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1. Introduction

Let A ∈ CN×N be a large, possibly sparse, non-Hermitian matrix, and
let v ∈ CN\{0}. Applying 1 ≤ n � N steps of the Arnoldi process to the
matrix A with initial vector v gives the Arnoldi decomposition

AVn = VnHn,n + v̂n+1e
T
n , (1)

where Vn = [v1, v2, . . . , vn] ∈ CN×n and v̂n+1 ∈ CN satisfy V ∗n Vn = In,
V ∗n v̂n+1 = 0, v1 = v/‖v‖, and Hn,n = [hi,j ]

n
i,j=1 ∈ Cn×n is an upper Hes-

senberg matrix, i.e., entries hi,j below the subdiagonal are zero. Here and
throughout this paper In ∈ Rn×n denotes the identity matrix, ej is the jth
column of an identity matrix of suitable order, and ‖·‖ stands for the Eu-
clidean vector norm. The superscript ∗ denotes transposition and complex
conjugation; the superscript T stands for transposition only. We assume
that the number of Arnoldi steps, n, is small enough so that the decom-
position (1) with the stated properties exists, and that the vector v̂n+1 is
nonvanishing. This is the generic situation; see, e.g., Golub and Van Loan
[26, Section 10.5.1] or Saad [36, Chapter 6] for discussions on the Arnoldi
process. In applications of interest to us, n is much smaller that N . We will
comment on the rare situation when the Arnoldi process breaks down below.
An algorithm for the Arnoldi process is provided in Section 2. Here, we only
note that the computation of the decomposition (1) requires n matrix-vector
product evaluations with the matrix A, which is typically the dominating
computational work for small n; see Section 2 for details.

We are concerned with the approximation of matrix functions of the
form

f(A)v (2)

and of positive semidefinite quadratic forms

〈f, g〉 = v∗(f(A))∗g(A)v. (3)

Assume for the moment that the functions f and g are analytic in suf-
ficiently large simply connected regions in the complex plane. Then f(A)
and g(A) can be represented in terms of Cauchy integrals in the complex
plane, see, e.g., [26, Section 9.2.7], [29, Section 1.2.3], and [30]. These rep-
resentations show that (3) can be expressed as the double integral

〈f, g〉 =
1

4π2

∫
Γ

∫
Γ
f(z1)g(z2)v∗(z1I −A∗)−1(z2I −A)−1v dz1 dz2, (4)
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where the contour of integration Γ contains the spectrum of A in its interior
and the bar denotes complex conjugation. The approximations of (3) that
we will determine by using the Arnoldi decomposition (1) may be considered
quadrature rules for the approximation of (4). We therefore refer to these
approximations as Arnoldi quadrature rules.

The need to evaluate expressions of the forms (2) and (3) arises in many
applications, such as in the solution of partial differential equations, network
analysis, and the solution of linear discrete ill-posed problems; see [4, 9, 11,
12, 14, 24, 35]. We will discuss applications to network analysis in Section 4.

When the matrix A is large, the evaluation of (2) by first computing
f(A), or evaluating (3) by first computing f(A) and g(A), may be pro-
hibitively expensive both in terms of computing time and computer memory.
The memory requirement may be substantial, because even when the matrix
A is sparse and requires little computer memory, the matrices f(A) and g(A),
in general, are not. This is, for instance, the case, when f(t) = exp(t). In
addition, the evaluation of f(A) requires considerable computational effort
when A is large. These difficulties can be circumvented by observing that
neither f(A) nor g(A) are explicitly required to compute approximations of
(2) and (3), only approximations of f(A)v and g(A)v are needed.

A commonly used approximation of (2) based on (1) is furnished by

fn = Vnf(Hn,n)e1‖v‖. (5)

This approximation requires that f(Hn,n) be well defined. For instance,
it suffices that f , as well as appropriate derivatives, if Hn,n has nontrivial
Jordan blocks, are defined at the eigenvalues of Hn,n; see [29, Definition 1.1].
Alternatively, f(Hn,n) can be defined with a Cauchy integral analogously to
(4).

Let Pn−1 denote the set of all polynomials of degree at most n− 1. It is
well known that

f(A)v = Vnf(Hn,n)e1‖v‖ ∀f ∈ Pn−1; (6)

see, e.g., [2, 21, 9, 13, 35]. This result can easily be established by observing
that

Aiv = ‖v‖VnH i
n,ne1 for 1 ≤ i ≤ n− 1,

which can be shown by induction over i. We remark that the evaluation of
f(Hn,n) is much cheaper than the calculation of f(A) when n � N ; see,
e.g., Higham [29] for the discussion of many methods for the evaluation of
matrix functions.
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Freund and Hochbruck [21], and more recently Calvetti et al. [9], con-
sidered the approximation of (3) by the Arnoldi quadrature rule

〈f, g〉n = ‖v‖2e∗1(f(Hn,n))∗g(Hn,n)e1. (7)

Properties of this and related approximations of (3) are provided in Section 3
as well as in [9, 21]. Freund and Hochbruck [21] showed by induction that
the Arnoldi quadrature rule (7) is exact for {f, g} ∈Wn−1,n, where

Wn−1,n = (Pn−1 ⊕ Pn) ∪ (Pn ⊕ Pn−1);

a proof is also provided in [9]. Here Pn−1 ⊕ Pn denotes the set of all pairs
{f, g}, where f ∈ Pn−1 and g ∈ Pn. Hence, Wn−1,n is the set of polynomial
pairs, where one polynomial is of degree at most n and the other polynomial
is of degree at most n− 1.

The computation of the approximations (5) and (7) requires n steps of
the Arnoldi process to be carried out and, therefore, demands the evaluation
of n matrix-vector products with the matrix A; see Algorithm 1 below. If
the matrix A is large and not very sparse, then each matrix-vector product
evaluation is expensive. In addition, if the matrix A is very large, then each
orthogonalization step in the algorithm is expensive, too. It is therefore
advantageous to keep the number of Arnoldi steps as small as possible to
determine approximations of (2) and (3) of desired accuracy, and to avoid
unnecessarily many matrix-vector product evaluations and orthogonaliza-
tion steps.

Example 1.1. In this example we will demonstrate that matrix-vector
products can be very expensive.

We are interested in finding the capacity of a capacitor. We will use the
Laplace equation for the electric potential. To solve this equation efficiently
a boundary element method can be employed. To this end we need the
single layer potential

φ(x) =

∫
A

σ(ξ)

4πε0‖x− ξ ‖
dξ,

where φ is the electric potential, A the surface of all electrodes, σ(ξ) the den-
sity of the charge on the surface A, and ε0 the vacuum electric permittivity.
Switching to a weak formulation and discretization leads to a symmetric,
dense matrix

K|ij =

∫
A

∫
A

vj(x)vi(ξ)

4πε0‖x− ξ ‖
dξ dx.
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The entry Ck` of the capacity matrix associated with the capacity between
electrodes k and ` is wT

k f(K)w`, where f(x) = 1
x and wk is the vector with

wk|i =

{
1, supp(vi)(x) ⊂ Ωk,

0, else,

with Ωk the surface of electrode k. This matrix can be expensive to store
and handle. Employing a hierarchical compression withH2-matrices reduces
the required storage to O(N), with a large constant hidden in the O(·), and
allows matrix-vector products in O(N) flops [6].

A very fine discretization with 262,146 nodes results in a large, dense
matrix of size 246, 146 × 246, 146. For our computations here we used the
H2Lib library [28] and based this example on one of the standard examples
provided with the library. Without compression 512 GB would be needed
to store the matrix. On an Intel Core i710710U CPU with 16 GB of RAM it
took 1103 s to assemble the matrix K in the compressed H2-matrix format.
The matrix required 15.45 GB of storage. Thus almost all the available
RAM. Performing one matrix-vector product required 1596 s, that is 44%
more than for assembling the matrix. The reason is that the O(N) flops
require a significant amount of communication between faster and slower
computer memory. �

This paper derives new expressions for approximating (2) and new quadra-
ture rules for the approximation of (3) that require the same number of
matrix-vector product evaluations as the expressions (5) and (7), and are
exact for functions in larger sets than Pn−1 and Wn−1,n, respectively.

Generically, the vector v̂n+1 in (1) is nonvanishing.1 Assume this to
be the case. Then we can define the positive scalar hn+1,n = ‖ v̂n+1 ‖, the
normalized vector vn+1 = v̂n+1/hn+1,n, as well as the matrices Vn+1 =
[Vn, vn+1] ∈ CN×(n+1) and Hn+1,n ∈ C(n+1)×n, where the latter matrix is
obtained by appending the row hn+1,ne

T
n to Hn,n. The decomposition (1)

then can be expressed as

AVn = Vn+1Hn+1,n. (8)

The matrix Hn+1,n contains one more nontrivial entry, hn+1,n than Hn,n.
This entry can be interpreted as a moment. We would like to use this
moment when computing an approximation of f(A), because using it may

1If v̂n+1 is zero, then v is a vector in an n-dimensional invariant subspace of A. We
will comment on this situation in Proposition 1 below.
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provide a more accurate approximation of f(A) than f(Hn,n). We will show
that adding a column of zeros to Hn+1,n not only makes the matrix square,
and thus allows the easy evaluation of f at this matrix, but also gives an
approximation of f(A)v that is more accurate than (1). Of course, we may
extend Hn+1,n to a square matrix by appending a nonvanishing column.
This is discussed in Subsection 2.2.

An approach that has been advocated by Saad [35] is described in Sub-
section 2.1. Saad only considered the approximation of (2) when f(t) is the
exponential function. We discuss the approximation of more general func-
tions and show that this approach is equivalent to zero-padding of Hn+1,n.

In the special case when f(t) ≡ 1, the functional (3) simplifies to

I(g) = v∗g(A)v. (9)

For g(x) = 1/x, this problem has been investigated by Strakoš and Tichý
[38] and Fika et al. [20]. The approximation of expressions of the form
(9) has received considerable attention when the matrix A is Hermitian;
see, e.g., [1, 16, 19, 25] for methods that exploit the connection between
the Hermitian Lanczos process, orthogonal polynomials, and Gauss quadra-
ture rules. When the matrix A is non-Hermitian, the functional (9) can
be approximated by methods that are based on the non-Hermitian Lanczos
process [1, 19]. Techniques that use extrapolation are developed in [7, 8, 20].
A careful comparison of all these methods is outside the scope of the present
paper. Here we only note that approximation methods that are based on
the non-Hermitian Lanczos process require the evaluation of matrix-vector
products with both the matrices A and A∗.

The methods considered in the present paper only demand the evaluation
of matrix-vector products with A. This is beneficial when it is easy to
compute matrix-vector products with A but not with A∗. For instance,
this is the case when A approximates a Fredholm integral operator of the
first or second kinds and matrix-vector products with A are evaluated by
a multipole method. Then A is not explicitly formed and matrix-vector
products with A∗ are difficult to compute; see, e.g., [27] for a discussion on
the multipole method.

This paper is organized as follows. Section 2 describes new approaches
to approximate expressions of the form (2). New quadrature rules for the
approximation of (3) are discussed in Section 3. A few computed examples
are presented in Section 4 and concluding remarks can be found in Section 5.
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2. New matrix function approximations based on the Arnoldi de-
composition

This section describes new approaches to approximate expressions of
the form (2). Subsection 2.1 shows how the Arnoldi decomposition (8)
can be modified to yield higher accuracy. This approach has previously
been advocated by Saad [35] for the matrix exponential. We consider more
general functions f . Subsection 2.2 discusses appending a column to the
matrix Hn+1,n to obtain a square upper Hessenberg matrix, that allow us
to determine more accurate approximations of f(A) than (5).

For future reference we provide an algorithm for the Arnoldi process
(Algorithm 1). We assume that the number of steps, n, is sufficiently small
so that breakdown due to division by zero in line 9 does not occur. These
events are rare but fortuitous; see Proposition 1 below.

The following implementation of the Arnoldi process is based on modified
Gram–Schmidt orthogonalization of the columns of the matrix Vn+1.

Algorithm 1 The Arnoldi process

1: Input: A ∈ CN×N , v ∈ Cn\{0}, number of steps n.

2: v1 := v/‖v‖
3: for j = 1 to n

4: w := Avj

5: for k = 1 to j

6: hk,j := v∗kw

7: w := w − vkhk,j
8: end for

9: hj+1,j := ‖w‖; vj+1 := w/hj+1,j

10: end for

11: Output: upper Hessenberg matrix Hn+1,n = [hk,j ] ∈ C(n+1)×n matrix

12: Vn+1 = [v1, v2, . . . , vn+1] ∈ CN×(n+1) with orthonormal
columns

The methods described in this section are not required in the event
that the Arnoldi process breaks down. This is discussed in the following
proposition.

Proposition 1. Assume that Algorithm 1 breaks down at step ` ≥ 1, that
is hj+1,j > 0 for 1 ≤ j < `, and h`+1,` = 0. Let H`,` ∈ R`×` be the upper
Hessenberg matrix determined by Algorithm 1. Let f(H`,`) and g(H`,`) be
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well defined. Then

f(A)v = V`f(H`,`)e1‖v‖, (10)

〈f, g〉 = 〈f, g〉`. (11)

Proof. The relation (10) follows from the observations that any matrix func-
tion f(A) is a polynomial in A ∈ CN×N of degree at most N−1, see, e.g., [29,
Section 1.2], and that breakdown implies that the Krylov subspace spanned
by the columns of V` is invariant under A. The relation (11) can be shown
similarly.

2.1. Modification of the function f

Let t0 ∈ C be in the domain of the function f and express f as

f(t) = f(t0) + (t− t0)f1(t), f1(t) :=
f(t)− f(t0)

t− t0
(12)

for t in the domain of f ; to permit t = t0, we require f to be continuously
differentiable at t = t0. The expression (12) allows us to replace the de-
termination of an approximation of f by computing an approximation of
f1. Our reason for doing this will become apparent shortly. Thus, we will
approximate f1(A)v by using the right-hand side of (5) with f replaced by
f1. This gives

f(A)v ≈ f(t0)v + (A− t0I)Vnf1(Hn,n)e1‖v‖, (13)

where
f1(Hn,n) = (f(Hn,n)− f(t0)In)(Hn,n − t0In)−1.

We remark that if t0 belongs to the spectrum of Hn,n, then we can use the
Schur factorization of Hn,n and define f1 by continuity.

Theorem 1. Let f ∈ Pn. Then equality holds in (13).

Proof. It suffices to show that equality holds in (13) for f(t) = (t− t0)k for
k = 0, 1, . . . , n. Consider the case k = n. Then f1(t) = (t − t0)n−1 and the
right-hand side of (13) becomes, when substituting t by A and t0 by t0I,

(A− t0I)Vnf1(Hn,n)e1‖v‖ = (A− t0I)f1(A)v = (A− t0I)nv. (14)

where the first equality follows from (6). The left-hand side of (14) equals
the right-hand side of (13) because f(t0) = 0. The result for k < n can be
shown similarly.
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Theorem 2. Let the matrices Hn+1,n, Vn, and Vn+1 be defined by the de-

composition (8), let the matrix Ĥn+1,n+1 ∈ C(n+1)×(n+1) have the leading
(n+ 1)× n submatrix Hn+1,n and vanishing last column, and let the matrix
Hn,n be the leading n× n submatrix of Hn+1,n. Let t0 = 0 and assume that

f is defined at Ĥn+1,n+1 and t0, and that the function f1, given by (12), is
defined at Hn,n. Then

Vn+1f(Ĥn+1,n+1)e1 = f(t0)v1 +AVnf1(Hn,n)e1.

Hence, using the approximation of f in the right-hand side of (13) with
t0 = 0 is equivalent to extending the matrix Hn+1,n by zero-padding.

Proof. The expression f(Ĥn+1,n+1) is a polynomial in Ĥn+1,n+1 of degree at
most n; see, e.g., [29, Section 1.2.2]. Using the power series representation
f(Ĥn+1,n+1) =

∑n
i=0 ciĤ

i
n+1,n+1, we obtain

Vn+1f(Ĥn+1,n+1)e1 = c0v1 + Vn+1

n∑
i=1

ciĤ
i
n+1,n+1e1, (15)

where the vector v1 is the first column of Vn+1. Substituting

Ĥ i
n+1,n+1 =

[
H i

n,n 0

hn+1,ne
T
nH

i−1
n,n 0

]
for i = 1, 2, . . . , n,

where “0” in the first row of the matrix denotes the zero vector in Cn and
the “0” in the bottom row of the matrix is a scalar, into (15) gives

Vn+1f(Ĥn+1,n+1)e1 = c0v1 + Vn+1

n∑
i=1

ci

[
H i

n,n

hn+1,ne
T
nH

i−1
n,n

]
e1

= c0v1 + Vn+1

[
Hn,n

hn+1,ne
T
n

] n∑
i=1

ciH
i−1
n,n e1

= c0v1 +AVnf1(Hn,n)e1,

where the last equality follows from (8). This shows the theorem.

2.2. Extension of the matrix Hn+1,n

In the last subsection we used zero-padding of Hn+1,n to obtain a square
matrix. However, performing n + 1 steps of the Arnoldi process leads to a
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matrix

Hn+1,n+1 =


h1,1 h1,2 · · · h1,n h1,n+1

h2,1 h2,2 · · · h2,n h2,n+1

. . .
. . .

...
...

hn,n−1 hn,n hn,n+1

O hn+1,n hn+1,n+1

 ∈ C(n+1)×(n+1) (16)

that in general has a non-zero last column. Thus, in this section we will
investigate padding Hn+1,n by a non-zero (n+ 1)st column. Several choices
of vectors for the (n + 1)st column will be discussed. Theorem 3 below
shows that zero-padding is not necessary to achieve exact approximation for
f ∈ Pn.

Replacing the last column of Hn+1,n+1 by a vector

ĥ = [ĥ1,n+1, ĥ2,n+1, . . . , ĥn+1,n+1]T ∈ Cn+1

gives the matrix

Ĥn+1,n+1 =


h1,1 h1,2 · · · h1,n ĥ1,n+1

h2,1 h2,2 · · · h2,n ĥ2,n+1

. . .
. . .

...
...

hn,n−1 hn,n ĥn,n+1

O hn+1,n ĥn+1,n+1

 ∈ C(n+1)×(n+1). (17)

If the last column is not obtained through the Arnoldi process, then only n
Arnoldi steps are required. This is the reason for our interest in this matrix.
The following result generalizes (6).

Theorem 3. Let the first n columns of the matrix (17) agree with the cor-
responding columns of (16) and let the last column of the matrix (17) be
arbitrary. Then

f(A)v = Vn+1f(Ĥn+1,n+1)e1‖v‖ ∀f ∈ Pn. (18)

Proof. This result has been shown by, for instance, Paige et al. [31, Lemma
1] and later by van den Eshof et al. [17, Lemma 3] for the situation when the
matrix A is Hermitian and the first n columns of the matrix (17) are gen-
erated by the Hermitian Lanczos process, and therefore form a tridiagonal
matrix with an n × n Hermitian leading principal submatrix. The present
theorem can be shown in the same manner. A more general version of the
theorem has recently be shown by Frommer et al. [23, Theorem 2.7].
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We provide a proof for completeness for exactly the statement needed
here.

Equation (18) is equivalent to

Akv1 = Vn+1Ĥ
k
n+1,n+1e1, 0 ≤ k ≤ n,

where v1 is the first column of Vn+1. Using the Arnoldi decomposition (1)
and the fact that the matrix Ĥn+1,n+1 is of upper Hessenberg form, we
obtain

Akv1 = Vn+1Ĥ
k
n+1,n+1e1, k = 1, 2, . . . , n,

where v1 is the first column of Vn+1. This shows (18). The entries of the
vectors Ĥk

n+1,n+1e1, 1 ≤ k ≤ n, are independent of the last column of

Ĥn+1,n+1.

Remark 4. The vector Hn+1,n+1e1 lives in the subspace span{e1, e2}. Fur-
thermore, Hk

n+1,n+1e1 is an element of span{e1, . . . , ek+1} if k < n. Thus,
for the first k powers of Hn+1,n+1 only the entries of the leading (k+ 1)× k
submatrix are relevant for computing Hk

n+1,n+1e1.

The computation of the right-hand side of (18) requires the evaluation
of the matrix function f(Ĥn+1,n+1). Typically, the matrix Ĥn+1,n+1 is fairly
small in applications of interest to us. Assume that the spectral factorization

Ĥn+1,n+1 = Ŝn+1,n+1Λ̂n+1,n+1Ŝ
−1
n+1,n+1

exists. Thus, the eigenvalues of Ĥn+1,n+1 are the diagonal entries of Λ̂n+1,n+1 =

diag[λ̂1, λ̂2, . . . , λ̂n+1] and the columns of Ŝn+1,n+1 ∈ C(n+1)×(n+1) are the

associated eigenvectors. Assume further that the matrix Ŝn+1,n+1 is not

very ill-conditioned. Then it may be attractive to compute f(Ĥn+1,n+1) by
using

f(Ĥn+1,n+1) = Ŝn+1,n+1diag[f(λ̂1), f(λ̂2), . . . , f(λ̂n+1)]Ŝ−1
n+1,n+1.

Several choices of the last column of Ĥn+1,n+1 are possible. Using

MATLAB-like notation, we denote this column by Ĥn+1,n+1(1 : n+1, n+1).
For instance, zero-padding yields

Ĥn+1,n+1(1 : n+ 1, n+ 1) = [0, . . . , 0]T . (19)

Then (at least) one of the eigenvalues, say λ̂n+1, of Ĥn+1,n+1 vanishes.
Hence, this choice of the last column requires that f(t) is well defined at
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t = 0. In particular, this choice cannot be used when f(t) = ln(t). In this
situation, we may be able to choose the last column

Ĥn+1,n+1(1 : n+ 1, n+ 1) = [0, . . . , 0, λ]T , (20)

where λ ∈ C\{0}. Then the matrix Ĥn+1,n+1 has an eigenvalue λ.
The quality of the approximation (5) of (2) may improve by letting the

last column of Ĥn+1,n+1 be an accurate approximation of the (unknown)
last column of the matrix (16). The entries of the matrix (16) for many
matrices A decrease smoothly with increasing column index and fixed row
index. This suggests that the last column be a multiple of the penultimate
column, i.e.,

Ĥn+1,n+1(1 : n+ 1, n+ 1) = γHn+1,n(1 : n+ 1, n)

for some scalar γ. We found the choice

γ = 0.9
‖Hn,n(1 : n, n)‖
‖Hn,n(1 : n, n− 1)‖

(21)

to give fairly accurate approximations of (3) for various analytic functions
f and g, and matrices A. The matrix Ĥn+1,n+1 so defined is singular. If we

prefer Ĥn+1,n+1 to have a specified eigenvalue λ 6= 0, then we may choose

Ĥn+1,n+1(1 : n+ 1, n+ 1) = [γĥ1,n, . . . , γĥn−1,n, γ(ĥn,n − λ), γĥn+1,n + λ]T .

We conclude this section with some comments on two problems that are
somewhat related to the one discussed in this subsection. Let A be Hermi-
tian and f be a function that is defined on the convex hull of the spectrum
of A. Application of n steps of the Arnoldi process with initial vector v to A
gives, assuming that breakdown does not occur, the decomposition (8). The
matrix Hn+1,n ∈ C(n+1)×n in this decomposition is tridiagonal with a Hermi-
tian leading principal n×n submatrix. We can append a column to Hn+1,n

to determine a Hermitian matrix Hn+1,n+1 ∈ C(n+1)×(n+1). This matrix is
uniquely defined except for the last diagonal entry. This entry can be chosen
so that the matrix Hn+1,n+1 has a specified eigenvalue. This forms the basis
for computing a Gauss–Radau quadrature rule with a specified node (which
equals the specified eigenvalue) for the approximation of v∗f(A)v; see [25]
for details. Recently, Frommer et al. [22] applied Gauss–Radau rules in the
context of a restarted Hermitian Lanczos method. A discussion of the choice
of the last diagonal entry in Hn+1,n+1 when this matrix is not required to
have a specified eigenvalue can be found in [16].
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The need to choose the last column of Ĥn+1,n+1 also arises in the pole
placement problem in control theory. This problem is concerned with mod-
ifying a row or column of a square matrix so that all eigenvalues of the
new matrix obtained have negative real part; see, e.g., [39]. Generically,
the last column of Ĥn+1,n+1 can be chosen to make the matrix have desired
eigenvalues. Discussions on the solvability and numerical aspects of the pole
placement problem can be found in [10, 33, 34].

3. New quadrature rules based on the Arnoldi decomposition

We turn to the approximation of the bilinear form (3) and define the
quadrature rule

〈f, g〉n+1 = ‖v‖2e∗1(f(Ĥn+1,n+1))∗g(Ĥn+1,n+1)e1, (22)

where Ĥn+1,n+1 is one of the matrices introduced above. While the result

(18) holds independently of the choice of the last column of Ĥn+1,n+1, the
difference between the right-hand side and left-hand side of (18) for functions
f 6∈ Pn may depend on this choice. The choice (19) is possible when f is
defined at the origin. The last column (20) typically also performs well when
|λ| is not very large and f is defined at λ. Independently of the choice of
the last column of this matrix, we have the following result.

Corollary 1. Let the first n columns of the matrix (17) agree with the
corresponding columns of (16) and let the last column be arbitrary. Then
the quadrature rule (22) satisfies

〈f, g〉 = 〈f, g〉n+1 ∀f, g ∈Wn,n,

where

Wn,n = (Pn ⊕ Pn) ∪ (Pn ⊕ Pn).

Proof. The result follows from Theorem 3.

We note that the set Wn,n contains the set Wn−1,n = (Pn−1⊕Pn)∪(Pn⊕
Pn−1) used in [9, 21].

Corollary 2. Let f, g ∈ Pn, let the function f1 be defined by (12), and let
the function g1 be defined analogously with the point t1 playing the role of
t0. Then, for all (f, g) ∈Wn,n,

〈f, g〉 = ‖v‖2(f(t0)g(t1)

+ e∗1(f1(Hn,n))∗(Hn+1,n − t0In+1,n)∗(Hn+1,n − t1In+1,n)g1(Hn,n)e1),
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where the matrix In+1,n consists of the first n columns of In+1.

Proof. The result follows from Theorem 1.

4. Numerical examples

This section presents a few computed examples that illustrate the ap-
proximations described. All computations were carried out in double preci-
sion arithmetic using MATLAB R2016b on a 64-bit Lenovo personal com-
puter.

We first consider the quadrature rules of Section 3. At the end of this sec-
tion we show errors for the approximations of Section 2. For the quadrature
rules, we tabulate the relative errors

Error =
|〈f, g〉 − 〈f, g〉i|
|〈f, g〉|

, i ∈ {n, n+ 1},

where 〈f, g〉 denotes the exact value (3), 〈f, g〉n stands for the approximation
(7) used in [9, 21], and 〈f, g〉n+1 denotes approximations of the form (22)
determined by several choices of the matrix Ĥn+1,n+1.

We compare four different methods: 1) We use n steps of the Arnoldi
process. This is the baseline for a method requiring n matrix-vector prod-
ucts. 2) We use an (n + 1) × (n + 1) matrix obtained by adding a scaled
copy of the last column of Hn+1,n as (n+ 1)st column,

Ĥn+1,n+1 =


h1,1 h1,2 · · · h1,n γh1,n

h2,1 h2,2 · · · h2,n γh2,n

. . .
. . .

...
...

hn,n−1 hn,n γhn,n
O hn+1,n γhn+1,n

 , (23)

with γ defined by (21). Experiments with γ = 1 gave worse accuracy for all
examples and are not shown below. 3) We use the approximation described
in (13), which is equivalent to zero padding Hn+1,n. 4) For comparison, we
also display the error obtained after n+1 steps of the Arnoldi process. This
is the only method that requires n + 1 matrix-vector product evaluations
with A.

Example 4.1. Let A ∈ RN×N with N ∈ {200, 2000, 10000} be nonsym-
metric Toeplitz matrices with first row [1, 1/2, . . . , 1/N ] and first column
[1, 1/22, . . . , 1/N2]. We apply n steps of the Arnoldi process to A with ini-
tial vector v = [1, . . . , 1]T ∈ RN . Table 1 shows results for the functions
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Table 1: Example 4.1: Relative errors of computed approximations of vT f(A)g(A)v for
A ∈ RN×N a nonsymmetric Toeplitz matrix, f(t) = g(t) = exp(t), and v = [1, 1, . . . , 1]T .

Error
N n = 5 n = 10

200 n Arnoldi steps 5.7852 · 10−4 6.1095 · 10−9

scaled nth column 1.0360 · 10−4 4.0040 · 10−10

zero padding 5.9115 · 10−4 6.1096 · 10−9

n+ 1 Arnoldi steps 7.3238 · 10−5 4.6439 · 10−10

2000 n Arnoldi steps 2.2440 · 10−3 2.6904 · 10−7

scaled nth column 1.4752 · 10−4 2.1246 · 10−8

zero padding 2.3146 · 10−3 2.6908 · 10−7

n+ 1 Arnoldi steps 4.5982 · 10−4 3.4749 · 10−8

10000 n Arnoldi steps 3.4127 · 10−3 1.1003 · 10−6

scaled nth column 6.7299 · 10−4 8.4472 · 10−8

zero padding 3.5232 · 10−3 1.1007 · 10−6

n+ 1 Arnoldi steps 8.5160 · 10−4 1.7492 · 10−7

f(t) = exp(t) and g(t) = exp(t). We expect that the approximation ob-
tained after n + 1 Arnoldi steps to be a more accurate approximation of
〈f, g〉 than what we get after n steps only. In the present example, the ap-
proximation using zero padding, gives a slightly larger error than just using
Hn,n. The smallest error among the methods that require only n Arnoldi
steps is achieved by the approximation (23), that is using a scaled copy of
the nth column as (n + 1)st column. This holds for all three values of N
tested. In fact, the error in these approximations is smaller than the error
in the approximation based on n + 1 Arnoldi steps for N ∈ {2000, 10000}.
As the following experiments show this could be a fluke. In any case we are
not able to provide upper error bounds that show that (23) is superior to
an additional Arnoldi step. �

Example 4.2. We now choose f(t) = g(t) =
√
t+ 1. The matrix A,

vector v, and orders N , and steps n are the same as in Example 4.1. Table 2
lists the relative errors for the different approximations of 〈f, g〉. Also for
this example, the approximations (23) perform well. �

Example 4.3. This example uses the same functions f and g as Example
4.1, and the same initial vector v, but a different matrix. The matrix A of
the present example is a nearly symmetric Toeplitz matrix with first row
[1/2, 1/2, 1/3, . . . , 1/N ] and first column [1/2, 1/3, . . . , 1/(N + 1)]. Results
are shown in Table 3. The approximations (23) of 〈f, g〉 are seen to give
smaller errors than the approximations based on n Arnoldi steps, but not

15



Table 2: Example 4.2: Relative errors of computed approximations of vT f(A)g(A)v for
A ∈ RN×N a nonsymmetric Toeplitz matrix, f(t) = g(t) =

√
1 + t, and v = [1, 1, . . . , 1]T .

Error
N n = 5 n = 10

200 n Arnoldi steps 3.3922 · 10−6 5.7095 · 10−9

scaled nth column 2.2259 · 10−7 1.9204 · 10−10

zero padding 3.3680 · 10−6 5.7098 · 10−9

n+ 1 Arnoldi steps 8.9522 · 10−7 1.6797 · 10−9

2000 n Arnoldi steps 2.3013 · 10−6 1.0501 · 10−8

scaled nth column 1.4437 · 10−7 2.7235 · 10−10

zero padding 2.2726 · 10−6 1.0503 · 10−8

n+ 1 Arnoldi steps 7.1245 · 10−7 3.9296 · 10−9

10000 n Arnoldi steps 1.3860 · 10−6 8.5499 · 10−9

scaled nth column 7.3021 · 10−8 1.7912 · 10−10

zero padding 1.3672 · 10−6 8.5531 · 10−9

n+ 1 Arnoldi steps 4.4929 · 10−7 3.4425 · 10−9

Table 3: Example 4.3: Relative errors of computed approximations of vT f(A)g(A)v for
A ∈ RN×N a nonsymmetric Toeplitz matrix, f(t) = g(t) = exp(t), and v = [1, 1, . . . , 1]T .

Error
N n = 5 n = 10

200 n Arnoldi steps 1.1236 · 10−5 9.7413 · 10−11

scaled nth column 8.8070 · 10−6 8.7963 · 10−12

zero padding 1.1310 · 10−5 9.7413 · 10−11

n+ 1 Arnoldi steps 1.8919 · 10−6 5.7866 · 10−12

2000 n Arnoldi steps 8.4251 · 10−6 1.4688 · 10−9

scaled nth column 2.5821 · 10−5 1.1130 · 10−9

zero padding 7.9549 · 10−6 1.4694 · 10−9

n+ 1 Arnoldi steps 8.3296 · 10−8 1.0640 · 10−10

10000 n Arnoldi steps 3.3744 · 10−5 1.6263 · 10−9

scaled nth column 7.4965 · 10−5 1.1720 · 10−9

zero padding 3.2586 · 10−5 1.6281 · 10−9

n+ 1 Arnoldi steps 2.6019 · 10−6 5.5610 · 10−10

as small as achieved by n+ 1 Arnoldi steps. The results of this example are
more in line with what we expect in general. �

In our next example, the matrix A = [ai,j ] ∈ RN×N is an adjacency
matrix for a directed unweighted graph with N nodes and without multiple
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edges and self-loops. Then ai,j = 1 if there is an edge from node i to node
j, and ai,j = 0 otherwise. Since the graph is directed the adjacency matrix
is not symmetric. Typically, the number of edges is much smaller than N2.
This makes the adjacency matrix A sparse. A walk of length k in a graph
is a sequence of vertices νi1 , νi2 , . . . , νik+1

such that there is an edge from
vertex νij to vertex νij+1 for j = 1, 2, . . . , k. Vertices and edges in a walk

may be repeated. The entry [a
(`)
i,j ] of the matrix A` = [a

(`)
i,j ] is equal to the

number of walks of length ` starting at node i and ending at node j. Short
walks are considered more important than long walks. This motivates the
use of matrix functions in network analysis; see [3, 18] for nice introductions.
The exponential

f(A) =
∞∑
`=0

A`

`!

is commonly used. The total communicability is defined as v∗f(A)v, where
v = [1, 1, . . . , 1]T . A large value indicates that it is easy to communicate
or travel within the network that is represented by the graph; see [4] for
details. We will compute approximations of the total communicability for a
graph that models air traffic.

The matrix

Ĥn+1,n+1 =


h1,1 h1,2 · · · h1,n 0
h2,1 h2,2 · · · h2,n 0

. . .
. . .

...
...

hn,n−1 hn,n hn+1,n

O hn+1,n 0

 (24)

is an extension of Hn+1,n using the last row also as last column. This idea
is inspired by the treatment of undirected graphs with symmetric adjacency
matrices [16]. A closest Hermitian matrix in C(n+1)×(n+1) with leading (n+
1)× n submatrix Hn+1,n and arbitrary last column v ∈ Cn+1 in the matrix
Frobenius norm ‖·‖F is obtained by solving the minimization problem

min
v∈Cn+1

‖ [Hn+1,n, v]− [Hn+1,n, v]∗ ‖F .

Choosing the last entry of v to be zero, we obtain the solution

v = [0, . . . , 0, h̄n+1,n, 0]T ∈ Cn+1.

In the present example Hn+1,n ∈ R(n+1)×n.
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Table 4: Example 4.4: Relative error of computed approximations of v∗f(A)v for A ∈
R500×500 of the Air500 network, f(x) = exp(x), and v = [1, 1, . . . , 1]T .

Error
N n = 5 n = 10

500 n Arnoldi steps 2.3853 · 10−2 8.5168 · 10−7

scaled nth column 7.8598 · 10−2 5.1654 · 10−7

transposed (n+ 1)st row 6.0149 · 10−4 8.0304 · 10−7

zero padding 2.3691 · 10−2 8.5168 · 10−7

n+ 1 Arnoldi steps 8.0514 · 10−4 7.1425 · 10−8

The extension (24) of the matrix Hn+1,n is meaningful when the latter
matrix has a leading n × n principal submatrix that is nearly symmetric.
The determination of the entries of the matrix (24) requires the evaluation of
n steps of the Arnoldi process. This matrix delivers approximations of 〈f, g〉
of higher accuracy for Example 4.4 than any of the Hessenberg matrices that
can be determined with n steps of the Arnoldi process and were used in the
previous examples. We remark that the matrix (24) does not outperform
the other matrices that require n Arnoldi steps in the previous computed
examples.

Example 4.4. Let the nonsymmetric matrix A = [ai,j ] ∈ R500×500 be
the adjacency matrix for the Air500 network that describes flight connections
between the top 500 airports within one year from July 1, 2007, to June 30,
2008; see [5, 32]. Thus, the airports are nodes and the flights are edges in
the graph determined by the network. The matrix A has the entry ai,j = 1 if
there is a flight from airport i to airport j. Generally, but not always, ai,j = 1
implies that aj,i = 1. This makes A close to symmetric. Table 4 displays
computed approximations of the total communicability for the network. The
approximation of the total communicability determined with the matrix
(24) is more accurate than the approximations determined by the other
approaches that require the evaluation of n steps of the Arnoldi process. �

The computed examples above illustrate that for several matrices A and
functions f and g, more accurate approximations of 〈f, g〉 than those ob-
tained by using the matrix Hn,n in (1) can be determined with the same
number of steps with the Arnoldi process. Numerous computed examples,
some of which are shown above, suggest that the matrix (23) often yields
good results, except when the matrix A is very close to symmetric.

In the remainder of this section, we consider approximations of matrix
functions of the form (2) described in Section 2. We measure the relative
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Table 5: Example 4.5: Relative errors of computed approximations of f(A)v for A ∈ RN×N

a nonsymmetric Toeplitz matrix, f(t) = exp(t), and v = [1, 1, . . . , 1]T .

Error
N n = 5 n = 10

200 n Arnoldi steps 5.03510 · 10−3 3.13885 · 10−7

scaled nth column 1.95280 · 10−3 6.37350 · 10−8

zero padding 1.76493 · 10−3 6.02077 · 10−8

n+ 1 Arnoldi steps 9.80516 · 10−4 3.05590 · 10−8

2000 n Arnoldi steps 1.40923 · 10−2 8.40692 · 10−6

scaled nth column 7.21887 · 10−3 2.53102 · 10−6

zero padding 6.70142 · 10−3 2.49285 · 10−6

n+ 1 Arnoldi steps 4.06182 · 10−3 1.38556 · 10−6

10000 n Arnoldi steps 1.95631 · 10−2 2.81242 · 10−5

scaled nth column 1.11112 · 10−2 9.91392 · 10−6

zero padding 1.05464 · 10−2 1.00081 · 10−5

n+ 1 Arnoldi steps 6.55416 · 10−3 5.68982 · 10−6

error

Error =
‖f(A)v − fapprox(A)v‖

‖f(A)v‖
, (25)

where f(A)v is the exact value (2) and fapprox(A)v stands for one of the
approximants described in Section 2.

Example 4.5. Let A ∈ RN×N for N ∈ {200, 2000, 10000} be the non-
symmetric Toeplitz matrices defined in Example 4.1, let v = [1, 1, . . . , 1]T

and f(t) = exp(t). Table 5 displays the relative errors (25) achieved by
some of the approximations of f(A)v described in of Section 2. Among the
methods that require the evaluation of n steps of the Arnoldi process, the
method equivalent to zero padding is seen to yield the most accurate ap-
proximations of f(A)v for both n = 5 and n = 10 Arnoldi steps and all but
the largest value of N . The method based on the matrix (23) determines
approximations of about the same accuracy. Both these methods give ap-
proximations of higher accuracy than the standard approximation method
that uses the matrix (1), but of lower accuracy compared to an additional
Arnoldi step. �

Example 4.6. This example is concerned with an approximation prob-
lem that arises in network analysis. Let A ∈ R500×500 be the adjacency
matrix for the graph of Example 4.4. The importance of a node as a re-
ceiver and broadcaster of information can be determined by evaluation the
entries of exp(A)v and exp(A∗)v, respectively, for a suitable vector v ∈ R500;
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Table 6: Example 4.6: Relative errors of computed approximations of f(A)v for the adja-
cency matrix A ∈ R500×500 of the Air500 network, f(t) = exp(t), and v = [1, 1, . . . , 1]T .

Error
N n = 5 n = 10

500 n Arnoldi steps 2.23385 · 10−2 1.51927 · 10−6

scaled nth column 3.97069 · 10−2 4.01892 · 10−7

transposed n+ 1st row 4.75809 · 10−3 4.60743 · 10−7

zero padding 1.49107 · 10−2 5.22552 · 10−7

n+ 1 Arnoldi steps 3.16756 · 10−3 2.17088 · 10−7

see [4, 12]. The choice v = [1, 1, . . . , 1]T is commonly used, and we use it in
this example. Node j of the graph is an important receiver of information
in the network if the jth entry of the vector exp(A)v is relatively large. We
approximate this vector by using the techniques described in Section 2. Ta-
ble 6 shows the relative errors in these approximations. The approximation
of f(A)v determined by the matrix (24) gives the highest accuracy among
all methods that require n Arnoldi steps. �

The performance of the Arnoldi process when applied to a large non-
Hermitian matrix A ∈ CN×N depends on the structure of the matrix, its
spectrum, and on the initial vector v ∈ CN . The Arnoldi process has been
studied in detail in the context of the FOM and GMRES iterative methods
for the solution of large linear systems of equations; see Du et al. [15]
and Schweitzer [37] for recent discussions and references. In particular, it is
difficult to predict how quickly the iterates determined by FOM and GMRES
will converge to the desired solution when these methods are applied to the
solution of a linear system of equations with a fairly general non-Hermitian
matrix.

Similarly, the quality of the approximations of (2) and (3) determined
by the expressions in the right-hand side of (18) and (22), respectively,
depends on the structure of the matrix A, its spectrum, the initial vector
v, the function f , and the choice of the last columns of the Hessenberg
matrix Ĥn+1,n+1. A detailed analysis is difficult and outside the scope of the
present paper. Numerous numerical examples, some of which are reported
above, showed the approximation (13), which is equivalent to zero padding,
and the approximations obtained when using the matrix (23) to perform
well. For matrices that are close to symmetric, that is ‖A−A∗ ‖F is small,
the approximation determined by using the last row as last column, (24),
typically also gave high accuracy.
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5. Conclusion

The paper discusses the approximation of matrix functions and quadra-
ture rules based on the Arnoldi process. New methods are proposed that
provide more accurate approximations, in the sense that more moments are
matched for essentially the same computational effort, as available methods.
When the moments matched dominate the approximation, the new meth-
ods proposed are more accurate than the available approximation schemes
based on the use of the matrix Hn,n in (1). In addition, we generalize a
method proposed by Saad [35] and show its equivalence to zero-padding of
the rectangular matrix Hn+1,n in the Arnoldi decomposition (8).
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