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Abstract

Relations between discrete quantities such as people, genes, or streets can be
described by networks, which consist of nodes that are connected by edges.
Network analysis aims to identify important nodes in a network and to un-
cover structural properties of a network. A network is said to be bipartite
if its nodes can be subdivided into two nonempty sets such that there are
no edges between nodes in the same set. It is a difficult task to determine
the closest bipartite network to a given network. This paper describes how
a given network can be approximated by a bipartite one by solving a se-
quence of fairly simple optimization problems. The algorithm also produces
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a node permutation which makes the possible bipartite nature of the initial
adjacency matrix evident, and identifies the two sets of nodes. We finally
show how the same procedure can be used to detect the presence of a large
anti-community in a network and to identify it.

Keywords: network analysis, network approximation, bipartization,
anti-community
2000 MSC: 65F15, 05C50, 05C82.

1. Introduction

Networks describe how discrete quantities such as genes, people, proteins,
or streets are related. They arise in many applications, including genetics,
epidemiology, energy distribution, and telecommunication; see, e.g., [7, 17]
for discussions on networks and their applications. Networks are represented
by graphs G = {V , E ,W}, which are determined by a set of vertices (nodes)
V = {vi}ni=1, a set of edges E = {ek}mk=1, and a set of positive weights
W = {wk}mk=1. Here ek = (ik, jk) represents an edge from vertex vik to
vertex vjk . The weight wk is associated with the edge ek; a large value of
wk > 0 indicates that edge ek is important. For instance, in a road network,
the weight wk may be proportional to the amount of traffic on the road
that is represented by the edge ek. In this paper, we consider connected
undirected graphs without self-loops and multiple edges. In particular, all
edges represent “two-way streets,” i.e., if (ik, jk) is an edge, then so is (jk, ik).
The weights associated with these edges are assumed to be the same. In
unweighted graphs all weights are set to one.

We will represent a graph G with n nodes by its adjacency matrix A =
[ai,j]

n
i,j=1, where

ai,j =

{
wk, if there is an edge ek between the nodes vi and vj with weight wk,

0, otherwise.

Since G is undirected and the weights associated with each direction of an
edge are the same, the matrix A is symmetric. The largest possible number
of edges of an undirected graph with n nodes without self-loops is n2 − n,
but typically the actual number of edges, m, of such graphs that arise in
applications is much smaller. The adjacency matrix A, therefore, is generally
very sparse.
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A graph G is said to be bipartite if the set of vertices V that make up
the graph can be partitioned into two disjoint nonempty subsets V1 and V2
(with V = V1 ∪ V2), such that any edge starting at a vertex in V1 points to
a vertex in V2, and vice versa. This, in particular, excludes the presence of
self-loops in a bipartite graph.

Bipartivity is an important structural property. It has been studied also
as the 2-coloring problem [3]. In fact determining if a graph can be colored
with 2 colors is equivalent to determining whether or not the graph is bipar-
tite, and thus testing if a network is bipartite or not is computable in linear
time using breadth-first or depth-first search algorithms. It is therefore in-
teresting to determine a bipartite approximation of a non-bipartite graph,
or measure the distance of a non-bipartite graph from being bipartite. We
say that a splitting of the set of vertices V of a weighted undirected graph
G into two disjoint nonempty subsets V1 and V2 (with V = V1 ∪ V2), is a
best bipartization of G if the sum of the weights wk associated with edges
ek = (i, j) that point from vertices vi in V` (` = 1, 2) to vertices vj in the
same set V` is minimal. Such edges ek are called “frustrated”, and computing
the minimum number of edges whose deletion makes the graph bipartite is
an NP-hard optimization problem [25]. We remark that the above defini-
tion is analogous to the definition of a best bipartization of an undirected
unweighted graph proposed by Estrada and Gómez–Gardeñes [8], where the
spectral bipartivity index of a network with adjacency matrix A is defined as

bs =
trace(exp(−A))

trace(exp(A))
. (1.1)

This measure also can be applied to the weighted graphs considered in the
present paper.

The problem of discovering approximately bipartite structures in graphs
and networks has been considered by various authors. Most popular ap-
proaches are based on the eigendecomposition of the Laplacian and signless
Laplacian matrices. Other spectral approaches consider the adjacency ma-
trix associated to the graph. In the case of a symmetric bipartite adjacency
matrix, the signs of the entries of an eigenvector associated with the smallest
eigenvalue can be used to partition the graph, i.e., nodes that correspond
to positive entries belong to one set, and nodes that correspond to negative
entries belong to the other set; see [21]. In case the smallest eigenvalue is
multiple, the splitting of the nodes may vary according to the considered
vector in the associated eigenspace. In [16] the presence of ± pairs in the
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spectrum of the adjacency matrix of a bipartite graph is exploited in order to
identify approximated bipartite structures within protein-protein interaction
undirected networks; see also [23] for a spectral approach that can be used
to discover approximately bipartite substructures in directed graphs.

We are interested in developing a numerical method for determining a
“good” bipartization (V1,V2), i.e., a bipartization for which the sum of the
weights wk associated with the edges ek = (i, j) that point from a vertex
vi in V1 to a vertex vj in V2, or vice versa, is fairly small. The algorithm
is approximated, or “heuristic”, in the sense that it does not necessarily
produce the best possible bipartization.

As it will be made clear in the following, the same bipartization method
may be used for the identification of large anti-communities. A community is
a group of nodes which are highly connected among themselves, but are less
connected to the rest of the network, or isolated from it. Conversely, an anti-
community is a node set that is loosely connected internally, but has many
external connections [9]; see [10], where a spectral method is used to detect
communities and anti-communities. Community and anti-community detec-
tion in networks is an important problem with applications in various fields,
including physics, computer science, and social sciences [5, 15, 18, 19, 24].
Although the identification of communities is predominant in the investi-
gation of meso-scale structures in networks, the detection of the so-called
core-periphery structures, whose most popular notion was developed by Bor-
gatti and Everett [4], attracts a continuing interest also in the mathematical
community; see also [20]. For our purposes, the identification of a single large
anti-community can be understood as that of a core-periphery structure in
the given network.

This paper is organized as follows. Section 2 discusses some properties
of bipartite graphs and Section 3 describes an algorithm for determining a
“good” bipartization. An application of the bipartization method to the
identification of large anti-communities is discussed in Section 4. Finally,
Section 5 presents computed examples and two case studies, while Section 6
contains concluding remarks.

2. Approximating the spectral structure of a bipartite graph

This section discusses some properties of the adjacency matrix for an
undirected bipartite graph. Some inequalities that are useful for the design
of our bipartization method also will be introduced. The discussion in the
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first part of the section assumes that the vertices are suitably ordered. Sub-
sequently, we will describe how to achieve such an ordering.

Assume for the moment that the undirected graph G = {V , E ,W} is
bipartite, i.e., its vertex set V can be split into two disjoint nonempty subsets
V1 and V2 with n1 and n2 nodes, respectively, such that there are no edges
between the nodes in V1 and between the nodes in V2. We may assume that
n1 ≥ n2, otherwise we interchange the sets V1 and V2.

Let the vertices in the set V be ordered so that the first n1 of them belong
to the set V1 and the remaining n2 vertices belong to V2. Then the adjacency
matrix for the graph G is of the form

AB =

[
On1 C
CT On2

]
, (2.1)

where Ok denotes the k×k zero matrix, and C = [ci,j] ∈ Rn1×n2 with ci,j > 0
if the node vi in V1 is connected to the node vn1+j in V2; otherwise ci,j = 0.

We adapt to our notation a known result in graph theory; see, e.g., [1,
Theorem 3.14].

Proposition 2.1. Let G be an unweighted graph with n nodes. Then G is
bipartite and the adjacency matrix can be partitioned as in (2.1) if and only if
the spectrum of the adjacency matrix is symmetric with respect to the origin,
i.e.,

σ(AB) = {λ1, . . . , λn2 , 0, . . . , 0︸ ︷︷ ︸
n1−n2

,−λn2 , . . . ,−λ1}, (2.2)

for some integers n1 ≥ n2 and non-negative numbers λ1 ≥ λ2 ≥ · · · ≥ λn2.
The claim holds true also for weighted graphs, as long as the weights are
positive.

Proof. For the sake of clarity, we give a quick sketch of the proof. The neces-
sary condition is straightforward. The sufficient condition can be proved by
noting that, for k = 0, 1, . . ., trace(A2k+1

B ) = 0 if the spectrum is symmetric.
Then, the positivity of the weights implies that (A2k+1

B )i,i = 0, that is, the
graph is bipartite since it does not contain odd cycles.

Remark 2.2. Under the assumption of Proposition 2.1, it is immediate to
verify that if λ is a nonzero eigenvalue of AB and q = [ xy ], with x ∈ Rn1 and
y ∈ Rn2 , is an associated eigenvector, then (−λ, [ x

−y ]) is an eigenpair, too.
This implies that λ is a singular value of the block C in (2.1), while x and
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y are its left and right singular vectors, respectively, if scaled to be of unit
length.

Let n = n1 + n2 with n1 ≥ n2 ≥ 1. Then, the above observation gives
us the possibility to describe the spectral structure of AB in terms of the
singular value decomposition of C; see also [12, Section 8.6.1]. Let C =

XD̃Y T be a singular value decomposition of C, where D̃ ∈ Rn1×n2 has D =
diag(λ1, . . . , λn2) as its upper block, and X = [X1, X2] ∈ Rn1×n1 and Y ∈
Rn2×n2 are orthogonal matrices with X1 ∈ Rn1×n2 . Introduce the diagonal
matrix

D = diag(D,On1−n2 ,−D),

and the orthogonal matrix

Q =

[
U1 U2 U1

V On2,n1−n2 −V

]
, (2.3)

where U1 = 1√
2
X1, U2 = X2, and V = 1√

2
Y , with UT

1 U1 = V TV = 1
2
In2 and

UT
2 U2 = 1

2
In1−n2 . Then, the spectral factorization

AB = QDQT , (2.4)

takes the form[
U1 U2 U1

V On2,n1−n2 −V

]
diag(D,On1−n2 ,−D)

[
U1 U2 U1

V On2,n1−n2 −V

]T
. (2.5)

In the special case when n1 = n2, the submatrices of (2.3) with n1 − n2

columns disappear, and the spectral factorization (2.5) simplifies to

AB =

[
U1 U1

V −V

] [
D 0
0 −D

] [
U1 U1

V −V

]T
,

with U1U
T
1 = V V T = 1

2
In1 .

Now, let A be an adjacency matrix of an undirected graph. We would like
to approximate the graph by a bipartite one, and therefore seek to approx-
imate A by a matrix of the form AB. We do this in several steps and first
show some inequalities that are applicable to diagonal eigenvalue matrices.
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Proposition 2.3. Let α1 ≥ α2 ≥ · · · ≥ α` be a nonincreasing real sequence
and let β1, β2, . . . , β` be another real sequence. The distance between these
sequences measured in the least squares sense,(∑̀

i=1

(αi − βi)2
)1/2

, (2.6)

is minimal if and only if the βi are in nonincreasing order, i.e., if β1 ≥ β2 ≥
· · · ≥ β`.

Proof. Assume that both sequences are in nonincreasing order and that the
distance can be reduced by changing the order of the βi. Consider the pairs
(α1, β1) and (α2, β2). Then

(α1 − β2)2 + (α2 − β1)2 ≤ (α1 − β1)2 + (α2 − β2)2

is equivalent to
α2(β1 − β2) ≥ α1(β1 − β2).

Assume β1 > β2. Then α2 ≥ α1, which is a contradiction unless α1 = α2. If
the βj are ordered arbitrarily, then we can reorder these coefficients pairwise
until they form a nonincreasing sequence. Each pairwise swap reduces (2.6).

In our application of Proposition 2.3, we let α1 ≥ α2 ≥ · · · ≥ αn be
the eigenvalues of the adjacency matrix A ∈ Rn×n. The graph associated
with this matrix might not be bipartite. We would like the sequence of
eigenvalues of the matrix AB ∈ Rn×n, given by (2.1), to be close to the
sequence α1, α2, . . . , αn and appear in ± pairs. By Proposition 2.3, we know
that the eigenvalues β1, β2, . . . , βn of AB should be in nonincreasing order,
and by Proposition 2.1 they vanish or appear in ± pairs. We know from (2.5)
that at least n1 − n2 eigenvalues of AB should be zero.

Proposition 2.4. Let {αj}nj=1, with n = n1 + n2 and n1 ≥ n2, be a real
nonincreasing sequence. Then the sequence {βj}nj=1 with elements

βj =


1
2
(αj − αn−j+1), j = 1, 2, . . . , n2,

0, j = n2 + 1, . . . , n1,

−βn−j+1, j = n1 + 1, . . . , n,

(2.7)
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is the closest sequence to {αj}nj=1 in the least squares sense consisting of at
least n1 − n2 zeros and nonvanishing entries appearing in ± pairs.

Proof. The sequence {βj}nj=1 consists of n1 − n2 zero values and n2 ± pairs.
Indeed, we have

βj − βj+1 =



1
2
(αj − αj+1) + 1

2
(αn−j − αn−j+1), 1 ≤ j ≤ n2 − 1,

1
2
(αn2 − αn1+1), j = n2,

0, n2 + 1 ≤ j ≤ n1 − 1,

βn2 , j = n1,

βn−j − βn−j+1, n1 + 1 ≤ j ≤ n− 1,

and it follows that the sequence is nonincreasing. It remains to establish
that the βj defined by (2.7) are the best possible. Consider the minimization
problems{

minβ

(
(αj − β)2 + (αn−j+1 + β)2

)
, 1 ≤ j ≤ n2,

minβ (β2), n2 + 1 ≤ j ≤ n1.
(2.8)

The solution sequence {βj}nj=1 is given by (2.7). Thus, the βj form a nonin-
creasing sequence consisting of n1 − n2 zero values and n2 ± pairs. It is the
closest such sequence to the sequence {αj}nj=1 in the sense that it solves the
minimization problems (2.8).

We would like to determine an approximation of the matrix A by a matrix
of the form (2.1), where we allow row and column permutations of the latter
matrix. Define the spectral factorization

AB = WBΛBW
T
B , ΛB = diag(λ

(B)
1 , λ

(B)
2 , . . . , λ(B)

n ),

where WB is an orthogonal matrix and the eigenvalues are ordered according
to

λ
(B)
1 ≥ λ

(B)
2 ≥ · · · ≥ λ(B)

n .

We remark that only the first n1 eigenvalues are ordered as in (2.4).
Let us initially assume that the nonzero eigenvalues are distinct. If the

eigenvectors are made unique, e.g., by making their first component positive,
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a comparison with (2.5) shows that

WB =

[
U1 U2 U1Z
V O −V Z

]
, ΛB =

D O O
O On1−n2 O
O O −ZDZ

 , (2.9)

where Z is the flip matrix

Z =

O 1

. .
.

1 O

 ∈ Rn2×n2 .

In the presence of multiple nonzero eigenvalues, the corresponding eigen-
vectors are not uniquely determined, so the spectral factorization (2.9) is
only one of several possible distinct factorizations.

Let
A = WΛW T , Λ = diag(λ1, λ2, . . . , λn), (2.10)

be a spectral factorization of A with an orthogonal eigenvector matrix W
and the eigenvalues ordered according to

λ1 ≥ λ2 ≥ · · · ≥ λn. (2.11)

Partition the eigenvector matrix W conformally with the eigenvector matrix
WB of AB, i.e.,

W =

[
W11 W12 W13

W21 W22 W23

]
.

We would like to to approximate the eigenvector matrix W of A by the
eigenvector matrix WB of AB. This suggests that we solve the minimization
problem

min
UT
1 U1=V TV= 1

2
In2

UT
2 U2=

1
2
In1−n2

∥∥∥∥[U1 U2 U1

V O −V

]
−
[
W11 W12 W13Z
W21 W22 W23Z

]∥∥∥∥
F

, (2.12)

where ‖·‖F denotes the Frobenius norm. This problem splits into the three
independent problems

min
UT
1 U1=

1
2
In2

{‖U1 −W11‖2F + ‖U1 −W13Z‖2F}, (2.13)

min
V TV= 1

2
In2

{‖V −W21‖2F + ‖V +W23Z‖2F}, (2.14)

min
UT
2 U2=

1
2
In1−n2

{‖U2 −W12‖2F}. (2.15)
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Problem (2.13) can be written as

min
XT

1 X1=In2

{∥∥∥X1 −
√

2W11

∥∥∥2
F

+
∥∥∥X1 −

√
2W13Z

∥∥∥2
F

}
. (2.16)

The following result shows how we can easily solve this problem.

Proposition 2.5. The solution of problem (2.16) can be determined by com-
puting the singular value decomposition of W11+W13Z and setting all singular
values to one.

Proof. Consider the problem

min
XTX=I

‖X −W‖2F .

It can be written as

min
XTX=I

{trace(XTX)− 2 trace(XTW ) + trace(W TW )}.

The first and last terms are independent of X. Therefore we obtain the
equivalent linear minimization problem

min
XTX=I

{− trace(XTW )}.

Similarly, the linear problem associated to the minimization problem
(2.16) is given by

min
XT

1 X1=In2

{− trace(XT
1 (W11 +W13Z))}. (2.17)

Hence, the problem (2.16) is equivalent to determining the closest orthogonal
matrix in the Frobenius norm to the matrix W11 + W13Z. The solution
is given by computing the singular value decomposition PΣQT of W11 +
W13Z and setting X1 = PQT ; see [13, Theorem 4.1] for a proof of the latter
statement.

The minimization problems (2.14) and (2.15) are solved similarly. This
gives the eigenvector matrix in the spectral factorization (2.5).
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Remark 2.6. We note that if PΣQT denotes the singular value decomposi-
tion of W11 +W13Z, then we can express its polar decomposition by

W11 +W13Z = (PQT )(QΣQT ).

Since the first factor PQT is the minimizer of (2.17), the deviation of QΣQT

from the identity matrix measures the quality of the approximation.

Remark 2.7. If some of the nonzero eigenvalues of A in (2.10) are multiple,
the corresponding columns of W11, W21, W13, and W23, are not uniquely
determined. Anyway, when approximating W11 + W13Z by X1, and W21 −
W23Z by Y , those columns contain linear combinations of the previous ones,
and so they belong to the same space. Then, the approximations X1 and Y
will make factorization (2.9) valid.

3. A spectral bipartization method

We give here an outline of a spectral bipartization method, based on the
above results. It exploits the spectral structure (2.5) of a bipartite graph to
determine a node permutation that separates the two sets V1 and V2, and
to construct a bipartite approximation to a connected undirected graph G,
having a perturbed bipartite structure. The algorithm is exact whenever
the input is the adjacency matrix of a bipartite graph, however it has to be
considered “heuristic”, as we were not able to prove a complete convergence
result for it, apart from the spectrum approximation theorems in Section 2.

There are three problems at hand: estimating the cardinality of the sets
V1 and V2, suitably ordering the nodes in G, and, finally, approximating the
adjacency matrix by a matrix of the form (2.1). Let A be the adjacency
matrix of G, and assume the spectral factorization

A = WDW T , D = diag(λ1, λ2, . . . , λn),

is available, where W is an orthogonal matrix and the eigenvalues are ordered
by increasing absolute value.

1. The first step of our algorithm consists of finding the cardinality n1

and n2 of the two disjoint node sets V1 and V2, unless they are known
in advance. We do this by identifying the number of eigenvalues that
are approximately zero.
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In principle, this could be done by detecting how many eigenvalues
have absolute value larger than a fixed tolerance, but this process is
extremely sensitive to the choice of the tolerance. In our numerical
experimentation, we found it to be more reliable to detect the largest
gap between “small” and “large” eigenvalues.
To do this, we compute the ratios

ρi =
|λi+1|
|λi|

, i = 1, 2, . . . , n− 1. (3.1)

Then, for suitably chosen constants R and τ , we consider the index set

J = {i ∈ {1, 2, . . . , n− 1} : ρi > R and |λi+1| > τ} . (3.2)

In our experiments, we set R = 102 and τ = 10−8.
An index i is in J if there is a significant gap between λi and λi+1

(ρi > R), and λi+1 is numerically nonzero (|λi+1| > τ). If the set J is
empty, then we are not able to identify a partition of the nodes, and
we consider the cardinality of the sets V1 and V2 to be the same. On
the contrary, we let k be the index defined by

ρk = max
i∈J

ρi,

and set

n2 =

⌈
n− k

2

⌉
, n1 = n− n2,

where dxe denotes the closest integer to the real number x.
The above approach is clearly not completely robust. It is easy to trick
it by constructing particular numerical examples, for example by letting
C in (2.1) have singular values that decay to zero exponentially, or by
introducing large gaps in the spectrum of the adjacency matrix. Never-
theless, we found the procedure quite accurate on networks stemming
from real-world applications; see, e.g., Figures 6 and 8 in Section 5.
In order to avoid overflow, it may be preferable to use the reciprocal
ratios ρ−1i . This is not required in our Matlab implementation, given
the features of the programming language.

2. The subsequent step is to find the sets V1 and V2, and reorder the
nodes. Assume that G is bipartite, but that the adjacency matrix A
corresponds to a random ordering of the nodes, so that

A = ΠABΠT ,
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for a permutation matrix Π and a matrix AB of the form (2.1). In this
case, the spectral factorization (2.4) becomes

A = (ΠQ)D(ΠQ)T ,

i.e., the rows of the eigenvector matrix are permuted. In order to
recover the structure of the eigenvectors, let us partition the eigenvector
matrix as in

W := ΠQ =
[
W1 W2 W3

]
, (3.3)

with W1,W3 ∈ Rn×n2 and W2 ∈ Rn×(n1−n2).
Assume first that n1 > n2 ≥ 1 and consider the matrix block W2. For
(2.9) to be valid, the last n2 rows of W2 must vanish. Sorting in de-
scending order the 1-norms of its rows concentrates the smallest entries
in the lower block of W2. Applying the corresponding permutation σ to
the rows of W brings this matrix to the form (2.9) and the adjacency
matrix to the form (2.1), with the block C possibly permuted. When
n1 = n2 the block W2 is empty, so we consider the matrix W1 −W3Z.
As its first n1 rows should be exactly zero, we sort the 1-norms of its
rows in ascending order, and apply the obtained permutation σ to the
rows of W . After the reordering, the first n1 nodes are in the set V1,
and the remaining n2 are in the set V2. We note that applying the
permutation σ to the rows and columns of the initial adjacency ma-
trix A highlights the presence in the graph of an approximate bipartite
structure.

3. To finally obtain an approximation of the matrix (2.1) by the computed
spectral factorization, we first approximate the eigenvector matrix WB

by solving problem (2.12), and then approximate the eigenvalues in
(2.10) by scalars that appear in ± pairs using Proposition 2.4. Specifi-
cally, we let the αj in the proposition be the eigenvalues (2.11). The βj
defined in the proposition are the eigenvalues of the matrix D in (2.5),
in the same order.

The above procedure, outlined in Algorithm 1, determines the eigenvec-
tors and eigenvalues of a matrix AB with the block structure

AB =

[
O C
CT O

]
, (3.4)

where the matrix C has real entries. The matrix AB may have a different
number of nonzero entries than A. In fact, not all nonzero entries may be
positive. We can handle this issue in several ways:
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Algorithm 1 Spectral bipartization algorithm.

Require: adjacency matrix A of size n, the user may optionally provide the
cardinalities n1 and n2 of V1 and V2

Ensure: permutation σ which reorders the nodes, adjacency matrix AB of
the approximated bipartite graph

1: compute the spectral factorization A = WDW T , with λ1 ≥ · · · ≥ λn
{Step 1 of the algorithm}

2: if n1, n2 are not provided then
3: sort the eigenvalues by increasing absolute value
4: compute ρi, i = 1, . . . , n− 1 by (3.1)
5: construct set J by (3.2)
6: if J = ∅ then
7: n1 = dn/2e, n2 = n− n1

8: else
9: k = arg maxi∈J ρi

10: n2 = d(n− k)/2e, n1 = n− n2

11: end if
12: end if
{Step 2 of the algorithm}

13: partition W =
[
W1 W2 W3

]
as in (3.3)

14: if n1 > n2 then
15: find the permutation σ which sorts the 1-norms of the rows of W2

decreasingly
16: else
17: find the permutation σ which sorts the 1-norms of the rows ofW1−W3Z

increasingly
18: end if
19: apply the permutation σ to the rows of W
{Step 3 of the algorithm}

20: approximate the eigenvectors of A by minimizing (2.12)
21: approximate the eigenvalues of A by ± pairs βi, by Proposition 2.4
22: set D = diag(β1, . . . , βn)
23: construct the adjacency matrix AB = WDW T of the bipartite graph

• Allow AB to be an adjacency matrix for a weighted graph with both
positive and negative weights.
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• Allow AB to be an adjacency matrix for a weighted graph with positive
weights. We achieve this by replacing the matrix C in (3.4) by the
closest matrix, C+, in the Frobenius norm with nonnegative entries.
The matrix C+ is obtained from C by setting all negative entries to
zero.

• Require AB to represent an unweighted graph. The closest such matrix
in the Frobenius norm to the matrix (3.4) is obtained by setting every
entry of C to the closest member of the set {0, 1}.

The last procedure is the one adopted in the numerical experiments presented
in Section 5.

Algorithm 1 can be applied only to small to medium sized problems, i.e.,
when it is possible to compute a full spectral factorization of A. For larger
problems, one may reduce the complexity of the computation by renouncing
the third step of the algorithm. Indeed, when n1 − n2 is not too large, a
partial spectral factorization may lead to constructing a basis for the null
space of A, that is, to obtaining the matrix W2. This would allow one to
generate the permutation σ that takes the adjacency matrix to an almost
bipartite form, identifying the two sets V1 and V2.

4. Anti-communities

Let us consider a symmetric matrix A of size n = n1 + n2 with a zero
leading square block of size n1. Then, A may be considered the adjacency
matrix of a network with an anti-community of n1 nodes. The matrix has
the form

A =

[
On1 C
CT B

]
, (4.1)

with C of size n1 × n2 and B a square matrix of order n2. In the following,
we denote by N (C) the null space of C, by R(C) its range, and by B|N (C)

the restriction of the submatrix B to N (C).

Theorem 4.1. Let A be as in (4.1) and let x = [ x1
x2 ] be partitioned consis-

tently with A. Then the equation

Ax = 0 (4.2)

15



has ν = dimN (CT ) linearly independent solutions with x2 = 0. Moreover, if

d = dim
(
R(B|N (C)) ∩R(CT )

)
≥ 1,

then there are also d linearly independent solutions to Ax = 0 with x2 6= 0,
so that dimN (A) = d+ ν.

Proof. Let k = rank(C) and consider the case n1 > n2 = k. Let us search
for vectors x such that Ax = 0. Then we have

A

[
x1

x2

]
=

[
On1 C
CT B

] [
x1

x2

]
=

[
Cx2

CTx1 +Bx2

]
. (4.3)

Since C is of full rank and n1 > n2, it follows from Cx2 = 0 that x2 = 0
and, hence, CTx1 = 0. The latter implies that x1 is in the null space of
CT , which has dimension n1 − n2. Thus, the matrix A admits the following
linearly independent eigenvectors corresponding to the eigenvalue λ = 0,

x(i) =

[
un2+i

0

]
, i = 1, 2, . . . , n1 − n2,

where ui, i = 1, 2, . . . , n1, are the left singular vectors of C. Hence, λ = 0
has multiplicity n1 − n2 = dimN (CT ).

Let us now assume that k = n1 < n2. Then A may or may not have
zero eigenvalues. Indeed, for A to have a vanishing eigenvalue, the vector
x2 ∈ Rn2 that appears in (4.3) has to belong to the null space of C, which
has dimension n2−n1. Then, there will be zero eigenvalues if and only if the
system

CTy = −Bx2

has a solution.
If instead k = n1 = n2, i.e., if C is nonsingular, then λ = 0 implies that

both x1 = 0 and x2 = 0. Hence, x = [ x1
x2 ] = 0, and all the eigenvalues of A

are different from zero.
We finally turn to the case when the submatrix C is rank deficient, that

is, k < min{n1, n2}. The right-hand side of (4.3) is equivalent to

x2 ∈ N (C), CTx1 = −Bx2.

Let x be a nontrivial solution of (4.2). When x2 = 0, there has to be a vector
x1 6= 0 with CTx1 = 0. Since in this case the null space of CT has dimension
n1 − k, there are n1 − k linearly independent solutions of (4.2) with x2 = 0.
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The existence of a solution x of (4.2) with a nonzero subvector x2 is
equivalent to

dim
(
R(B|N (C)) ∩R(CT )

)
≥ 1.

This condition does not hold for most matrix pairs (B,C).

Remark 4.2. We note that if B = 0, then the equation Ax = 0 has exactly

dimN (C) + dimN (CT ) = n− 2 rank(C)

linearly independent solutions.

Theorem 4.1 shows that if a network has a large anti-community (n1 >
n2), the spectral decomposition A = WDW T has the form

W =

[
E U2 F
G On2,n1−n2 H

]
, D =

D1 O O
O On1−n2 O
O O D2

 .
The structures of W and D are very similar to those of WB and ΛB in
(2.9), respectively. For this reason, the bipartization algorithm described in
Section 3, is able to detect the presence of a large anti-community and to
order the nodes so that the adjacency matrix takes the form (4.1). In case
a group of nodes is only approximately an anti-community, the algorithm
produces an adjacency matrix that approximates (4.1).

To summarize, when n1 > n2, if a network is either bipartite or contains a
large anti-community, its adjacency matrix has zero eigenvalues; the converse
is not true. If A has a multiple zero eigenvalue, then we can recognize the
presence of one of the two above cases by observing the structure of the
eigenvector matrix.

5. Computed examples

In the following numerical experiments, we fix the integers n1 and n2, and
construct a random matrix A of the form (2.1), with a sparse block C with
density ξ. The matrix is first perturbed, by replacing its (1,1) and (2,2) blocks
by sparse matrices of appropriate size and density η, and then “scrambled”,
by applying the same random permutation to its rows and columns.

We apply the algorithm of Section 2 to the matrix A either by supplying
the cardinality of the two sets V1 and V2 (this approach is referred to as
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specbip-n), or letting the method estimate n1 and n2 from the data; we
refer to the latter approach as specbip. Since the block (1,2) of the matrix
returned by the method is generally permuted with respect to the initial test
matrix, the rows and columns are reordered according to the original sequence
of the nodes. The final reordering allows us to compare the resulting matrix
AB to the test matrix A.

Our results are compared to the ones obtained by red-black ordering
using the MatlabBGL library [11], a Matlab package implementing graph
algorithms. A matrix has a red-black ordering if the corresponding graph
is bipartite. To find a bipartite ordering, this software uses a breadth first
search algorithm, starting from an arbitrary vertex. The partition of the
nodes is determined by forming a group containing all the vertices having
even distance from the root, and another group with the vertices at odd
distance from the root. This procedure is designed to bipartite networks, not
to produce an approximation when the bipartization is not exact.
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Figure 1: (n1, n2) = (512, 256), (ñ1, ñ2) = (492, 276), ξ = 10−2, η = 10−4.

Figure 1 displays the results for a test matrix with (n1, n2) = (512, 256),
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Figure 2: (n1, n2) = (512, 256), (ñ1, ñ2) = (492, 276), ξ = 10−2, η = 10−4.

sparsity ξ = 10−2, and perturbation η = 10−4. In particular, it reports in the
upper row a spy plot of the original test matrix, the perturbed version, with
random arcs in the (1,1) and (2,2) blocks, and the permuted matrix that is
fed to the bipartization methods. The bottom row shows the reconstructed
networks. The specbip-n1 approach, which receives the information about
the cardinality of the node sets, produces the matrix closest to the origi-
nal. The general algorithm estimates the cardinalities (ñ1, ñ2) = (492, 276),
according to the number of “small” eigenvalues; see Figure 2, where the ab-
solute values of the eigenvalues are displayed in nondecreasing order. This
algorithm produces a slightly less accurate approximation than the previous
one, which is anyway much better than the matrix produced by the red/black
ordering.

Figure 3 shows the results for a test matrix similar to the previous one, but
with a larger perturbation η = 10−3. The estimation of (n1, n2) is inaccurate,
but the approximation produced by the specbib methods is quite close to
the unperturbed matrix, while the red/black ordering matrix is far from it.

Now, let

E = A− AB =

[
E11 E12

E21 E22

]
,

where E11 and E22 are square matrices of size n1 and n2, respectively, and let
|M | denote the number of nonzero elements of M . To evaluate the quality
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Figure 3: (n1, n2) = (512, 256), (ñ1, ñ2) = (396, 372), ξ = 10−2, η = 10−3.

of the results, we consider the following three indices

IB = 1− bs, EB =
|E11|
n2
1

+
|E22|
n2
2

, EA =
|E12|
|C|

.

The first two indices measure the distance of AB from the adjacency matrix of
a bipartite graph; see (1.1) for the definition of bs. The third index measures
the approximation error with respect to the starting bipartite network (2.1).
To better evaluate the error in the bipartition, we introduce the fourth index
EN = ẼN/n1, where ẼN is the number of nodes from the set V1 that were
incorrectly ascribed to the set V2.

Tables 1, 2, and 3 report the average values of the above four quality
indices over 10 realizations of the random test networks. Three different
pairs (n1, n2) are considered; each table refers to different densities ξ and η;
T stands for the execution time in seconds.

A comparison of the tables shows that the spectral bipartization algo-
rithm is always more accurate than the red-black ordering method. At the
same time, it is much slower than the MatlabBGL function, as in our ex-
periments we compute the whole spectrum of the adjacency matrix, without
exploiting its sparsity. To be competitive with existing methods for large-
scale problems, the spectral method should be modified in order to perform
its task by suitable iterative methods, in order to take advantage of the
structure of the adjacency matrix.

From the tables, it can also be observed that knowing in advance the
cardinality of the two sets V1 and V2 leads in some cases to a substantial
improvement in the quality of the results.
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Table 1: Results for ξ = 10−2, η = 10−4.

(256,128) specbip-n1 specbip red-black
IB 1.22e-16 1.89e-16 2.33e-03
EB 5.46e-04 6.74e-04 3.72e-03
EA 2.80e-01 2.79e-01 -
EN 1.45e-01 1.58e-01 2.76e-01
T 4.94e-02 5.05e-02 3.15e-04

(512,256) specbip-n1 specbip red-black
IB 1.11e-17 1.11e-17 2.98e-03
EB 1.13e-04 1.50e-04 3.39e-03
EA 4.84e-02 6.27e-02 -
EN 3.36e-02 5.96e-02 2.97e-01
T 2.77e-01 2.95e-01 4.94e-04

(1024,512) specbip-n1 specbip red-black
IB 7.77e-17 0.00e+00 4.17e-02
EB 9.92e-05 2.11e-04 4.75e-03
EA 1.06e-01 1.80e-01 -
EN 3.62e-02 1.15e-01 2.75e-01
T 1.92e+00 1.94e+00 8.67e-04

To further investigate the behavior of the bipartition error, we construct
a matrix A of the form (2.1), letting n1 = 512 and n2 = 256, with a sparse
random block C having density ξ = 10−2. After randomly permuting the
rows and columns, we apply our algorithms to this matrix, as well as to those
perturbed by replacing the (1,1) and (2,2) blocks by a sparse matrix with
density η = 10−6, 10−5, . . . , 10−3. The graph on the left of Figure 4 shows
the value of the bipartization error EN obtained when the three methods are
applied to an unweighted graph, the one on the right correspond to a weighted
graph. All values are averaged over 10 realizations of the random matrices.
Both graphs show that the bipartization determined by our approaches is
closer to the correct one, with respect to red-black ordering, with specbip-n1

producing slightly better results. The performance of all algorithms degrades
as the perturbation becomes less sparse.

In Figure 5, we display the value of EN for the same examples, for a fixed
η = 10−2, and letting the density ξ of the block C take values in [10−3, 1].
The red-black ordering method is more accurate than the specbip algorithm
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Table 2: Results for ξ = 10−2, η = 10−5.

(256,128) specbip-n1 specbip red-black
IB 1.11e-17 7.77e-17 1.68e-06
EB 6.68e-04 8.79e-04 3.36e-03
EA 2.70e-01 2.68e-01 -
EN 1.23e-01 1.49e-01 2.58e-01
T 4.39e-02 4.70e-02 1.01e-03

(512,256) specbip-n1 specbip red-black
IB 0.00e+00 2.22e-17 1.40e-04
EB 3.05e-05 1.91e-05 8.81e-04
EA 3.88e-02 2.38e-02 -
EN 1.87e-02 1.93e-02 3.16e-01
T 2.72e-01 2.77e-01 5.12e-04

(1024,512) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 4.04e-03
EB 1.91e-07 1.03e-05 1.07e-03
EA 1.73e-04 9.49e-03 -
EN 9.77e-05 9.47e-03 3.25e-01
T 1.91e+00 1.89e+00 9.52e-04

for very sparse networks, while providing the correct cardinality of the set
V1 to specbip-n1 produces the best results.

5.1. The NDyeast network

We illustrate the performance of the spectral bipartization algorithm
when applied to the detection of anti-communities by analyzing a case study.
The NDyeast network describes the protein interaction network for yeast,
each edge representing an interaction between two proteins [14]. The data
set is available at [2]. In this section we analyze this network, testing the
presence of a bipartization or of a large anti-community.

The NDyeast network has 2114 nodes. There are 74 self-loops (nodes
connected only to themselves) and 268 nodes disconnected from the net-
work. The adjacency matrix resulting by removing both the self-loops and
the isolated nodes has size n = 1846, and it has 149 connected components.
They were identified by the getconcomp function from the PQser Matlab
toolbox [6].
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Table 3: Results for ξ = 10−1, η = 10−4

(256,128) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 7.71e-02
EB 0.00e+00 5.83e-04 1.35e-02
EA 2.43e-02 4.24e-02 -
EN 0.00e+00 2.58e-02 3.18e-01
T 5.56e-02 6.05e-02 3.07e-03

(512,256) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 1.44e-01
EB 0.00e+00 8.19e-04 8.01e-03
EA 8.02e-03 5.19e-02 -
EN 0.00e+00 4.47e-02 3.31e-01
T 2.77e-01 2.76e-01 1.08e-03

(1024,512) specbip-n1 specbip red-black
IB 0.00e+00 0.00e+00 2.60e-01
EB 0.00e+00 1.04e-03 6.54e-03
EA 2.33e-03 9.04e-02 -
EN 0.00e+00 8.71e-02 3.28e-01
T 2.02e+00 2.07e+00 3.99e-03

In the case of a reducible adjacency matrix, the spectral bipartization
algorithm should treat each single connected component one at a time. Since
most of the components in the NDyeast network are very small, often just
2 or 3 nodes, we consider the only component with more than 10 nodes,
which has 1458 nodes. We process the reduced adjacency matrix A with our
bipartization method.

The algorithm determines n0 = 564 zero eigenvalues (see Figure 6) and
identifies two sets of nodes with cardinalities n1 = 1011 and n2 = 447.

The starting adjacency matrix is displayed in the top-left spy plot of Fig-
ure 7. The top-right plot shows the same matrix after the ordering produced
by the spectral bipartization algorithm is applied to its rows and columns.
This graph clearly displays that there is a large group of nodes in the NDyeast
network that do not communicate much among themselves, that is, an anti-
community. In the same graph we show the bipartization detected by the
algorithm by means of red lines.

Our algorithm can also be applied by supplying the values of (n1, n2),
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Figure 4: Bipartition error ẼN for (n1, n2) = (512, 256); on the left unweighted random
graphs, on the right weighted random graphs, both with ξ = 10−2, as a function of
η = 0, 10−6, 10−5, . . . , 10−3.

rather than estimating them from the number of zero eigenvalues. If we do
this by setting ñ1 = 800 and ñ2 = 658, we obtain the bottom left graph in
the same figure. It shows that in the group of the first 800 proteins, only
four of them directly interact.

The bottom-right graph of Figure 7 displays the result of the red-black
ordering method, which does not supply any useful information.

We remark that a data set similar to NDyeast (but different) is available
at [2]. It is called simply yeast, it consists of 2361 nodes, and it refers to
the paper [22]. By processing this data set with our spectral algorithm, we
obtain results very similar to the ones displayed in Figure 7.

5.2. The geom network

We also applied the spectral bipartization algorithm to a weighted graph,
namely, the geom network, It is extracted from the Computational Geometry
Database geombib by B. Jones (version 2002). Nodes represent authors; the
value of the entry (i, j) of the adjacency matrix is the number of papers
coauthored by authors i and j. The data set is available at [2].

The geom network has 7343 nodes and 11898 edges. After removing
1185 isolated nodes, the network presents 875 connected components, the
largest of which has 3621 nodes. We applied the bipartization method to the
adjacency matrix associated to this component.

The eigenvalues are displayed in Figure 8: 533 of them are detected as
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Figure 5: Bipartition error ẼN for (n1, n2) = (512, 256); on the left unweighted random
graphs, on the right weighted random graphs, both with η = 10−2, as a function of
ξ = 10−3, 10−2, 10−1, 1.

being numerically zero, and the cardinalities of the two node sets are n1 =
2077 and n2 = 1544. The left graph of Figure 9 reports the spy plot of the
original adjacency matrix; the graph on the right shows the matrix reordered
by the spectral bipartization algorithm. The graph highlights the presence
of an anti-community of about 1000 authors, who did not collaborate with
each other when writing papers.

6. Conclusion

This paper describes how an approximate bipartization of a given graph
can be determined by solving a sequence of simple optimization problems.
The technique can also be applied to detect anti-communities. Computed
examples illustrate the performance of the method described.
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Figure 7: Analysis of the NDyeast network: top-left, the starting adjacency matrix; top-
right, the node reordering produced by the spectral algorithm; bottom-left, the reordering
induced by the choice (ñ1, ñ2) = (800, 658); bottom-right, the output of the red-black
ordering method.
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Figure 8: Spectrum of the reduced adjacency matrix for the geom network.
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Figure 9: Analysis of the geom network: on the left, the starting adjacency matrix; on the
right, the node reordering produced by the spectral algorithm.
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