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Abstract
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puted error estimates.
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1. Introduction

We are concerned with the approximation of matrix functionals of the
form

uT f(A)v, (1)

where A ∈ RN×N is a large, possibly sparse, nonsymmetric matrix, u, v ∈
RN are vectors scaled so that uT v = 1, the superscript T denotes transposi-
tion, and the function f is such that f(A) is a well defined matrix function;
see Higham [22] for definitions of matrix functions. Expressions of the form
(1) arise in a variety of application including the solution of partial differen-
tial equations, network analysis, and the solution of linear discrete ill-posed
problems; see, e.g., [2, 7, 8, 11].

When the matrix A is large, the evaluation of (1) by first computing
f(A) may be prohibitively expensive both in terms of computing time and
computer memory. The need of a significant amount of computer memory
stems from the fact that the matrix f(A) is dense for many functions f ,
even when A is sparse. This is, for instance, the case when f(A) = exp(A).

Assume that the spectral factorization

A = SΛS−1, (2)

exists, where the matrix S ∈ CN×N is nonsingular and the diagonal entries
of Λ = diag[λ1, . . . , λN ] ∈ CN×N are the eigenvalues of A. Then, one way to
evaluate f(A) is to use the spectral factorization; see below. However, the
computation of this factorization requires O(N3) arithmetic floating point
operations. This may be prohibitively expensive when N is large; see [22] for
discussions and analyses of numerous methods for the evaluation of matrix
functions.

Substituting the factorization (2) into (1) gives

uT f(A)v = uTSf(Λ)S−1v =
N∑
j=1

f(λj)µjµ
′
j , (3)

where [µ1, . . . , µN ] := uTS and [µ′1, . . . , µ
′
N ]T := S−1v. The right-hand side

of (3) can be written as an integral

IA(f) :=

∫
f(t)dµA,u,v(t) (4)
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with the measure

dµA,u,v(t) :=
N∑
j=1

δ(t− λj)µjµ′j , (5)

where δ(·) denotes the Dirac δ-distribution. Thus, the evaluation of (1) is
equivalent to computing the integral (4). For this reason, we refer to the
approximations of (1) that we will consider as quadrature rules. We remark
that the methods discussed for the approximation of (1) also can be applied
when the matrix A does not have a spectral factorization of the form (2);
see Pozza et al. [27] for details.

We will reduce the computational effort and memory requirement needed
for the evaluation of (1) by approximating the matrix A by a small matrix
that is obtained by applying a small number of steps, say 1 ≤ n � N ,
of the Arnoldi process with initial vector v to A. This gives the Arnoldi
decomposition

AWn = WnHn,n + ŵn+1e
T
n , (6)

where the matrix Wn = [w1, w2, . . . , wn] ∈ RN×n and the vector ŵn+1 ∈ RN

satisfy W T
n Wn = In, W T

n ŵn+1 = 0, and w1 = v/‖v‖. Moreover, the matrix
Hn,n = [hi,j ]

n
i,j=1 ∈ Rn×n is of upper Hessenberg form, i.e., all entries hi,j

below the subdiagonal vanish. Throughout this paper In denotes the identity
matrix of order n, ej is the jth column of an identity matrix of suitable order,
and ‖·‖ stands for the Euclidean vector norm. We assume that the number
of Arnoldi steps, n, is small enough so that the decomposition (6) with the
stated properties exists, and that the vector ŵn+1 is nonvanishing. This is
the generic situation; see, e.g., Golub and Van Loan [20, Section 10.5.1] or
Saad [29, Chapter 6] for discussions on the Arnoldi process. In applications
of interest to us, n is much smaller than N . An algorithm for the Arnoldi
process is provided in Section 2. Here, we only note that the computation
of the decomposition (6) requires n matrix-vector product evaluations with
the matrix A. This is typically the dominating computational work for
determining the decomposition (6) when n is small; see Section 2 for details.

We will approximate the expression (1) by Arnoldi quadrature rules,
among them

An,A(f) := uTWnf(Hn,n)e1‖v‖, (7)

where Hn,n is the Hessenberg matrix in (6); the subscript “A” signifies that
the quadrature rule is obtained by a reduction of the matrix A. These rules
are discussed, e.g., by Calvetti et al. [7], Eshghi et al. [13], and Freund
and Hochbruck [18]. Assume that Hn,n has a spectral factorization. Then
it easily can be seen that the left-hand side of (7) is a quadrature rule by
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replacing Hn,n by its spectral factorization. This shows, in particular, that
the eigenvalues of Hn,n are the nodes of the quadrature rule. However, we
remark that the expression (7) also is meaningful when Hn,n is not diago-
nalizable; see Pozza et al. [27]. When A is symmetric and u = v, then (7)
is a Gauss rule with respect to the measure (5) and, thus, is exact for all
polynomials f of degree up to 2n− 1; see [16, 27].

The main advantage of reducing the large-scale problem (1) to the small
problem (7) is that typically the evaluation of f(Hn,n) in (7) is much cheaper
than the calculation of f(A) when N � n. Moreover, the storage require-
ment for (7) generally is much smaller than for f(A) when N is large; see,
e.g., Higham [22] for discussions on the computation of matrix functions.

Our interest in reducing the large nonsymmetric matrix A to a small
matrix by using the Arnoldi process, instead reducing A to a small matrix
by the nonsymmetric Lanczos process (described below), is that the former
reduction only requires the evaluation of matrix-vector products with the
matrix A, while the latter reduction requires the evaluation of matrix-vector
products with both the matrices A and AT . This is beneficial when it is
easy to evaluate matrix-vector products with A, but not with AT , which,
for instance, is the case when A approximates a Fredholm integral operator
of the first or second kinds and matrix-vector products with A are evaluated
by a multipole method without explicitly forming A. Then matrix-vector
products with AT are difficult to compute; see, e.g., [21] for a discussion on
the multipole method. This situation also arises when solving large systems
of nonlinear equations; see [9].

However, a shortcoming of Arnoldi quadrature rules (7) is that no con-
venient estimate for the magnitude of the quadrature error

|An,A(f)− uT f(A)v|

is available. It is the purpose of the present paper to describe an inexpen-
sive approach to determine an estimate for this error. Our approach applies
an extension of a technique proposed by Spalević [30, 31] for estimating
the error in Gauss quadrature rules associated with a nonnegative measure
with support on the real axis in the complex plane. This extension is de-
scribed in [28] and is based on reducing a large nonsymmetric matrix to
a small nonsymmetric tridiagonal matrix by the application of a few steps
of the nonsymmetric Lanczos process to the given large nonsymmetric ma-
trix. This reduction yields a Gauss quadrature rule that is associated with a
measure with support in the complex plane. We apply the latter quadrature
rules to a functional that is analogous to (1) with the matrix A replaced by
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the upper Hessenberg matrix Hn,n furnished by the Arnoldi process applied
to A. We can in this manner apply techniques described in [28] to estimate
the error in (7) without evaluating matrix-vector products with AT ; instead
we compute matrix-vector products with Hn,n and HT

n,n.
We remark that a simple approach to estimate the error in An,A(f) is

to compute Am,A(f) for some m > n and use the estimate

|An,A(f)−Am,A(f)| (8)

of the error in An,A(f). However, the expression (8) may be a poor ap-
proximation of the error in An,A(f) unless m is quite a bit larger than n.
This is illustrated in Section 4. Clenshaw and Curtis [10] report an analo-
gous observation about estimating the error in a k-node Gauss rule Gk(f)

applied to the approximation of an integral
∫ b
a f(t)dµ(t) with respect to a

nonnegative measure with support on the real interval a < t < b. They
found that the estimate |Gk(f) − Gk+1(f)| for the magnitude of the error

|
∫ b
a f(t)dµ(t)− Gk(f)| might be quite inaccurate.

This paper is organized as follows. Section 2 reviews Arnoldi quadrature
rules. The computation of error estimates for these quadrature rules is de-
scribed in Section 3, and a few computed examples are presented in Section
4. Section 5 contains concluding remarks.

We conclude this section by noting that the approximation of expres-
sions of the form (1) has received considerable attention when the matrix A
is symmetric; see, e.g., [1, 14, 16, 19] for methods that exploit the connection
between the symmetric Lanczos process, orthogonal polynomials, and Gauss
quadrature rules. When the matrix A is nonsymmetric, the functional (1)
can be approximated by methods that are based on the nonsymmetric Lanc-
zos process [1, 16]. The special case when f(t) = 1/t in (1) is investigated
by Fika et al. [17] and Strakoš and Tichý [32], and techniques that use
extrapolation are developed in [4, 5, 17]. A careful comparison of all these
methods is outside the scope of the present paper. Here we only note that
the method described in this paper can be applied to large nonsymmetric
matrices A ∈ RN×N and does not require the evaluation of matrix-vector
products with the matrix AT . We will assume the matrix A to be real,
however, the method described easily can be modified to allow a matrix A
with complex-valued entries.

2. Arnoldi quadrature rules

We review some properties of the approximants (7) of (1). Algorithm 1
implements the Arnoldi process. For further details on the Arnoldi process,
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we refer to Saad [29] or Golub and Van Loan [20]. The matrix A in the
algorithm is assumed to be large, and the number of steps n typically is
chosen fairly small.

Algorithm 1 The Arnoldi process

1: Input: A ∈ RN×N , v ∈ RN\{0}, number of steps n.

2: w1 := v/‖v‖
3: for j = 1 to n

4: w̆ := Avj

5: for k = 1 to j

6: hk,j := vTk w

7: w̆ := w̆ − wkhk,j

8: end for

9: hj+1,j := ‖ w̆‖; wj+1 := w̆/hj+1,j

10: end for

11: Output: Upper Hessenberg matrix Hn+1,n = [hk,j ] ∈ R(n+1)×n, and
matrix Wn+1 = [w1, . . . , wn+1] ∈ RN×(n+1) with orthonormal columns.

Algorithm 1 describes the Arnoldi process for computing the decompo-
sition (6). It is based on modified Gram–Schmidt orthogonalization of the
columns of the matrix Wn+1. The matrix Hn,n ∈ Rn×n in (6) is the leading
n× n submatrix of the matrix Hn+1,n generated by the algorithm, and the
vector ŵn+1 in (6) is given by ŵn+1 = hn+1,nwn+1. We assume that the
number of steps, n, with Algorithm 1 is sufficiently small so that breakdown
due to division by zero in line 9 of the algorithm does not occur. Breakdown
is rare but fortuitous; see Proposition 1 below. We remark that Algorithm
1 requires storage of the matrix Wn+1, which generally is dense. If many
steps of the algorithms are required, then the memory requirement may be
prohibitive and other approximations methods for (1) should be applied.
We have not run into this difficulty in our computations, some of which are
reported in Section 4. The following results are shown, e.g., by Liesen and
Strakoš [24, Theorem 3.7.4].

Theorem 1. Let the matrix Hn,n be determined by Algorithm 1. Then

uT f(A)v = uTWnf(Hn,n)e1‖v‖, ∀f ∈ Pn−1,

vT f(A)v = eT1 f(Hn,n)e1‖v‖2, ∀f ∈ Pn,
(9)

where Pk denotes the set of all polynomials of degree at most k.
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The set Pn−1 in (9) can be enlarged without increasing the number of
steps with Algorithm 1. Note that the Arnoldi decomposition (6) can be
expressed as

AWn = Wn+1Hn+1,n, (10)

where the upper Hessenberg matrix Hn+1,n ∈ R(n+1)×n is obtained from the
matrix Hn,n in (6) by appending the row vector hn+1,ne

T
n .

Let
h̃ = [h̃1,n+1, h̃2,n+1, . . . , h̃n+1,n+1]

T ∈ Rn+1 (11)

be a fairly arbitrary column vector; we will comment on the choice of this
vector below. Append this vector to the matrix Hn+1,n in (10) to obtain the
upper Hessenberg matrix

H̃n+1,n+1 =


h1,1 h1,2 · · · h1,n h̃1,n+1

h2,1 h2,2 · · · h2,n h̃2,n+1

. . .
. . .

...
...

hn,n−1 hn,n h̃n,n+1

O hn+1,n h̃n+1,n+1

 ∈ R(n+1)×(n+1). (12)

Theorem 2. Let the first n columns of the matrix (12) agree with the cor-
responding columns of the matrix Hn+1,n, generated by Algorithm 1, and let
the last column of the matrix (12) be arbitrary, but such that the function f
is defined at H̃n+1,n+1. Then

f(A)v = Wn+1f(H̃n+1,n+1)e1‖v‖, ∀f ∈ Pn. (13)

It follows that

uT f(A)v = uTWn+1f(H̃n+1,n+1)e1‖v‖, ∀f ∈ Pn. (14)

We will refer to the expression in the right-hand side of (14) as an enhanced
Arnoldi quadrature rule.

Equation (13) is shown by Eshghi et al. [13, Theorem 3], from which
equation (14) immediately follows. A related result for symmetric matrices
A is shown by van den Eshof et al. [33].

Theorem 2 suggests that the enhanced Arnoldi quadrature rule

Ãn+1,A(f) := uTWn+1f(H̃n+1,n+1)e1‖v‖ (15)
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can be used as an alternative to the rule (7). Whether the above rule delivers
an approximation of (1) that is more accurate than the rule (7) depends on
the matrix A, the function f , and the choice of the last column (11) of the
matrix (12). We will illustrate the performance of the quadrature rule (15)
in Example 4.1 of Section 4. The rule (15) for some matrices A, functions
f , and last columns (11) indeed delivers a more accurate approximation
of (1) than the rule (7), but may yield a larger quadrature error for other
matrices A, functions f , and last columns (11). We therefore will focus on
the quadrature rules (7).

The computation of the quadrature rule (7) requires the evaluation of
the matrix functions f(Hn,n). In applications of interest to us, the matrix
Hn,n is fairly small, and numerous techniques for evaluating f(Hn,n) for a
variety of functions f are available; see, e.g., [22]. We will evaluate f(Hn,n)
by using the spectral factorization of the matrix Hn,n, because this approach
can be used for many matrices and functions. Thus, assume that the spectral
factorization

Hn,n = Sn,nΛn,nS
−1
n,n

exists. Then the diagonal entries of

Λn,n = diag[λ1, λ2, . . . , λn] ∈ Cn×n

are the eigenvalues of Hn,n and the columns of the matrix Sn,n ∈ Cn×n are
associated eigenvectors. In the computed examples reported in Section 4,
we scale the columns of the matrix Sn,n to have unit Euclidean norm, and
we evaluate f(Hn,n) by using the expression

f(Hn,n) = Sn,n diag[f(λ1), f(λ2), . . . , f(λn)]S−1n,n

when the matrix Sn,n is not very ill-conditioned.
We conclude this section by considering the rare event when the Arnoldi

process breaks down. A proof of the following result is provided by Eshghi
et al. [13, Proposition 1]. The proof is analogous to the proof of Proposition
2 below.

Proposition 1. Assume that Algorithm 1 breaks down at step q ≥ 1, that
is hj+1,j > 0 for 1 ≤ j < q, and hq+1,q = 0. Let Hq,q ∈ Rq×q be the upper
Hessenberg matrix determined by Algorithm 1 and assume that f(Hq,q) is
well defined. Then

uTWqf(Hq,q)e1‖v‖ = uT f(A)v.
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3. Error estimates

This section describes inexpensively computable error estimates for the
Arnoldi quadrature rule (7). These estimates are based on error estimates
for Gauss quadrature rules with respect to a measure with support in the
complex plane. We first review the computation of error estimates for these
Gauss rules described in [28], and then apply these estimates to determine
error estimates for the Arnoldi quadrature rule (7). Error estimates for the
rule (15) can be determined similarly.

3.1. Quadrature rules based on the nonsymmetric Lanczos process

The error estimates described in [28] apply the nonsymmetric Lanczos
process to the matrix A ∈ RN×N with initial vectors u, v ∈ RN , which are
assumed to be scaled such that uT v = 1. Iterations with the nonsymmet-
ric Lanczos process requires the evaluation of matrix-vector products with
both the matrices A and AT . Since we would like to avoid the evaluation of
matrix-vector products with AT , we cannot apply the nonsymmetric Lanc-
zos process to A. Instead, we reduce A to the small upper Hessenberg matrix
Hn,n in (6) by applying n steps of the Arnoldi process to A, and then apply
the nonsymmetric Lanczos process to Hn,n. In the discussion of this sub-
section, we will apply the nonsymmetric Lanczos process to a fairly general
nonsymmetric matrix A ∈ RN×N with initial vectors u and v. The formu-
las derived in Subsection 3.2 will be applied to the Hessenberg matrix in
(6) with suitable initial vectors. This allows us to evaluate error estimates
analogous to those in [28] for the quadrature rule (7) without evaluating
matrix-vector products with AT .

The nonsymmetric Lanczos process and its properties are discussed, e.g.,
by Saad [29, Chapter 7] and Ye [34]; see also [16]. The implementation of
this process described by Algorithm 2 ignores the possibility of breakdown,
i.e., the situation when some coefficient βj vanishes. Discussions on how to
handle breakdown are provided by, e.g., Brezinski et al. [6] and Ye [34].

We apply `+ 1 steps of Algorithm 2. In Subsection 3.2, ` will be chosen
as a function of the number of steps carried out with the Arnoldi process.

Algorithm 2 determines the matrices

U`+1 = [u1, . . . , u`+1] ∈ RN×(`+1), V`+1 = [v1, . . . , v`+1] ∈ RN×(`+1)

with biorthogonal columns, i.e., UT
`+1V`+1 = I`+1, as well as the tridiagonal
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Algorithm 2 The nonsymmetric Lanczos process

1: Input: A ∈ RN×N ; u, v ∈ RN such that uT v = 1; number of steps `+1.

2: u0 := v0 := 0 ∈ RN ; u1 := u; v1 := v; β0 := 0; γ0 := 0;

3: for j = 1 to `+ 1

4: αj−1 := uTj Avj ;

5: r := Avj − αj−1vj − γj−1vj−1;

6: s := ATuj − αj−1uj − βj−1uj−1;

7: βj := |rT s|1/2; γj := rT s/βj ;

8: uj+1 := r/βj ; vj+1 := s/γj ;

9: end for

10: Output: Tridiagonal matrix T`+1 ∈ R(`+1)×(`+1) with diagonal entries
{αj}`j=0, subdiagonal entries {βj}`j=1, and superdiagonal entries {γj}`j=1 (see

(16) below) and vectors u1, u2, . . . , u`+2 and v1, v2, . . . , v`+2 in RN .

matrix

T`+1 =


α0 γ1 O
β1 α1 γ2

. . .
. . .

. . .

β`−1 α`−1 γ`
O β` α`

 ∈ R(`+1)×(`+1) (16)

with βj > 0 and γj ∈ {−βj , βj}; the assumption that the algorithm does not
break down secures that all βj are positive. The recursions of Algorithm 2
can be written as

AV`+1 = V`+1T`+1 + β`+1v`+2e
T
`+1,

ATU`+1 = U`+1T
T
`+1 + γ`+1u`+2e

T
`+1.

These expressions show that

uj+1 = qj(A
T )u, vj+1 = pj(A)v, 0 ≤ j ≤ `+ 1, (17)

for some polynomials pj and qj of degree j.
Introduce the bilinear form

〈f, g〉 := IA(fg), (18)

where the functional IA is defined by (4). It can be shown that

〈qj , pk〉 = uT qj(A)pk(A)v = uTj+1vk+1 =

{
1 j = k,
0 j 6= k,
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where the last equality follows from the biorthogonality and scaling of the
vectors uj+1 and vk+1. This shows that the Lanczos polynomials (17), which
are implicitly determined by Algorithm 2, are biorthogonal with respect to
the bilinear form (18). In particular, the recursion coefficients αj , βj , and
γj computed by the algorithm are recursion coefficients for the biorthogonal
polynomials; see [16, 27].

Theorem 3. Let T` be the leading ` × ` principal submatrix of the matrix
(16), i.e.,

T` =


α0 γ1 O
β1 α1 γ2

. . .
. . .

. . .

β`−2 α`−2 γ`−1
O β`−1 α`−1

 , (19)

and assume that T` is diagonalizable. Then

G`,A(f) := eT1 f(T`)e1 (20)

is an `-point Gauss quadrature rule associated with the measure dµA,u,v(t)
in (18), i.e., G`,A satisfies

G`,A(f) = IA(f), ∀f ∈ P2`−1,

where the integral operator is defined by (4).

Proof. Proofs are provided in [16, 28]. The requirement that T` be diago-
nalizable can be omitted; see Pozza et al. [27] for details.

Define the reverse matrix to T`,

Ť` =


α`−1 γ`−1 O
β`−1 α`−2 γ`−2

. . .
. . .

. . .

β2 α1 γ1
O β1 α0

 ∈ R`×`,

as well as the concatenated tridiagonal matrix

T̂2`+1 =

 T` γ`e` O
β`e

T
` α` γ`+1e

T
1

O β`+1e1 Ť`

 ∈ R(2`+1)×(2`+1). (21)
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The matrix (21) can be determined after having carried out `+ 1 steps with
Algorithm 2. It defines the quadrature rule

Ĝ2`+1,A(f) := eT1 f(T̂2`+1)e1. (22)

Theorem 4. Let the matrix T̂2`+1 be diagonalizable. Then

Ĝ2`+1,A(f) = IA(f), ∀f ∈ P2`+2.

If the measure (5) is symmetric with respect to the imaginary axis, then the
quadrature rule (22) is exact for all f ∈ P2`+3.

Proof. A proof is presented in [28].

An estimate for the quadrature error IA(f)− G`,A(f) is provided by

Ĝ2`+1,A(f)− G`,A(f). (23)

The classical approach to error estimation is to use (23) as an estimate for the
error in G`,A(f). However, typically Ĝ2`+1,A(f) is a more accurate approxi-
mation of IA(f) than G`,A(f). Therefore, the functional (1), or equivalently

(4), often are approximated by Ĝ2`+1,A(f) and the difference (23) is used

as an estimate for the error in Ĝ2`+1,A(f); see Laurie [23] as well as Ehrich
[12] for discussions of this approach. Computed examples that illustrate the
accuracy of the error estimates for functionals (1) and (4) determined in this
manner can be found, e.g., in [28].

We remark that estimation of the quadrature error in a Gauss rule,
determined by a real nonnegative measure with support on (part of) the
real axis, by comparing the value of the Gauss rule to a value determined
by a quadrature rule that is exact for polynomials of higher degree is quite
common. This is, for instance, done with pairs of Gauss and Gauss-Kronrod
rules; see, e.g., Notaris [26] for a nice discussion of Gauss-Kronrod rules. The
approach outlined above, and described in detail in [28], is one of the very
few available techniques for estimating the quadrature error of Gauss rules
associated with a measure with support in the complex plane.

3.2. Error estimates for Arnoldi quadrature rules

This subsection discusses how the technique described in the previous
subsection can be applied to determine error estimates for the Arnoldi
quadrature rule. Apply 2n steps of the Arnoldi process to the matrix
A ∈ RN×N with initial vector v ∈ RN . In our application of interest,
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2 ≤ 2n � N . We will assume that the Arnoldi process does not break
down. Then we obtain the Arnoldi decomposition

AW2n = W2nH2n,2n + h2n+1,2nw2n+1e
T
2n+1,

which is analogous to (6). We will consider the situation when u 6= v; the
case when u = v can be treated similarly. It follows from Theorems 1 and 2
that

uT f(A)v = uTW2nf(H2n,2n)e1‖v‖, ∀f ∈ P2n−1, (24)

and
uT f(A)v = uTW2n+1f(H̃2n+1,2n+1)e1‖v‖, ∀f ∈ P2n.

We first consider the Arnoldi quadrature rule in the right-hand side of
(24). Our aim is to transform the matrix H2n,2n to a nonsymmetric tridi-
agonal matrix by the nonsymmetric Lanczos process and then apply the
technique in Subsection 3.1 to estimate the quadrature error. The fact that
the rule (24) is exact for all f ∈ P2n−1 suggests that it might suffice to apply
n steps of Algorithm 2 to the matrix H2n,2n with initial vectors û = W T

2nu‖v‖
and e1, because the tridiagonal matrix determined by this algorithm is as-
sociated with a quadrature rule that is exact for all polynomials in P2n−1;
cf. Theorem 3 with ` = n. In view of that v = W2ne1‖v‖, we have

ûT e1 = uTW2ne1‖v‖ = uT v = 1,

as required by Algorithm 2. We assume as usual that the Lanczos process
does not break down.

Corollary 1. Let the matrix Tn be determined by applying n steps of Algo-
rithm 2 to the matrix H2n,2n with initial vectors û = W T

2nu‖v‖ and e1. This
defines the quadrature rule

Gn,H2n,2n(f) = eT1 f(Tn)e1.

Then
uT f(A)v = Gn,H2n,2n(f), ∀f ∈ P2n−1. (25)

Hence, the right-hand side of (25) may be considered a Gauss quadrature
rule for the expression on the left-hand side.

Proof. It follows from Theorems 3 and 4 that

eT1 f(Tn)e1 = ûT f(H2n,2n)e1, ∀f ∈ P2n−1.

The corollary now is a consequence of (24).
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Corollary 1 illustrates how the Gauss quadrature rule Gn(f) based on
the nonsymmetric Lanczos process can be computed without evaluating
matrix-vector products with the matrix AT . Let the Arnoldi quadrature
rule A2n,A(f) be analogous to (7) with n replaced by 2n. Equation (24) and

Corollary 1 suggest that we might use Ĝ2n+1,H2n,2n(f) as our approximation
of uT f(A)v and the differences

Ĝ2n+1,H2n,2n(f)−A2n,A(f) (26)

or (23), or their magnitudes, as estimates for the error in A2n,A(f) or its

magnitude. The evaluation of the rule Ĝ2n+1,H2n,2n(f) requires the applica-
tion of Algorithm 2 to H2n,2n with ` = n+ 1.

However, computed examples reported in Section 4 show the error es-
timate (26) not to be accurate for integrands that are not analytic in a
large enough region in the complex plane that contains all eigenvalues of
the matrix A. We therefore propose to carry out more steps of the non-
symmetric Lanczos process. When the matrix H2n,2n has been determined
by Algorithm 1, assuming that Algorithm 2 does not break down, we may
carry out 2n steps of this algorithm to the matrix H2n,2n with initial vectors
û = V T

2n+1u‖v‖ and e1 to obtain a nonsymmetric tridiagonal matrix T2n.
We have the following result.

Proposition 2. Apply 2n steps of Algorithm 2 to the matrix H2n,2n ∈
R2n×2n with initial vectors ŭ, v̆ ∈ R2n such that ŭT v̆ = 1, and assume that
no breakdown occurs that forces the computations to terminate prematurely.
Let Algorithm 2 produce the tridiagonal matrix T2n,2n ∈ R2n×2n and the
matrix V2n ∈ R2n×2n, and assume that the function f is such that f(H2n,2n)
and f(T2n,2n) are well defined. Then

V2nf(T2n,2n)e1‖ v̆‖ = f(H2n,2n)v̆. (27)

In particular, f is not required to be a polynomial of degree at most 2n− 1
in order for (27) to hold.

Proof. The relation (27) follows from the observations that any matrix func-
tion f(T2n,2n) is a polynomial in T2n,2n ∈ R2n×2n of degree at most 2n − 1
(see, e.g., [22, Section 1.2]), and that the matrix V2n is invariant under
A.

Proposition 2 shows that

ŭT f(T2n,2n)e1‖ v̆‖ = ŭT f(H2n,2n)v̆,
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i.e., the quadrature rule on the left-hand side for the expression on the
right-hand side is exact.

We turn to the estimation of the error in the quadrature rule (7). Con-
sider the quadrature rule

G`,H2n,2n(f) = eT1 f(T`)e1

for n < ` < 2n. When applying ` + 1 steps of Algorithm 2 to the matrix
H2n,2n, we obtain the nonsymmetric tridiagonal matrix T`+1, from which we

can determine the tridiagonal matrices T` and T̂2`+1. The latter matrices
are analogues of the matrices (19) and (21), respectively. The matrix (21)
defines the quadrature rule

Ĝ2`+1,H2n,2n(f) = eT1 f(T̂2`+1)e1. (28)

We then use Ĝ2`+1,H2n,2n(f) as an approximation of (1) and

|Ĝ2`+1,H2n,2n(f)−A2n(f)| or |Ĝ2`+1,H2n,2n(f)− G`(f)| (29)

as error estimates. Computational experience indicates that ` = n + 3
is a suitable choice for many functions f and matrices A. We note that
the Arnoldi rule A2n(f) matches the first 2n moments associated with the
measure (5). The quadrature rule Gn,H2n,2n(f) matches the same moments
and the quadrature rule (28) matches these moments and a few additional
ones when ` > n. We illustrate in Section 4 that these extra moments yield
improved estimates of the quadrature error.

When the matrix A is large, the dominating cost of computing the error
estimate (29) is the evaluation of matrix-vector products with the matrix A.
Thus, the dominating cost of evaluating the quadrature rule A2n,A(f) are 2n
matrix-vector products with A. This gives the Hessenberg matrix H2n,2n,

which also is used for the calculation of the quadrature rules Ĝ`,H2n,2n(f)
and (28). It follows that the evaluation of the latter rules does not require
additional evaluations of matrix-vector products with A. The computation
of the error estimate (29) therefore is quite inexpensive when the quadrature
rule A2n,A(f) already has been evaluated.

4. Numerical examples

This section presents a few computed examples that illustrate the quality
of the approximations and error estimates described. All computations were
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carried out in double precision arithmetic (i.e., with about 15 significant
decimal digits) using MATLAB R2021a on a 64-bit personal computer.

We refer to F (A) = uT f(A)v as the “exact value” when this expression is
evaluated by explicitly computing f(A) by using the spectral factorization
of A. This value may be contaminated by propagated round-off errors.
However, propagated round-off errors contribute much less to the error in
our approximation of F (A) by using the Arnoldi process than the error
introduced by our approximation of F (A). We compare the “exact value”
to the computed value determined by the Arnoldi process when applied to
the matrix A. Estimates of the approximation errors by the techniques
discussed in Section 3 are tabulated. The Arnoldi process is implemented
with reorthogonalization of the vectors vj to reduce the influence of round-off
errors on the computed approximations and error estimates.

Example 4.1. This example illustrates the application of the techniques
of this paper to the computation of a quantity of interest in network analysis.
Let the matrix A = [ai,j ] ∈ R500×500 be the adjacency matrix for the network
Air500, which describes flight connections between the top 500 airports in
the United States within one year from July 1, 2007, to June 30, 2008; see
[3, 25]. The airports are nodes and the flights are edges in the directed
graph determined by the network. The matrix A has the entry ai,j = 1 if
there is a flight from airport i to airport j; otherwise ai,j = 0. Generally,
but not always, ai,j = 1 implies that aj,i = 1. This makes A nonsymmetric.
The number of edges is much smaller than N2. Therefore, the adjacency
matrix A is sparse. A walk of length k in a graph is a sequence of vertices
νi1 , νi2 , . . . , νik+1

such that there is an edge from vertex νij to vertex νij+1

for j = 1, 2, . . . , k. The entry a
(`)
i,j of the matrix A` = [a

(`)
i,j ] is equal to

the number of walks of length ` starting at node i and ending at node
j. Short walks are generally considered more important than long walks,
because information flows easier along short walks. This motivates the use
of the exponential function in network analysis. The subgraph centrality of
node vj is defined as eTj exp(A)ej ; see [15]. Computed examples of subgraph
centralities also can be found in [16]. We are interested in calculating the
total communicability of the graph, which is defined as vT exp(A)v, where
v = [1, 1, . . . , 1]T ; see, e.g., [2]. A large value indicates that it is easy to
communicate or travel within the network that is represented by the graph.

In this example, we illustrate the use of the matrix H̃2n+1,2n+1 ∈ R(2n+1)×(2n+1)

defined by appending a column h̃ ∈ R2n to the H2n+1,2n ∈ R(2n+1)×2n, which
is obtained by applying 2n steps of Algorithm 1 to A with initial vector v.
Thus, the matrices H2n+1,2n and H̃2n+1,2n+1 are analogous to the matrices
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Hn+1,n ∈ R(n+1)×n in (10) and H̃n+1,n+1 in (12). Many choices of the vector

h̃ ∈ R2n are possible. For instance, zero-padding of the matrix H2n+1,2n

corresponds to letting h̃ = [0, . . . , 0]T . Then (at least) one of the eigenvalues
of the matrix H̃2n+1,2n+1 vanishes.

For many matrices A and initial vectors v for the Arnoldi process, the
entries of the matrix Hn+1,n decrease smoothly with increasing column index

and fixed row index. This suggests that the vector h̃ be a multiple of the
last column of H2n+1,2n, i.e.,

h̃ = γ[h1,2n, h2,2n, . . . , h2n+1,2n]T

for some scalar γ > 0. Computed examples reported in [13] show the scaling
factor

γ = 0.9
‖ [h1,2n, h2,2n, . . . , h2n,2n]T ‖

‖ [h1,2n−1, h2,2n−1, . . . , h2n,2n−1]
T ‖

to give fairly accurate approximations of (1) for various analytic functions
f and matrices A. We will use this scaling in the present example.

Application of 2n steps of Algorithm 1 to the matrix A with initial
vector v = [1, 1, . . . , 1]T /

√
500 gives the matrices H2n,2n and H̃2n+1,2n+1

described above. For n = 5, f(t) = exp(t), and u = v, we obtain the relative
quadrature errors

|A2n,A(f)− IA(f)|/|IA(f)| = 4.44 · 10−7,

|Ã2n+1,A(f)− IA(f)|/|IA(f)| = 3.31 · 10−7,

where IA(f) ≈ 3.53 · 1035. Thus, the quadrature rule Ã2n+1,A(f), given
by (15) with n replaced by 2n, furnishes a more accurate approximation of
IA(f) than A2n,A(f), which is defined by (7) with n replaced by 2n. Other
illustrations of this behavior are shown in [13]. However, the quadrature rule
Ã2n+1,A(f) also might be a worse approximation of IA(f) than A2n,A(f) for
some functions f and matrices A. In the remainder of this section, we
therefore only consider the performance of the rule A2n,A(f).

Table 1 displays the magnitude of the relative error in computed approx-
imations A2n,A(f) and Ĝ2`+1,H2n,2n(f) of IA(f) for several values of n and

` = n + 3. The error estimates |Ĝ2`+1,H2n,2n(f) − G`,H2n,2n(f)|/|IA(f)| and
|A2n,A(f)−G`,H2n,2n(f)|/|IA(f)| are seen to be more accurate than the esti-
mates |A2n,A(f)−A2n−1,A(f)|/|IA(f)| and |A2n,A(f)−A2n−2,A(f)|/|IA(f)|.
Moreover, the approximations Ĝ2`+1,H2n,2n(f) of IA(f) are of about the same
or higher accuracy as the approximations A2n,A(f).
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Table 1: Example 4.1: Magnitude of the relative errors of computed approximations
of IA(f) = vT f(A)v and of error estimates, where f(t) = exp(t), A ∈ R500×500 and
v = [1, 1, . . . , 1]T /

√
500 for ` = n + 3.

Relative Error
n = 5 n = 6 n = 7

|A2n,A(f)−IA(f)|
|IA(f)| 4.44 · 10−7 4.30 · 10−10 2.37 · 10−11

|A2n,A(f)−A2n−1,A(f)|
|IA(f)| 1.36 · 10−6 3.54 · 10−8 2.34 · 10−9

|A2n,A(f)−A2n−2,A(f)|
|IA(f)| 2.17 · 10−6 4.45 · 10−7 4.54 · 10−10

|A2n,A(f)−G`,H2n,2n
(f)|

|IA(f)| 2.59 · 10−7 3.89 · 10−9 7.54 · 10−11

|Ĝ2`+1,H2n,2n
(f)−G`,H2n,2n

(f)|
|IA(f)| 2.59 · 10−7 3.90 · 10−9 7.55 · 10−11

|Ĝ2`+1,H2n,2n
(f)−IA(f)|

|IA(f)| 4.45 · 10−7 4.23 · 10−10 2.37 · 10−11

Example 4.2. In this example we apply the functions f(t) =
√
t

and f(t) = ln(t) to the large Toeplitz matrix A ∈ RN×N with first row
[1, 1/2, . . . , 1/N ], first column [1, 1/22, . . . , (1/N)2]T , and N = 5000. The
vectors u, v ∈ RN in (1) are given by

u = [1, 1, 0, . . . , 0]T and v = [1/2, 1/2, 0, . . . , 0]T .

Then IA(f) ≈ 1.16 for f(t) =
√
t and IA(f) ≈ 0.260 for f(t) = ln(t). Errors

and error estimates for n = 5 and ` = 8 are shown in Table 2.
Table 2 displays the magnitude of the relative error in the computed ap-

proximationA2n,A(f) of IA(f). The estimates |Ĝ2`+1,H2n,2n(f)−G`,H2n,2n(f)|/|IA(f)|
are seen to be the most accurate ones. The error estimate |A2n,A(f) −
A2n−2,A(f)|/|IA(f)| is seen to be about a factor 1/10 smaller than the esti-
mate |A2n,A(f)−A2n−1,A(f)|/|IA(f)|, which indicates that these estimates
might not be reliable.

Example 4.3. This example differs from Example 4.2 only in the choice
of the vectors u and v in (1); see Table 3 for their definition. Here IA(f) ≈
2.96 for f(t) =

√
t and IA(f) ≈ 2.17 for f(t) = ln(t). Errors and error

estimates for n = 5 and ` = 8 are depicted in Table 3.
In Table 3 we depict the magnitude of the relative error in the ap-

proximations A2n,A(f) and Ĝ2`+1,H2n,2n(f) of IA(f). The latter approxi-
mation is seen to be slightly more accurate for both functions f . Moreover,
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Table 2: Example 4.2: Magnitude of the relative errors of computed approximations of
IA(f) = vT f(A)v and of error estimates, where f(t) =

√
t or f(t) = ln(t), A ∈ RN×N is

a Toeplitz matrix, and the vectors u and v in (1) are sparse, n = 5, and ` = 8.

Relative Error

f(t) =
√
t f(t) = ln(t)

|A2n,A(f)−IA(f)|
|IA(f)| 2.25 · 10−7 9.63 · 10−6

|A2n,A(f)−A2n−1,A(f)|
|IA(f)| 1.09 · 10−7 4.03 · 10−6

|A2n,A(f)−A2n−2,A(f)|
|IA(f)| 9.36 · 10−7 3.86 · 10−7

|A2n,A(f)−G`,H2n,2n
(f)|

|IA(f)| 2.41 · 10−7 1.09 · 10−5

|Ĝ2`+1,H2n,2n
(f)−G`,H2n,2n

(f)|
|IA(f)| 2.26 · 10−7 1.02 · 10−5

|Ĝ2`+1,H2n,2n
(f)−IA(f)|

|IA(f)| 2.40 · 10−7 1.04 · 10−5

several other error estimates are displayed. For both functions, the esti-
mate |A2n,A(f) − A2n−2,A(f)|/|IA(f)| is more accurate than |A2n,A(f) −
A2n−1,A(f)|/|IA(f)|. This suggests that these error estimates may be un-
reliable. The most accurate error estimate for f(t) =

√
t is furnished by

|Ĝ2`+1,H2n,2n(f) − G`,H2n,2n(f)|/|IA(f)|, while for f(t) = ln(t) the difference
|A2n,A(f)−G`,H2n,2n(f)|/|IA(f)| provides the most accurate estimate. Both
estimates are seen to be fairly accurate.

5. Conclusion

This paper discusses the approximation of matrix functionals (1) with
a large square matrix A based on the Arnoldi process. We discuss several
approaches to estimate the error in the computed approximations A2n,A(f)
determined by the Arnoldi process. None of these approaches require the
evaluation of additional matrix-vector products than those used to com-
pute A2n,A(f). Moreover, no matrix-vector product evaluations with AT

are needed. In particular, we discuss the application of the nonsymmetric
Lanczos process to the upper Hessenberg matrix determined by the Arnoldi
process. This Lanczos process yields a nonsymmetric tridiagonal matrix,
which allows us to apply the error estimation approach described in [28].
Computed examples shows the error estimates determined in this manner
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Table 3: Example 4.3: Magnitude of the relative errors of computed approximations of
IA(f) = vT f(A)v and of error estimates, where f(t) =

√
t or f(t) = ln(t), A ∈ RN×N is

a Toeplitz matrix, and the vectors in (1) are u = v = [1, 1, . . . , 1]T /
√

5000. We use n = 5
and ` = 8.

Relative Error

f(t) =
√
t f(t) = ln(t)

|A2n,A(f)−IA(f)|
|IA(f)| 4.81 · 10−8 3.75 · 10−7

|A2n,A(f)−A2n−1,A(f)|
|IA(f)| 1.39 · 10−7 1.03 · 10−6

|A2n,A(f)−A2n−2,A(f)|
|IA(f)| 1.41 · 10−7 8.82 · 10−7

|A2n,A(f)−G`,H2n,2n
(f)|

|IA(f)| 1.44 · 10−8 1.27 · 10−7

|Ĝ2`+1,H2n,2n
(f)−G`,H2n,2n

(f)|
|IA(f)| 1.11 · 10−8 9.32 · 10−8

|Ĝ2`+1,H2n,2n
(f)−IA(f)|

|IA(f)| 4.48 · 10−8 3.42 · 10−7

to be fairly accurate and, in fact, may yield approximations of the functional
(1) that are slightly more accurate than A2n,A(f).
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approximation, Electron. Trans. Numer. Anal., 47 (2017), pp. 197–205.

[15] E. Estrada and D. J. Higham, Network properties revealed through
matrix functions, SIAM Rev., 52 (2010), pp. 696–714.

21



[16] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Block Gauss and
anti-Gauss quadrature with application to networks, SIAM J. Matrix
Anal. Appl., 34 (2013), pp. 1655–1684.

[17] P. Fika, M. Mitrouli, and P. Roupa, Estimates for the bilinear form
xTA−1y with applications to linear algebra problems, Electron. Trans.
Numer. Anal., 43 (2014), pp. 70–89.

[18] R. W. Freund and M. Hochbruck, Gauss quadratures associated with
the Arnoldi process and the Lanczos algorithm, in Linear Algebra for
Large Scale and Real-Time Applications, eds. M. S. Moonen, G. H.
Golub, and B. L. R. De Moor, Kluwer, Dordrecht, 1993, pp. 377-380.

[19] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with
Applications, Princeton University Press, Princeton, 2010.

[20] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns
Hopkins University Press, Baltimore, 2013.

[21] L. Greengard and V. Rokhlin, A new version of the fast multipole
method for the Laplace equation in three dimensions, Acta Numer.,
6 (1997), pp. 229–269.

[22] N. J. Higham, Functions of Matrices, SIAM, Philadelphia, 2008.

[23] D. P. Laurie, Practical error estimation in numerical integration, J.
Comput. Appl. Math., 12 & 13 (1985), pp. 425-431.
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