk+1Z(k+1))Vk7 Jf(Vk+1Z(k+1))V(k+1)}
~ [Jf(sz(k))Vk +H(’“)Vk, Jf(VkZ(k))V(k+1) +H(k)v(k+1)} .

These updating formulas can be applied repeatedly, for £k = 0,1,... , with
a suitable choice of H(®. Then H®) is a low-rank matrix when k is fairly
small; see [20]. The matrix H®) typically is not explicitly formed; instead the
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vectors that make up H*) are stored and used when evaluating matrix-vector
products with H*). When the number of updating steps increases, the quality
of the approximation of Jy by H (k) at desired points x may deteriorate, but
not by very much. Dennis and Schnabel |20, p.176| refer to this behavior as
“bounded deterioration”; see [20, Lemma 8.2.1] for bounds on the deteriora-
tion. When the approximation H () of the Jacobian at the initial point Xip;; is
sufficiently close to the Jacobian at the desired solution, J;(x*), the bounded
deterioration of the quality of the approximations of H*) is mild enough to
secure convergence to the solution x* as k increases when repeatedly using the
updating formula; see |20, Theorem 8.2.2] for details. Nevertheless, since it is
difficult to assess whether the conditions of this theorem are satisfied, we re-
compute the Jacobian from scratch every k iterations. Algorithmsummarizes
the computations.

3.2 Restarting strategy

The main computational cost of the outlined solution method, if we ignore the
computation of the Jacobian of f, is the solution of a linear system of equations
of fairly small size at every iteration. However, if many iterations are carried
out, the systems may become large and require a non-negligible computational
effort to solve. To avoid this issue, we employ the restart strategy proposed
in |11] for the Maximization-Minimization algorithm. Specifically, the solution
method described in [11] restarts the generalized Krylov subspace when a
fixed user-specified number of iteration have been carried out. We denote this
number by kst > 1 as the number of iterations after which we restart the
GKS. Since we set Vy € R™*! we have that, if no restarting is used, dim(V}) =
k+1. To avoid that the dimension of V}, and, therefore, the size of J*), become
too large, we set, if kK = 0mod kyest,

o)

~ O

This ensures that the number of columns of V; never exceeds kyest and that
the computational effort per iteration does not increase too much with k. For
large-scale problems, this also has the added benefit of reducing the memory
requirement of the method. This may be important if only a small amount of
fast memory is available or if the size of the problem to be solved is very large;
see [11] for a discussion.

Since when using restarts the spaces V. are not nested, the proof of Theo-
rem [2] does not hold. We only can state that, thanks to the Armijo-Goldstein
rule, it holds

Hr(kH)H < Hr(k) , Vk>D0.

Algorithm [4] summarizes the computations.
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Algorithm 3: Gauss-Newton in GKS with secant update

input : Nonlinear function f, data y, initial guess for the approximate solution
x(0) initial guess for the damping parameter ag, tolerance 7, k number of
iterations for which the Jacobian is updated, maximum number of
iterations K.
output: Approximate solution x*.
Vo = xO [xO];
20 = <]

Compute the Jacobian J; of f in x(0);

N

3
a for k=0,1,2,... K (~io
5 if k—1=0mod k &k # 1 then
6 L Jk) = [J(k—l) —HE-Dy  —gE-Dy(k) _ H(k—l)v(k)};
7 else
s | T = —Jp Vi
° r®) =y — f (sz(k));
2
10 q® = arg min r®) 4 J(k)qH ;
qcR%%
11 aék) = ap;
12 7 =0
. 2 (k) 2 1,0 2
15 | while [|r (Viz®)[|* = | (Vi (28 + aPa®)) |7 < Lol [70q®]|* do
al®)
14 o =2
J+1 2
15 J=i+1
16 ak) = a(,k);
17 z(k+1) = z(k) 4 oK) g(k),
18 if Hz<k) — z(k+1)|| <rT ||z(k)H then
19 L exit;
20 if k=0mod k & k # 0 then
21 Ax(F) = x(k+1) _ x (k) and Ar(®) = p(k+1) _ (k)
(k) _ (k)
22 HE) = Ar i (sz ) (Ax(k))T;
| Ax(®]|*
23 Jf:Jf+H(k);
24 else
25 L Compute the Jacobian Jy of f at Viz(k 1),
26 gk+1) = J}’r(k);
o7 gt = g(k+1) _ Vka,Tg<k+1);
28 Vip1 = [Vi, g*+D/||g+D]|];
29 | z(k+1) — [z(k+1) 0]T§

30 X* = Vjz(k+1);

4 Numerical examples

In this section, we apply the algorithms described in the previous sections
to three nonlinear least-squares problems: a real-world problem from applied
geophysics, a partial differential equation that appears in a number of ap-
plications such as in fuel ignition models of thermal combustion theory, and
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Algorithm 4: A restarted Gauss-Newton method using generalized
Krylov subspaces

input : Nonlinear function f, data vector y, initial guess for the approximate
solution x(O), initial guess for the damping parameter ag, number of
iterations after which a restarting of the GKS is performed krest,
tolerance 7, maximum number of iterations K.

output: Approximation X* of the solution x*.

Vo = X0 [xO]

-

2 z(0) = HX(U)”;
s Compute the Jacobian Jy of f at x(0);
a for k=0,1,2,...,K do
5 if k = 0 modkyest then
6 X = sz(k);
7 Vie =x/ |Ix|l;
8 JR) = — TV
9 r(k) :y—f(sz >)
10 q%) = arg mm Hr(k) + J(k)qH
qGR k
11 aék) = ap;
12 7 =0;
. 2 (k) 2_1 () 2
13 while ||'r (sz(k))H — Hr (Vk (z(k) +a; q(k)))H < 50 HJ(k)q(k)” do
k
» NI
Ayt 2
15 i=3+1
16 alk) = oz(-k>;
17 z(k+1) = z(k) 4 (R gq(k),
18 if Hz(’“) - z(k+1)|| <T ||z(k>H then
19 L exit;
20 Compute the Jacobian Jy of f at Viz(k+1);
21 g(k+1> = J?r(k)7
22 g+ = glktl) _ 1 yTglkt1),
28 | Vigr = [Vi, 86D/ [lg®]]];
24 | z(k+1) = [z(k+1) O]T

25 X* = Vjz(k+1);

a simple problem for which the Jacobian is a very sparse matrix. For each
problem we compare the algorithms in terms of accuracy of the computed
solution, number of iterations required to satisfy the stopping criterion, and
CPU time. We measure the accuracy by means of the Relative Reconstruction
Error (RRE)

[IX — X¢ruel

[[Xtruell

RRE(x) =

where X4 denotes the desired solution of the problem. For each algorithm we
set the maximum number of iterations to K = 100 and the tolerance for the
stopping criterion to 7 = 107°. In Algorlthml 3| we set k& = 10, i.e., we compute
the Jacobian from scratch every k = 10 iterations. The updatlng formulas
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perform best if the updated Jacobian is close to the Jacobian at Xtrue. We
therefore do not use the updating formulas in Algorithm |3 I fork=1,2,..., k.
Finally, we set in Algorithm [4] the number of iterations after which the space
Vi is restarted to kyest = 20. All computations were carried out in MATLAB
2021b running on a laptop computer with an AMD Ryzen 7 5800HS CPU and
16GB of RAM.

A geophysics problem. We consider a nonlinear model from geophysics with
the aim of reconstructing the distribution of the electrical conductivity and
the magnetic permeability of the subsoil from measured data recorded with
a ground conductivity meter (GCM). This device is made up of two coils, a
transmitter and a receiver. The transmitter sends electromagnetic waves into
the subsoil, while the receiver measures the induced electromagnetic field; see,
e.g., |8L[14L|17H19] and references therein for more details on the mathematical
model and [15[16] for numerical results obtained.

We briefly recall how the model is defined. It is based on Maxwell’s equa-
tions. The subsoil is assumed to have a layered structure with n layers of
thickness dy, £ = 1,2,...,n. Layer ¢ has electric conductivity o, and mag-
netic permeability pg. The last layer is assumed to be infinite. We define the
so-called propagation constant as

Ug(/\) = /A2 + o pew, i=+v-1,

where A is the integration variable ranging from zero to infinity. It represents
the ratio of the depth below the surface measured in meters and the inter-
coil distance p (the distance between the transmitter and the receiver). The
parameter w stands for the angular frequency, that is, 27 times the frequency
in Hertz.

The model, which describes the interaction between the GCM and the
subsoil for the vertical and horizontal orientation of the device coils, is given
by

MY (@i p) =~ [ e PN RLOV (o) dA
0

M (o i) = = [ e PIARLON () d,
0

where o = [01,...,00]7, u = [p1,...,1n]", h represents the height of the
device while measuring above the ground, Js; denotes the Bessel function of
the first kind of order s, and Ry, o(\) is the reflection factor defined as

No(A) = Yi(N)

Roo = Ty T0i00;

Here No(\) = A/(ipow), pro = 47 - 10~"H/m is the magnetic permeability of
free space and Y7(A) is computed by the recursive formula

Yor1(A) + Ne(A) tanh(dpue(N))

Yo(A) = Ne(A) Ne(A) + Y1 (A) tanh(deue(N))

(4.1)



14

for £ =n—1,n—2,...,1, where Y;()\) is the surface admittance at the top
of each layer. The coefficient Ng(A\) = wug(N)/(ipew) represents the character-
istic admittance at the ¢-th layer and yields the initialization of the recursion
formula (L.1)), that is when £ = n, we set Y,,(A) = N,,(A).

For simplicity, we focus on the reconstruction of the distribution of the
electrical conductivity and assume the magnetic permeability to be known. To
this end, we construct three test cases and consider three different profiles for
the electrical conductivity: a Gaussian function, a continuous, but not every-
where differentiable function (which we refer to as “triangular”), and a step
function. It is known that in this application the model requires the solution
to be differentiable. Therefore, the last two cases are very challenging to solve.
When we construct our test cases, we assume that there is no noise except
for round-off errors. Thus, we commit an inverse-crime. However, we remark
that the Jacobian of f is so ill-conditioned that perturbations introduced by
round-off errors produce significant fluctuations in the computed solutions.

We set x(9) to be a constant function. Since the problem is non-convex and
underdetermined, the choice of the function x(©) is important. For the Gaussian
and triangular profiles, we set xq = [0.5, 0.5,...,0.5]T7 while for the step
function we set xog = [1.5, 1.5,..., 1.5]T. Moreover, we calibrate the instrument
so that measurements are taken for 10 different heights, i.e., m = 10, and the
subsoil is assumed to be composed of 100 layers, i.e., n = 100.

Table [T reports results obtained with Algorithms [T} 2} B} and ] Since the
problems considered are extremely ill-conditioned, the Gauss-Newton algo-
rithm produces poor reconstructions. Therefore, similarly to the Levenberg-
Marquardt scheme (see, e.g., [26] and references therein) we regularize the
inversion of the Jacobian by applying Tikhonov regularization; see, e.g., |21]
for a discussion and analysis of Tikhonov regularization. In particular, we solve

2
q**tY = arg min {Hr(k) + J(k)QH +107* ||Q||2} )
q€eR%k

and refer to the algorithm so defined as “Algorithm [1| Regularized”. Here 10~4
is the regularization parameter and ||q||2 is the regularization operator.

We can observe that, even when regularized, the Gauss-Newton algorithm
fails to provide an accurate approximation of the desired solution and the
algorithm is significantly slower than Algorithms [2] 3] and [] both in terms of
the number of iterations required and CPU time. The latter three algorithms
provide satisfactory reconstructions for all three problems and are inexpensive
computationally. Since very few iterations are performed Algorithms [2] and [4]
produce basically indistinguishable results. Moreover, the use of the Broyden
update reduces the computational cost with small to no impact on the accuracy
of the computed solution. We point out that Algorithms [2] 3] and [ do not
require fine-tuning of any parameters to perform well, and they do not require
Tikhonov regularization. The number of restart iterations kst can be fixed to
20 in all cases and, in our experience, the method is quite robust with respect
to the choice of this parameter.
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Table 1 Geophysics problem: RRE, number of iterations performed, and CPU times ob-
tained with the considered algorithms for the three different profiles of the electrical con-
ductivity.

Profile Method RRE Iter. CPU time (sec.)
Algorithm [1 0.92282 100  64.04
Algorithm i Reg. | 0.68111 100 30.33

Gaussian | Algorithm [ 0.020354 22 7.13
Algorithm [3 0.074752 15 3.76
Algorithm [ 0.020360 20 6.54
Algorithm [1 0.53842 100  60.33
Algorithm [T|Reg. | 0.32460 100  30.85

Triangular | Algorithm D) 0.058914 17 5.45
Algorithm [3 0.060965 14 3.83
Algorithm [ 0.058914 17 5.43
Algorithm [T >5-10% 100  52.41
Algorithm [T|Reg. | 0.83263 100  30.43

Step Algorithm [2 0.25470 17 5.38
Algorithm [3 0.25226 19 3.58

1

Algorithm 0.25470 17 5.42

Figure [I] displays the computed reconstructions determined by the regu-
larized Gauss-Newton method and Algorithms [2] and [3] We do not show the
graphs determined by Algorithm [I| as these computed solutions are not mean-
ingful approximation of the desired solutions. Moreover, we do not display the
approximations computed by Algorithm [] as they are nearly identical to the
ones obtained by Algorithms [2]

Note that we do not propose here to combine both the secant update
with the restarting of the solution subspace. The reason is twofold, firstly we
do not want to complicate any further the algorithm by inserting multiple
parameters that need to be tuned. Secondly, in our computed example few
iterations are performed and the possible computational advantage of this
combination would be negligible. Moreover, the obtained algorithm would be
highly heuristic and it may be possible to expect erratic behavior. Therefore,
at this time we do not consider the combinations of these two acceleration
techniques.

Partial differential equation. This example describes a nonlinear partial differ-
ential equation that can be solved with the Gauss-Newton method. Specifically,
we consider the Bratu problem

(s,t) € 12,

0, (s,t)€ 08, (4.2)

—Ax(s,t) + axs(s, t) + e =
x(s,t)

where Ax(s,t) stands for the Laplacian of x, x5 denotes the partial derivative of
x along the s-direction, and « is a constant. We are interested in investigating
how the solution changes when the parameter A is varied; see, e.g., [12}/24}/29]
for discussions and illustrations of these kinds of path-following problems.
We let 2 = [-3,3]? and discretize the problem with standard 2nd order
finite differences on an n x n equispaced grid. The discretized problem can be
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(a) (b) (c)

Figure 1 Geophysics problem: Reconstruction of the Gaussian (a), triangular (b), and
step function (c) test profiles. The black dotted curves show the exact solutions, the ma-
genta dashed-dotted curves are approximations determined by the regularized Gauss-Newton
method, the blue solid curves show approximate solutions computed by Algorithm @ and
the red dashed curves display approximate solutions obtained with Algorithm@ We do not
report the approximations computed by Algorithm m as they are not meaningful and the
ones obtained by Algorithm [4] since they are indistinguishable from the one returned by
Algorithm 2]

written as
arg min ||y — (Lx 4+ aDx 4 Ae¥)||?,
xeRn?
where the entries of x represent the discretized solution arranged in lexico-
graphical order, L = I, ® [ + I ® L1, D = Dy ® I, where ® denotes the
Kronecker product, and the exponential is meant element-wise. We let

2 —1
-1 2 -1
le eRan and D1: e T eRnxn-
-1 2 -1
-1 2

-11

For simplicity, once we compute the sampling of the function z and denote it
by Xtrue, we construct y by

y = LxXtrue + @DXgrue + )\ex”uez

i.e., we disregard approximation errors in the PDE as well as the scaling.

In our test, we let z(s,t) = e 0("+") and sample  on a 100 x 100
equispaced grid on the square [—3, 3]2. Therefore, in , I R10" 5 R10%,
The Jacobian of f at the point x is given by

Jy=L+a-D+ X\ diag(e¥).

Since we impose zero Dirichlet boundary conditions, L and D are Block
Toeplitz with Toeplitz Block (BTTB) matrices. Therefore, the matrix Jy is
a Generalized Locally Toeplitz (GLT) matrix; see [1}2,/22}23]. The GLT the-
ory furnishes a tool for studying the behavior of the singular values of Jy.
Providing a complete and precise analysis of the behavior of the singular val-
ues of Jy is outside the scope of this paper. Here we just note that the singular
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values of J; can be approximated quite accurately, if n? is large enough, by
a uniform sampling over [0, 7]? of the modulus of the GLT symbol of Js. Let
x:[0,1]2 — R be the function that x is a sampling of. Then, the GLT symbol
of Jy is given by

S(0,6,5,t) = (2—2cos(0))+ (2—2 cos(¢)) +a(—1+cos(8) —isin(f))) + e" =),

where i = /—1, (0,¢) € [-,n]?, and (s,t) € [0,1]2. Tt is straightforward to
see that, if o is large and A is small, then the singular values of J; decay rapidly
to 0 with increasing index and, therefore, J¢ is ill-conditioned. On the other
hand, if A is large and « is small, then the singular values decay slowly with
increasing index and, therefore, J; is well-conditioned. This is confirmed by
Figure which displays the approximated singular values of Jy for two choices
of a and A, namely (o, A) = (1,10) and (e, A) = (10,1), with x = X¢rye. We
observe that in the first case the matrix J; is very well-conditioned, while in the
latter case the matrix is poorly conditioned. We can estimate the condition
number of Jy in these two cases with the MATLAB function condest. In
the first case, i.e., the well-conditioned one, the computed condition number
is ko =~ 3.3, while in the latter case, i.e., the ill-conditioned one, we obtain
ko =2 1.7 - 1030, This illustrates that the conditioning for large values of « is
far worse than what the GLT theory predicts.

We illustrate the performances of Algorithms[I] 2] and [ for several choices
of a and \. In particular, we let (o, \) € {1, 2,..., 10}2. Since we observed
that the standard Gauss-Newton method for some choices of @ and A stops
after a single iteration, we forced this method to carry out at least 5 iterations.

Table [2] reports the means, standard deviations, maximum values, and
minimum values for the RRE, number of iterations, and CPU times required
for Algorithms and [4} Since the computation of Jy is very cheap, we
do not consider Algorithm [3|in this example. We note that, on average, Al-
gorithms [I] and [4] yield less accurate computed solutions than Algorithm [2]
However, for some parameter pairs (a,A) the accuracy obtained with Al-
gorithms [I] and [] is much higher than with Algorithm [2] Nevertheless, the
approximate solutions computed by the latter algorithms are always fairly ac-
curate, even in the worst case. On the other hand, the Gauss-Newton method
determines very poor reconstructions for several choices of o and A. Fig-
ures [3(a), 3(d), and [3|(g) show log,,(RRE) for each choice of the parameters.
We can observe that, for a fairly large number of choices of o and A, the Gauss-
Newton method performs quite poorly in terms of accuracy, while Algorithms
and [4) always provides accurate reconstructions. This is due to the fact that
the projection into the generalized Krylov subspace regularizes the problem
without reducing the accuracy of the computed solutions.

The CPU times reported in Table P and in Figures [3[c), B(f), and [3{i)
illustrate that Algorithms [2 and [4] are faster in terms of CPU time than Al-
gorithm [I] despite that the first two methods usually require more iterations
to converge than Algorithm [I} We can also observe that the speed-up ob-
tained by using the restarting strategy is significant as it reduces the average
computational cost by a factor of almost 10.
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Table 2 Partial differential equation test case: means, standard deviations, maximum val-
ues, and minimum values for the RRE, number of iterations, and CPU times obtained for
Algorithms and The results are obtained for (o, A) € {1, 2,..., 10}? in (42).

Method Parameter Mean Std. Dev. Min. Max.
RRE 0.5580 0.5146 7.92-10-16  1.655
Algorithm [1] | Tter. 8.44 17.13 5 100
CPU time (sec.) | 0.6989  0.6246 0.1125 3.09
RRE 0.0097 0.0121 821-10-°  0.0654
Algorithm 2] | Tter. 48.5 26.08 16 100
CPU time (sec.) | 0.2734  0.2948 0.0269 1.0251
RRE 0.0142 0.0197 9-10-° 0.1261
Algorithm [4] | Tter. 20.34 285 16 40
CPU time (sec.) | 0.0356  0.0057 0.0268 0.0763
10" Tl
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Figure 2 Partial differential equation test case: approximation of the singular values of J
via the GLT theory with two different couple of parameters (a, ). The solid black line is
obtained for & = 1 and A\ = 10, while the dashed gray line is for o = 10 and A = 1.

We now discuss how the CPU times changes when the dimensions of the
problem increase. We fix a« = 5 and A = 10 and let n € 100, 150,...,1000.
Therefore, when n = 1000, we have f : R — R19°, We run the considered
algorithms and plot the CPU times in Figure[d We can observe that, obviously,
the CPU time required to solve the problem increases with n. However, the
rate of increase is substantially lower when the projection in the generalized
Krylov subspace is employed. In particular, using Algorithm[4] we can see that
we are able to solve a nonlinear problem with 106 unknowns in less than 10
seconds on a laptop.

An extremely sparse problem. In this example, we would like to show a very
particular situation when Algorithms [2]and [3]are not faster than Algorithm [I}
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Figure 3 Partial differential equation test case: RRE, number of iterations, and CPU times
obtained with Algorithms and E for each choice of (o, A) € {1, 2,..., 10}? in ({@2).
The first row reports the results obtained with Algorithm m the second row shows results
for Algorithm [2] and the third row contains results for Algorithm [4]

However, we hasten to point out that this situation arises very seldom. Intro-
duce the nonlinear differentiable function f : R® — R*~! given by

1+ o
.'IZ2+Z173

f(x) =sin : ,
Tn—1+ Tn

where the sin operation is meant element-wise. We construct the problem by

choosing as the exact solution x € R™ of the problem (1.1)) a sampling of the

function x = %sin(x), with o € (—m,7), on an equispaced grid with n = 103.

The Jacobian J¢(x) of f is bidiagonal and given by
cos(z1 + @2) cos(zy + x2)
(0 = cos(za + x3) cos(m.g. +z3) )  RO-1xn

co8(Tp—1 + Tp,) COS(Tp—1 + Tp)

Least-square problems with such a matrix can be solved very inexpensively.
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Figure 4 Partial differential equation test case: CPU times obtained with Algo-
rithms and with (a, A) = (5,10) in for increasing dimensions of the problem.
The dotted gray line reports the results obtained with Algorithm [I] the solid black line
shows results for Algorithm [2] and the dashed black contains results for Algorithm [

Table 3 An extremely sparse problem: RRE, number of iterations performed, and CPU
times for Algorithms |I| and @

Method | RRE Iter. CPU time (sec.)
Algorithm [1f | 0.085038 5 0.00608
Algorithm 0.00012168 17 0.0185

Table [3] reports results obtained for Algorithms [I] and [2] We note that
the latter algorithm determines a more accurate approximate solution than
the former. However, since the solution of least-squares problems with the
sparse matrix J is very inexpensive to compute and Algorithm [I] carries out
fewer iterations than Algorithm [2] the overall cost of the former algorithm is
slightly smaller than of the latter algorithm. Nevertheless, Algorithm [2reduces
the cost per iteration significantly, when compared with Algorithm and
provides more accurate reconstructions. Therefore, one may still want to use
Algorithm 2] even if it is slightly more expensive.

Note that, since Algorithm [2| carried out fewer than ks iterations, we
do not report the results for Algorithm [4 as they are identical to the ones
obtained with Algorithm [2]

5 Conclusion and extensions

This paper presents new implementations of the Gauss-Newton algorithm
based on the use of generalized Krylov subspaces. The approach described
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easily can be extended to other nonlinear optimization methods such as the
Levenberg-Marquardt method. We have shown that Algorithm [2] determines
approximate solutions that converge to a stationary point of the minimized
functional. Several numerical examples show that Algorithms [2] 3] and [] out-
perform the standard Gauss-Newton method. Extensions to regularized prob-
lems as well as other iterative algorithms are presently being developed.
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