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Abstract

Large linear discrete ill-posed problems are commonly solved by first reducing
them to small size by application of a few steps of a Krylov subspace method,
and then applying Tikhonov regularization to the reduced problem. A regular-
ization parameter determines how much the given problem is regularized before
solution. If the matrix of the linear discrete ill-posed problem is nonsymmet-
ric, then the reduction often is carried out with the aid of the Arnoldi process,
while when the matrix is symmetric, the Lanczos process is used. This paper
discusses several numerical aspects of these solution methods. We illustrate
that it may be beneficial to apply the Arnoldi process also when the matrix is
symmetric and discuss how certain user-chosen basis vectors can be added to
the solution subspace. Finally, we compare the application of the discrepancy
principle for the determination of the regularization parameter to another ap-
proach that is based on the solution of a cubic equation and has been proposed
in the literature.
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1. Introduction

We consider the problem of computing an approximate solution of linear
systems of equations

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (1)

with a large square symmetric or nonsymmetric matrix A ∈ Rn×n, whose singu-
lar values “cluster” at the origin, i.e., A has many singular values of different or-
ders of magnitude close to the origin. In particular, A is severely ill-conditioned
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and may be rank-deficient. Linear systems of equations with a matrix of this
kind are commonly referred to as linear discrete ill-posed problems. They arise,
for instance, from the discretization of linear ill-posed problems, such as Fred-
holm integral equations of the first kind with a square integrable kernel. The
right-hand side b ∈ Rn of many linear discrete ill-posed problems (1) that arise
in applications, e.g., in engineering and physics, represents available data, and
typically is contaminated by an unknown error e ∈ Rn. This error may stem
from measurement inaccuracies and discretization.

Let b̂ ∈ Rn denote the unavailable error-free right-hand side associated with
b, i.e.,

b = b̂ + e. (2)

We assume the unavailable linear system of equations

Ax = b̂ (3)

to be consistent, i.e., b̂ is in the range of A. This condition should be satisfied
when applying the discrepancy principle for determining the regularization pa-
rameter in Tikhonov regularization; see below. Other methods for determining
this parameter also will be commented on.

Let x̂ ∈ Rn denote the solution of minimal Euclidean norm of (3). We would
like to determine an accurate approximation of x̂ by computing a suitable ap-
proximate solution of the available linear system (1) with the error-contaminated
right-hand side b with the aid of an iterative method.

Straightforward solution of (1) generally does not yield a meaningful approx-
imation of x̂ due to the ill-conditioning of A and the error e in b. Therefore,
one often replaces (1) by a minimization problem whose solution is less sensi-
tive to the error e than the solution of (1), and solves the minimization problem
instead of (1). This replacement is known as regularization.

One of the most popular regularization methods is due to Tikhonov. This
method replaces (1) by the penalized least-squares problem

min
x∈Rn

{‖Ax− b‖2 +
1

µ
‖Lx‖2}, (4)

where L ∈ Rs×n is a regularization matrix and µ > 0 is a regularization param-
eter. The matrix L often is chosen to be the identity matrix I, or a discretized
differential operator such that the null spaces of A and L only intersect at the
origin. For ease of discussion, we will assume that L = I, but we comment be-
low on how more general regularization matrices L can be handled. The value
of µ determines how sensitive the solution xµ of (4) is to the error e in b and
how close xµ is to x̂. Throughout this paper ‖ · ‖ denotes the Euclidean vector
norm.

This paper discusses several numerical aspects of solving large-scale Tikhonov
regularization problems (4). When the matrix A ∈ Rn×n is nonsymmetric, the
Arnoldi process is a popular approach to reduce the matrix A in (4) to a matrix
of small size; see, e.g., [6, 11, 12, 22]. This is described in Section 2. The use of
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the Arnoldi process is particularly attractive when matrix-vector products with
the matrix A are fairly inexpensive to evaluate, but matrix-vector products with
the transpose of A, denoted by AT , are not. This situation may arise when the
matrix A is not explicitly stored such as when solving large nonlinear systems
of equations by Krylov subspace methods; see, e.g., [8] for a discussion. It
also may be difficult to evaluate matrix-vector products with AT when matrix-
vector products with A are evaluated by a multipole method; see, e.g., [13].
Moreover, iterative methods that are based on the Arnoldi process may require
fewer matrix-vector product evaluations than iterative methods that demand
matrix-vector product evaluations with both A and AT . An illustration of the
latter is provided in [5], where the restoration of large images is described.

When the matrix A ∈ Rn×n is symmetric, the Arnoldi process can be re-
placed by the symmetric Lanczos process, which also is discussed in Section 2.
Application of ` steps of the Lanczos process requires less arithmetic work than
application of the same number of steps of the Arnoldi process. However, we
illustrate in Section 5 that reduction of A by ` steps of the Arnoldi process may
result in computed approximations of the solution of (4) of significantly higher
quality than when A is reduced by ` steps of the Lanczos process. This leads to
the observation that when solving large-scale linear discrete ill-posed problems
with a symmetric matrix, the matrix should be reduced to a smaller matrix by
the Arnoldi process.

The regularization parameter µ > 0 and the number of steps ` of the Arnoldi
process can be determined with the aid of the discrepancy principle, which is
reviewed in Section 2. Specifically, the number of steps is chosen large enough
so that the discrepancy principle can be satisfied. We find that the quality
of the computed solution may be improved by letting the number of steps be
slightly larger than the smallest number of steps needed to satisfy the discrep-
ancy principle. Increasing the number of steps further typically does not result
in additional improvement of the quality of the computed solution. Details are
provided in Section 2. In Section 3 we describe a method for determining the
regularization parameter proposed by Neubauer [20], who considers the situa-
tion when both the matrix A and the vector b are contaminated by error; we
are concerned with the special case when only b is error-contaminated. We find
the discrepancy principle to determine a regularization parameter-value that
gives an approximation of x̂ of higher quality than when applying Neubauer’s
method.

For some linear discrete ill-posed problems (1), the solution subspace ob-
tained by carrying out ` steps of the Arnoldi process with ` determined as
described above does not furnish a solution subspace that is well suited for
approximating the desired solution x̂ accurately. In this situation, it may be
beneficial to augment the solution subspace determined by the Arnoldi process
by a user-chosen subspace that allows the representation of important features of
x̂. The flexible Arnoldi process introduced by Saad [25] provides an approach for
choosing a fairly arbitrary solution subspace. This process is used in the flexible
GMRES method, whose application to the solution of large-scale linear discrete
ill-posed problems is described in [19]. A drawback of the approach discussed
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in [19] is that the determination of a solution subspace of dimension ` requires
storage of about 2` vectors in Rn, while the generation of an `-dimensional
solution subspace with the standard Arnoldi process only demands storage of
about ` vectors in Rn. Section 4 describes how a few user-chosen vectors can
be included in a standard Krylov subspace with modest storage requirement.
A few computed examples are presented in Section 5, and concluding remarks
with comments on an extension can be found in Section 6.

The computed examples illustrate applications of the discrepancy principle
and Neubauer’s method for determining the regularization parameter. These
methods require a bound for ‖e‖ to be explicitly known. Findings of this paper
also apply when other techniques for determining a suitable value of the regular-
ization parameter are used that do not require a bound for ‖e‖ to be available.
These techniques include the L-curve criterion, generalized cross validation, and
cross validation; see [4, 12, 15, 17, 18, 23] for discussions of such methods.

2. The discrepancy principle and Krylov subspace methods

Assume that a fairly accurate bound δ for the norm of the error e in b is
known, i.e.,

‖e‖ ≤ δ, (5)

and note that for any µ > 0 the solution of (4) is given by

xµ = (ATA+
1

µ
I)−1AT b. (6)

The discrepancy principle prescribes that µ > 0 be determined so that

‖Axµ − b‖ = ηδ, (7)

where η ≥ 1 is a user-chosen constant that is independent of δ. It is shown by
Engl et al. [10] in a Hilbert space setting that when (3) is consistent, η > 1,
and µ is determined by (7), the Tikhonov solution xµ converges to x̂ as δ ↘ 0.

The solution of (7) and the computation of the Tikhonov solution (6) is
expensive or unfeasible when A is a large matrix. We therefore reduce A to
a matrix H`+1,` ∈ R(`+1)×` of small size by applying ` steps of the Arnoldi
process to A with initial vector v1 = b/‖b‖. This is summarized in Algorithm
1. Generically, this yields the Arnoldi decomposition

AV` = V`+1H`+1,`, (8)

where the matrix V`+1 = [v1,v2, . . . ,v`+1] ∈ Rn×(`+1) has orthonormal columns,
V` consisting of the first ` columns of V`+1, and H`+1,` is of upper Hessenberg
form; i.e., all entries below the subdiagonal vanish. The range of V` is the Krylov
subspace

K`(A, b) = span{b, Ab, . . . , A`−1b}, (9)

which will be the solution subspace; see, e.g., Saad [26] for further details on
the Arnoldi process.
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Algorithm 1 (The Arnoldi Process).
Input: matrix A, vector b 6= 0, number of steps `;

1. Initialize: v1 = b/‖b‖
2. for j = 1, . . . , ` do

3. w = Avj
4. for i = 1, . . . , j do

5. hi,j = vTi w;

6. w = w − hi,jvi;
7. end for

8. hj+1,j = ‖w‖;
9. if hj+1,j = 0 then stop

10. vj+1 = w/hj+1,j;

11. end for

Output: The matrices V`, V`+1, and H`+1,` in (8).

The Arnoldi process breaks down at step j if hj+1,j = 0. Then the compu-
tations simplify. Since this event is very rare, we will not dwell on the details.

The Arnoldi-Tikhonov (AT) method replaces the minimization problem (4)
by

min
x∈K`(A,b)

{‖Ax− b‖2 +
1

µ
‖x‖2} (10)

for a suitable value of `. Substituting

x` = V`y`

into (10) and using the decomposition (8) yields the reduced minimization prob-
lem

min
y∈R`
{‖H`+1,`y − e1‖b‖‖2 +

1

µ
‖y‖2}, (11)

which has a unique solution yµ,` for any µ > 0. Then

xµ,` = V`yµ,`

solves (10), and furnishes an approximate solution of (4).
The discrepancy principle prescribes that 0 < µ <∞ be determined so that

yµ,` satisfies
‖H`+1,`yµ,` − e1‖b‖‖ = ηδ. (12)

This requires that
min
y∈R`

‖H`+1,`y − e1‖b‖‖ < ηδ. (13)

We will comment on this inequality below.
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Proposition 2.1. Assume that `+ 1 steps of the Arnoldi process applied to A
with initial vector b can be carried out. Then

min
y∈R`+1

‖H`+2,`+1y − e1‖b‖‖ ≤ min
y∈R`

‖H`+1,`y − e1‖b‖‖. (14)

Assume that HT
`+1,`e1 6= 0. Then the function

φ`(µ) = ‖H`+1,`yµ,` − e1‖b‖‖2 (15)

is strictly decreasing and strictly convex for µ ≥ 0 with φ`(0) = ‖b‖2.

Proof: The inequality (14) follows from fact that the minimization problem on
the right-hand side is obtained by setting the last entry of the vector y in the
minimization problem on the left-hand side to zero. Typically, the inequality is
strict.

The stated properties of the function (15) can be shown by using the fact
that the solution yµ,` of (11) can be written as

yµ,` = (HT
`+1,`H`+1,` + µ−1I)−1HT

`+1,`e1‖b‖. (16)

Substituting this expression into (15) gives

φ`(µ) = ‖b‖2‖(H`+1,`(H
T
`+1,`H`+1,` + µ−1I)−1HT

`+1,` − I)e1‖2. (17)

Consider the singular value decomposition (SVD)

H`+1,` = U`+1Σ`+1,`W
T
` , (18)

where the matrices U`+1 ∈ R(`+1)×(`+1) and W` ∈ R`×` are orthogonal, and the
matrix

Σ`+1,` = diag[σ1, σ2, . . . , σ`] ∈ R(`+1)×`

is diagonal with nonnegative diagonal entries σj (the singular values) in decreas-
ing order. Substituting the SVD into (17) gives

φ`(µ) = ‖b‖2eT1 U`+1diag[(µσ2
1 + 1)−2, (µσ2

2 + 1)−2, . . . , (µσ2
` + 1)−2, 1]UT`+1e1,

(19)
which shows that φ′`(µ) ≤ 0 and φ′′` (µ) ≥ 0. Equality can be achieved only if
the vector (16) is independent of µ. This can only happen if HT

`+1,`e1 = 0.
It follows that φ(µ) is strictly decreasing and strictly convex for µ > 0. The
expression (19) shows that φ`(µ) can be continuously extended to µ = 0. 2

Proposition 2.2. Assume the conditions of Proposition 2.1 hold, and let all
subdiagonal entries hj+1,j, 1 ≤ j ≤ `, of the upper Hessenberg matrix H`+1,` be
positive. Then

lim
µ→∞

φ`(µ) = ‖b‖2‖eT`+1U
T
`+1e1‖2, (20)

where U`+1 is the left orthogonal matrix in the SVD of H`+1,`; see (18).
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Proof: When applying ` steps of the Arnoldi process to the matrix A with
initial vector b, generically, all subdiagonal entries of the upper Hessenberg
matrix H`+1,` ∈ R(`+1)×` in the Arnoldi decomposition (8) are positive. We
will comment on the rare nongeneric situation below. Therefore, generically, the
columns of the matrix H`+1,` are linearly independent and then all the singular
values σ1, σ2, . . . , σ` of H`+1,` are positive. The limit (20) is a consequence of
(19).

When applying ` steps of the Arnoldi process to the matrix A with initial
vector b without breakdown, the first ` subdiagonal entries of the upper Hes-
senberg matrix H`+1,` are positive, but the last subdiagonal entry, h`+1,` may
vanish. Then the first `− 1 columns of H`+1,` are linearly independent, and it
follows that the first `− 1 singular values of H`+1,` are nonvanishing. We then
obtain the bound

lim
µ→∞

φ`(µ) ≤ ‖b‖2‖(eT`+1 + eT` )UT`+1e1‖2.

2

We turn to the inequality (13). Assume that (12) holds for a finite µ` =
µ > 0. Since the function (15) is strictly decreasing, we have φ`(2µ`) < φ`(µ`).
Hence, there is a vector y = y2µ`,`

such that φ`(2µ`) < φ`(µ`). Consequently,
inequality (13) holds.

For ease of discussion, we assume the generic case to hold in Proposition 2.2.
Equation (12) can be expressed as

φ`(µ) = η2δ2, (21)

and we assume that
η2δ2 > ‖b‖2‖eT`+1U

T
`+1e1‖2.

Then there is a finite smallest index ` such that equation (21) can be satisfied.
We denote this index by `dis. For any ` ≥ `dis, we denote the solution of (21)
by µ`. When η2δ2/‖b‖2 is not very small, the value of `dis typically is not large.
This is illustrated in Section 5. The computed examples of Section 5, as well
as many other computed examples, indicate that it often is beneficial to carry
out slightly more than `dis steps of Algorithm 1. We will see that carrying out
` = `dis + 2 steps often is beneficial.

An efficient way to determine `dis is to solve

min
y∈R`

‖H`+1,`y − e1‖b‖‖, (22)

say by QR factorization of H`+1,` for increasing values of `, by updating the
available QR factorization of H`,`−1 (see, e.g., [9] for details), and selecting `dis
as the smallest value of ` such that the solution of (22) satisfies (13).

We determine µ` with a zero-finder, such as Newton’s method. This method
requires that values of φ` and its first derivative φ′`(µ) with respect to µ be

computed at approximations µ
(j)
` of µ` for j = 0, 1, 2, . . . . Having computed

the SVD of H`+1,`, see (18), the expression (19) can be evaluated in only O(`)
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arithmetic floating point operations (flops) for each value of µ. The derivative
φ′`(µ) has a representation analogous to (19).

Having computed µ`, we determine the associated vector (16) by solving the
least-squares problem

min
y∈R`+1

∥∥∥∥[ H`+1,`

µ
−1/2
` I

]
y −

[
e1‖b‖

0

]∥∥∥∥ , (23)

because this avoids solving the system of equations

(HT
`+1,`H`+1,` + µ−1` I)y = e1‖b‖. (24)

This can be important when 1/µ` is tiny, because the matrix H`+1,` may be
ill-conditioned. If the SVD of H`+1,` is available, then it can be substituted into
(23).

Our reason for using the factor 1/µ instead of µ in (4) and (11) is that
this makes φ`(µ) decreasing and convex for µ > 0. This implies that Newton’s
method converges to the solution µ` monotonically and quadratically when the

initial approximation µ
(0)
` of µ` is chosen smaller than or equal to µ`. In the

computed examples of Section 5, we let µ
(0)
` = 0.

We remark that other zero-finders than Newton’s method also can be used,
see, e.g., [3, 24], but they have to be safe-guarded in order to secure convergence.
Their application therefore is more complicated. This also holds if Newton’s
method is applied to determine the regularization parameter for (11) with µ
replaced by 1/µ.

When the matrix A is symmetric, the decomposition (8) simplifies to the
Lanczos decomposition

AV` = V`+1T`+1,`, (25)

where V`+1 = [v1,v2, . . . ,v`+1] ∈ Rn×(`+1) has orthonormal columns with v1 =
b/‖b‖, the matrix V` ∈ Rn×` consists of the first ` columns of V`+1, and

T`+1,` =



α1 β2
β2 α2 β3

β3 α3
. . .

. . .
. . . β`−1
β`−1 α`−1 β`

β` α`
β`+1


∈ R(`+1)×`

is a tridiagonal matrix with a leading symmetric `× ` submatrix. The Arnoldi
process simplifies to the Lanczos process, which is described by Algorithm 2.
Thus, ` steps of the Lanczos process determine the diagonal and subdiagonal
elements of T`+1,`. Generically, the subdiagonal entries βj are positive, and then
the decomposition (25) with the stated properties exists.

Algorithm 2 (The Symmetric Lanczos Process).
Input: matrix A, vector b 6= 0, number of steps `;
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1. Initialize: v1 = b/‖b‖, β1 = 0, v0 = 0;

2. for j = 1, . . . , ` do

3. w = Avj − βjvj−1;

4. αj = vTj w;

5. w = w − αjvj;
6. βj+1 = ‖w‖;
7. if βj+1 = 0 then stop

8. vj+1 = w/βj+1;

9. end

Output: The matrices V`, V`+1, and T`+1,` in (25).

Generally, the Lanczos process is used instead of the Arnoldi process to
reduce a large symmetric matrix A to a small matrix, because of its lower
computational complexity: ` steps of the Lanczos process require about 4`n
flops, while ` steps of the Arnoldi process demand about 2`2n flops, in addition
to the arithmetic work necessary to evaluate ` matrix-vector products with A.
However, we will see in Section 5 that reduction of a symmetric matrix A to
a small matrix by the Arnoldi process gives approximate solutions of higher
quality than when A is reduced by the Lanczos process. This depends on loss
of orthogonality of the vectors vj determined by the Lanczos process in finite-
precision arithmetic; the Arnoldi process is equivalent to the Lanczos process
with reorthogonalization. Algorithm 3 summarizes the computations of the
Arnoldi-Tikhonov method.

Algorithm 3 (The Arnoldi-Tikhonov (AT) algorithm).
Input: matrix A, vector b 6= 0, parameters η ≥ 1, δ > 0, initial number of
steps `init, concluding number of steps `end;

1. Let ` = `init;

2. Compute V`+1 and H`+1,` by Algorithm 1;

3. Solve the minimization problem

min
y∈R`

‖H`+1,`y − e1‖b‖‖;

4. if ‖H`+1,`y` − e1‖b‖‖ ≥ ηδ; then
5. ` = `+ 1; goto step 2;

6. end if

7. `dis = `;

8. Carry out `end additional steps with Algorithm 1, using the available ma-
trices V`+1 and H`+1,` as input.

9. Let i = `+ `end. We have computed the matrices Vi+1 and Hi+1,i;

10. Determine the regularization parameter µi by solving equation (21) with `
replaced by i;
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11. Solve the minimization problem

min
y∈Ri
{‖Hi+1,iy − e1‖b‖‖2 +

1

µi
‖y‖2};

Output: Approximate solution xµi,i, `dis, i.

We conclude this section with a comment on the situation when the regular-
ization matrix L is different from the identity. Then the minimization problem
(10) is replaced by

min
x∈K`(A,b)

{‖Ax− b‖2 +
1

µ
‖Lx‖2},

which simplifies to

min
y∈R`
{‖H`+1,`y − e1‖b‖‖2 +

1

µ
‖R`y‖2}, (26)

where R` ∈ R`×` is the upper triangular matrix in the QR factorization of
the matrix LV`. The reduced problem (26) may be solved by computing the
generalized singular value decomposition of the matrix pair {H`+1,`, R`}; more
details are provided in [16]. The present paper focuses on the numerical aspects
of the Arnoldi-Tikhonov method, e.g., on the loss of orthogonality of the columns
of the computed matrix V`. It therefore suffices to consider the case when L = I.

3. Neubauer’s method for determining the regularization parameter

Neubauer [20] discusses Tikhonov regularization of operator equations in
infinite-dimensional Hilbert space. After discretization, a finite-dimensional
equation of the form (1) is obtained. Neubauer [20] allows errors in both the
matrix A and the right-hand side b, and derives a cubic equation for the reg-
ularization parameter α = 1/µ. We consider the special case of this equation
when the matrix A is error-free. Let the matrices V`+1 and H`+1,` be given by
(8). Introduce the low-rank approximation

A(`) = V`+1H`+1,`V
T
`

of A, and let R(A(`)) denote the range of A(`). Then the orthogonal projector
R` : Rn → P

R(A(`))
is given by

R` = V`+1U`+1Iq,`+1U
T
`+1V

T
`+1,

where Iq,`+1 ∈ R(`+1)×(`+1) is defined by

Iq,`+1 =

[
Iq 0
0 0

]
∈ R(`+1)×(`+1)
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with Iq being the q×q identity matrix and q ≥ 0 is the rank of the matrix H`+1,`,
and U`+1 is the left orthogonal matrix in the SVD (18) of H`+1,`. Neubauer’s
cubic equation for the regularization parameter α = 1/µ > 0 for the reduced
problem (11) when A is error-free reads

α3bTV`+1U`+1Iq,`+1

(
Σ`+1,`Σ

T
`+1,` + αI`+1

)−3
Iq,`+1U

T
`+1V

T
`+1b = δ2, (27)

where Σ`+1,` is the diagonal matrix in the SVD of H`+1,` (18), and δ is a bound
for the error in b (cf. (5)); see [22] for further details about the situation when
A is reduced by the Arnoldi process and is allowed to be contaminated by error.
Neubauer [20, Proposition 3.1] shows that under suitable conditions, there is a
unique α > 0 that satisfies equation (27) and that the computed approximate
solution of (4) with L = I converges to the desired solution x̂ of (1) as the
errors in A and b converge to zero. We are interested in comparing Neubauer’s
zero-finder to Newton’s method in the situation when only the vector b is con-
taminated by error and investigating whether the former yields values of the
regularization parameter that result in approximate solution of (1) that approx-
imate the desired solution x̂ more accurately. We illustrate the performance of
these zero-finders in Section 5. Applications of Neubauer’s zero-finder to linear
ill-posed problems that are reduced by the Arnoldi method and allow an error
in the matrix A have recently been described in [22].

4. The flexible Arnoldi-Tikhonov method

For some matrices A and vectors b, the Krylov subspace (9) determined as
described in Section 2 might not contain vectors that represent known features
of the desired solution x̂. For instance, it may be known that x̂ is a small per-
turbation of a vector with all entries equal, or a small perturbation of a vector,
whose entries grow linearly as a function of their index. However, vectors in the
generated Krylov subspace (9), which typically is of fairly small dimension `,
might not be able to represent such solutions accurately. In this situation one
could try to increase the dimension ` until the Krylov subspace (9) contains vec-
tors with desired properties, however, it often is cheaper to explicitly augment
the generated Krylov subspace (9) by vectors that allow accurate approximation
of x̂.

For definiteness, assume that we would like the vectors

span{[1, 1, . . . , 1]T , [1, 2, . . . , n]T } (28)

to live in the solution subspace. The Arnoldi-Tikhonov method (Algorithm 3)
with the parameter `end = 0 determines the Arnoldi decomposition

AV`dis = V`dis+1H`dis+1,`dis . (29)

We would like to enlarge the solution subspace R(V`dis) by the vectors (28).
This can be done by using the recursion formulas of the flexible Arnoldi method
described by Saad [25]. The flexible GMRES method based on the flexible
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Arnoldi method has previously been applied to the solution of linear discrete
ill-posed problems in [19]. The novelty of the approach of this paper is to
append the desired vectors (28) to an available Krylov subspace basis, instead
of starting the construction of a solution subspace basis with the vectors (28).
The approach used in [19] requires about twice the storage as the standard
Arnoldi process to generate a solution subspace basis of the same dimension,
while the approach of the present paper requires storage of only about `dis + 2˜̀

vectors in Rn to generate a solution subspace basis of dimension `dis + ˜̀, where
˜̀ is the number of non-Krylov vectors in the solution subspace. Typically, ˜̀ is
chosen quite small.

We outline how to enlarge the solution subspace R(Vk) by including an
arbitrary vector u ∈ Rn that is not already in the subspace. Then the vector

ṽk+1 =
(I − VkV Tk )u

‖(I − VkV Tk )u‖

is orthogonal to the columns of the matrix Vk = [v1,v2, . . . ,vk], and the columns
of the matrix Ṽk+1 = [Vk, ṽk+1] form an orthonormal basis for the enlarged solu-
tion subspace. Let w := Aṽk+1, orthogonalize w against the columns of Vk, and
normalize. The orthogonalization and normalization coefficients form column
`dis+1 of the matrix H`dis+2,`dis+1 ∈ R`dis+2,`dis+1, whose leading (`dis+1)×`dis
principal submatrix is the matrix H`dis+1,`dis in (29). Including ˜̀− 1 additional
vectors in the solution subspace gives the flexible Arnoldi decomposition

AṼ`dis+˜̀ = V`dis+˜̀+1H`dis+˜̀+1,`dis+˜̀. (30)

Details about the computation of this decomposition are described in Algorithm
4. The approximate solution x`dis+˜̀ of (1) can be expressed as

x`dis+˜̀ = Ṽ`dis+˜̀y`dis+˜̀,

where y`dis+˜̀ ∈ R`dis+˜̀
solves the minimization problem

min
y∈R`dis+

˜̀
{‖H`dis+˜̀+1,`dis+˜̀y − e1‖b‖‖2 +

1

µ`dis+˜̀
‖y‖2}.

Note that the first `dis columns of the matrices V`dis+˜̀+1 and Ṽ`dis+˜̀ are the
same and, therefore, can be stored in the same location.

Algorithm 4 (The Flexible Arnoldi Process).
Input: matrix A, vector b 6= 0, linearly independent vectors u1,u2, . . . ,u˜̀ to
be included in the solution subspace;

1. Compute the decomposition (29) with V`dis = [v1,v2, . . . ,v`dis ], V`dis+1 =
[v1,v2, . . . ,v`dis+1], and H`dis+1,`dis = [hij ] by Algorithm 3 with `end = 0.
The algorithm determines `dis.

2. Let Ṽ`dis
= V`dis

to simplify notation. Actual storage space occupied by
Ṽ`dis

and V`dis
may be the same;
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3. for k = `dis, . . . , `dis + ˜̀− 1 do

4. ṽk+1 =
(I−ṼkṼ Tk )uk+1−`dis
‖(I−ṼkṼ Tk )uk+1−`dis‖

;

5. Ṽk+1 = [Ṽk, ṽk+1];

6. w = Aṽk+1;

7. for j = 1, . . . , k + 1 do

8. hj,k+1 = vTj w;

9. w = w − hj,k+1vj;

10. end for

11. hk+2,k+1 = ‖w‖;
12. vk+2 = w/hk+2,k+1;

13. Vk+2 = [Vk+1,vk+2];

14. end for

15. Determine the regularization parameter µ`dis+˜̀ by solving an analogue of
(21) based on the decomposition (30);

16. Solve the minimization problem

min
y∈R`dis+

˜̀
{‖H`dis+˜̀+1,`dis+˜̀y − e1‖b‖‖2 +

1

µ`dis+˜̀
‖y‖2}.

Denote the solution by y`dis+˜̀;

17. x`dis+˜̀ = Ṽ`dis+˜̀y`dis+˜̀;

Output: `dis, the flexible Arnoldi decomposition (30), and the approximate
solution x`dis+˜̀ of (1).

For ease of description of Algorithm 4, we assume that no breakdown occurs,
i.e., that the vectors uj are chosen so that (I − ṼkṼ Tk )uk+1−`dis 6= 0 in step 4
and hk+1,k+1 6= 0 in step 12 of the algorithm. These restrictions can be worked
around. They have not caused difficulties in the computed examples reported in
the following section. The algorithm requires storage of about `dis + 2˜̀ vectors
in Rn.

5. Computed examples

This section presents a few computed examples that illustrate the perfor-
mance of the Arnoldi-Tikhonov (AT) method implemented by Algorithm 3 and
of the flexible Arnoldi-Tikhonov (FAT) method implemented by Algorithm 4.
The number of steps of these algorithms, as well as the regularization parame-
ter, is determined by the discrepancy principle. We also will show that the AT
method determines approximate solutions of higher quality than the Lanczos-
Tikhonov (LT) method for the approximate solution of linear systems of equa-
tions (1) with a symmetric matrix. The LT method is obtained by replacing
Algorithm 1 in Algorithm 3 by Algorithm 2. The regularization parameter µ is
determined by Newton’s method as described in Section 2, unless it is explic-
itly stated that the parameter is the solution of the cubic equation (27). The
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matrices in all examples are of ill-determined rank. The error vector e in the
right-hand side b in (1) simulates white Gaussian noise; thus, the entries of e
are normally distributed pseudorandom numbers with mean zero and they are
scaled to achieve a specified norm δ; cf. (5). We set η = 1 in all examples and
let `init = 3 in Algorithm 3. The desired solution x̂ of the error-free system (3)
is known for all examples.

Let x`,µ` denote the computed solution determined by one of the Krylov-
Tikhonov methods. We measure the quality of computed solution by the relative
error

‖x`,µ` − x̂‖
‖x̂‖

.

The parameter `dis denotes the number of steps of the Arnoldi process required
to satisfy the discrepancy principle. All computations are carried out using
MATLAB with about 15 significant decimal digits.

Example 5.1. Regard the Fredholm integral equation of the first kind∫ 1

0

κ(s, t)x(t)dt = exp(s) + (1− e)s− 1, 0 ≤ s ≤ 1, (31)

with

κ(s, t) =

{
s(t− 1), s < t,

t(s− 1), s ≥ t.

We discretize the integral equation by a Galerkin method with orthonormal box
functions as test and trial functions using the MATLAB function deriv2 from
[14]. This gives the symmetric matrix A ∈ R1000×1000. Its singular values decay
to zero fairly slowly with increasing index number. Nevertheless, the matrix
A is numerically singular. The function deriv2 also produces a scaled discrete
approximation x̂ ∈ R1000 of the solution x(t) = exp(t) of (31) and the error-free

right-hand side vector b̂ in (3). An error vector e of norm δ is added to the

vector b̂ to give the error-contaminated right-hand side vector b; cf. (2).
Table 1 summarizes the computed results determined with Algorithm 3 when

`end = 0 and `end = 2. We refer to this method as ATN when the regularization
parameter is determined by Newton’s method and by ATC when the regulariza-
tion parameter is the solution of the cubic equation (27). The table illustrates
that it is advantageous to carry out two more steps of the Arnoldi process af-
ter the discrepancy principle can be satisfied. Moreover, the table shows the
relative error of the approximate solutions, when the regularization parameter
is computed by Newton’s method, to almost always be smaller than when the
cubic zero finder is used to determine the regularization parameter; the error
achieved with Newton’s method is always smaller when `end = 2. This suggests
that determining the regularization parameter by Newton’s method is beneficial.
We found in this and other examples the cubic zero finder to determine values
of the regularization parameter α that are larger than the values 1/µ found
by Newton’s method; thus the cubic zero-finder gives approximate solutions of
(1) that are more regularized than the approximate solutions determined with
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Newton’s method. Increasing `end to 3 and 4 does not improve the quality of
the computed solution; further `end = 2 gives solutions of higher quality than
`end = 1.

‖x`dis,µ`dis − x̂‖ ‖x`dis+2,µ`dis+2
− x̂‖

δ Method `dis ‖x̂‖ ‖x̂‖
10−2 ATN 3 7.4203 · 10−1 3.2058 · 10−1

ATC 3 4.9288 · 10−1 4.9037 · 10−1

10−4 ATN 9 2.2788 · 10−1 1.8154 · 10−1

ATC 9 2.0121 · 10−1 2.0032 · 10−1

10−6 ATN 22 7.1578 · 10−2 7.0548 · 10−2

ATC 22 7.7325 · 10−2 7.7263 · 10−2

Table 1: Example 5.1: Results for different values of δ and `end. ATN stands for the Arnoldi-
Tikhonov method with the regularization parameter determined by Newton’s method, ATC
denotes the Arnoldi-Tikhonov method with the regularization parameter determined by solv-
ing the cubic equation (27).

Results determined by Algorithm 3 with the Arnoldi process replaced by
the Lanczos process are displayed in Table 2. This replacement is possible
since the matrix A is symmetric. We refer to the method so defined as the
LTN method. A comparison of Tables 1 and 2 shows the ATN method to
furnish approximate solutions of higher quality than the LTN method. We
also examined whether the Arnoldi process equipped with reorthogonalization
gives computed solutions of higher quality than the Arnoldi process without
reorthogonalization (as implemented by Algorithm 1), and found this not to be
the case.

‖x`dis,µ`dis − x̂‖ ‖x`dis+2,µ`dis+2
− x̂‖

δ Method `dis ‖x̂‖ ‖x̂‖
10−2 LTN 3 5.7383 · 10−1 5.6829 · 10−1

10−4 LTN 3 3.0165 · 10−1 2.8399 · 10−1

10−6 LTN 3 3.0032 · 10−1 2.7633 · 10−1

Table 2: Example 5.1: Results for Algorithm 3 with the Arnoldi process replaced by the
Lanczos process. The regularization parameter is determined by Newton’s method.

The solution of (31) is a monotonically increasing function. It therefore
may be beneficial to include a basis for the subspace (28) into the solution
subspace, because this subspace allows the representation of linearly increasing
functions. Inclusion of the subspace (28) into the solution subspace means that
the Krylov subspace part of the solution subspace only has to approximate the
difference between the solution of (31) and a linear function. Table 3 illustrates
that inclusion of the subspace (28) into the solution subspace, indeed, increases
the quality of the computed solution. Specifically, comparing column four of
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Table 1 with column four of Table 3 shows that enlarging the solution subspace
K`dis

(A, b) with the subspace (28) increases the quality of the computed solution
significantly.

The dimension of the solution subspace for Table 3 is `dis + 2, while the
dimension of the solution subspace K`dis(A, b) only is `dis. It is therefore also
interesting to compare the errors of Table 3 to the error reported in the last
column of Table 1. The errors in Table 3 are seen to be smaller than the errors
in the last column of Table 1. We conclude that enlarging the solution subspace
K`dis

(A, b) by the subspace (28) of dimension two gives an approximate solution
of higher quality than when using the solution Krylov subspace K`dis+2(A, b).
We conclude from this that using an auxiliary subspace may give approximate
solutions of higher quality than increasing the dimension of the Krylov subspace
by the dimension of the auxiliary subspace.

‖x`dis+˜̀,µ`dis+˜̀
− x̂‖

δ Method `dis ‖x̂‖
10−2 FAT 3 3.0625 · 10−1

10−4 FAT 9 1.0325 · 10−1

10−6 FAT 22 3.9137 · 10−2

Table 3: Example 5.1: Results for different values of δ for the FAT method with ˜̀= 2 and the
auxiliary subspace (28). The regularization parameter is determined by Newton’s method.

Example 5.2. Consider the Fredholm integral equation of the first kind∫ π/2

−π/2
κ(τ, σ)x(σ)dσ = b(τ), −π/2 ≤ τ ≤ π/2, (32)

with

κ(σ, τ) = (cos(σ) + cos(τ))

(
sin(ξ)

ξ

)2

, ξ = π(sin(σ) + sin(τ)).

The right-hand side function b(τ) is chosen so that the solution x(σ) is the sum
of two Gaussian functions. This integral equation is discussed by Shaw [27]. We
discretize it with the code shaw from [14], using a quadrature rule with 1000
nodes. This yields the symmetric matrix A ∈ R1000×1000 and the error-free
right-hand side vector b̂. The matrix is numerically singular; its singular values
decay to zero quite rapidly with increasing index number. The code shaw also
produces a scaled discrete approximation x̂ ∈ R1000 of the solution x(σ) of (32).
A noise-contaminated vector b is generated similarly as in Example 5.1.

The computed results are summarized in Table 4, which is analogous to
Table 1. The table illustrates the advantage of adding two steps of the Arnoldi
process after the discrepancy can be satisfied. The table shows that typically
the computed solution is of higher quality when the regularization parameter is
determined by Newton’s method, than by solving the cubic equation (27).
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‖x`dis,µ`dis − x̂‖ ‖x`dis+2,µ`dis+2
− x̂‖

δ Method `dis ‖x̂‖ ‖x̂‖
10−2 ATN 9 6.4457 · 10−2 3.3985 · 10−2

ATC 9 5.3524 · 10−2 5.3501 · 10−2

10−4 ATN 10 2.2449 · 10−2 2.0014 · 10−2

ATC 10 3.2235 · 10−2 3.1980 · 10−2

10−6 ATN 12 1.2523 · 10−2 1.1059 · 10−2

ATC 12 1.6199 · 10−2 1.6118 · 10−2

Table 4: Example 5.2: Results for different values of δ and `end. ATN stands for the Arnoldi-
Tikhonov method with the regularization parameter determined by Newton’s method, ATC
denotes the Arnoldi-Tikhonov method with the regularization parameter determined by solv-
ing the cubic equation (27).

Table 5 complements Table 4 and shows the quality of the computed solu-
tions when the Arnoldi process (Algorithm 1) is replaced by the Lanczos process
(Algorithm 2) in Algorithm 3. A comparison of Tables 4 and 5 shows the Arnoldi
process to give computed solutions of higher quality than the Lanczos process.
Numerical experiments with an Arnoldi process that applies reorthogonalization
did not increase the quality of the computed solutions.

‖x`dis,µ`dis − x̂‖ ‖x`dis+2,µ`dis+2
− x̂‖

δ Method `dis ‖x̂‖ ‖x̂‖
10−2 LTN 3 8.1272 · 10−1 7.9103 · 10−1

10−4 LTN 3 8.1335 · 10−1 7.9156 · 10−1

10−6 LTN 3 8.1336 · 10−1 7.9157 · 10−1

Table 5: Example 5.2: Results for Algorithm 3 with the Arnoldi process replaced by the
Lanczos process. The regularization parameter is determined by Newton’s method.

Example 5.3. We turn to the Fredholm integral equation of the first kind
discussed by Baart [1],∫ π

2

0

κ(s, t)x(t)dt = g(s), 0 ≤ s ≤ π, (33)

where κ(s, t) = exp(s cos(t)) and g(s) = 2 sinh(s)/s. The solution is given
by x(t) = sin(t). We discretize by a Galerkin method with 1000 orthonormal
box functions as test and trial functions to obtain a nonsymmetric matrix A ∈
R1000×1000. Its singular values decrease to zero very quickly with increasing
index number. The discretization is computed with the MATLAB function
baart from [14]. The vector x̂ ∈ R1000 is a discretization of the solution x(t) of
(33).

Table 6 summarizes the calculated results. The table is analogous to Table 1.
The ATN approach can be seen to yield approximate solutions of higher quality
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than the ATC method. We also note that using `end = 2 improves the quality
of the solution compared with `end = 0. We found that reorthogonalization in
the Arnoldi process does not improve the quality of the computed solution.

‖x`dis,µ`dis − x̂‖ ‖x`dis+2,µ`dis+2
− x̂‖

δ Method `dis ‖x̂‖ ‖x̂‖
10−2 ATN 3 1.0676 · 10−1 1.0293 · 10−1

ATC 3 1.8813 · 10−1 2.2045 · 10−1

10−5 ATN 5 4.5031 · 10−2 3.3954 · 10−2

ATC 5 8.3205 · 10−2 6.7812 · 10−2

Table 6: Example 5.3: Results for different values of δ and `end. ATN stands for the Arnoldi-
Tikhonov method with the regularization parameter determined by Newton’s method, ATC
denotes the Arnoldi-Tikhonov method with the regularization parameter determined by solv-
ing the cubic equation (27).

Example 5.4. We would like to compute an approximate solution of the
integral equation ∫ 6

−6
κ(s, t)x(t)dt = g(t), −6 ≤ t ≤ 6, (34)

with kernel κ(s, t) = f(s− t), where

f(t) =

{
1 + cos(π3 t), | t |< 3,

0, otherwise.

and

g(s) = (6− | s |)(1 +
1

2
cos(

π

3
s)) +

9

2π
sin(

π

3
| s |).

Integral equations of this form are discussed by Phillips [21]. We discretize
the integral equation by a Nyström method based on a composite trapezoidal
quadrature rule with 300 equidistant nodes. This gives the nonsymmetric ma-
trix A ∈ R300×300, whose singular values converge to zero fairly slowly with
increasing index number. Nevertheless, the matrix is numerically singular. The
solution of (34) is x(t) = f(t). Discretization of x(s) at equidistant nodes gives

the vector x̂ ∈ R300. We let b̂ = Ax̂ and add an error vector e with normally
distributed random entries to obtain the contaminated right-hand side b in (1).

Table 7 summarizes the calculated results and is analogous to Table 6. The
ATN method can be seen to give approximate solutions of higher quality than
the ATC approach. We also note that using `end = 2 improves the quality of
the solution compared with `end = 0. We found that reorthogonalization in the
Arnoldi process does not improve the quality of the computed solution.

6. Conclusion and extension

The performance of the Arnoldi-Tikhonov is investigated. We find that it is
generally beneficial to carry out a few more steps of the Arnoldi process than
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‖x`dis,µ`dis − x̂‖ ‖x`dis+2,µ`dis+2
− x̂‖

δ Method `dis ‖x̂‖ ‖x̂‖
10−2 ATN 12 4.3659 · 10−3 4.3069 · 10−3

ATC 12 1.1580 · 10−2 1.1535 · 10−2

10−4 ATN 20 8.2988 · 10−4 6.5825 · 10−4

ATC 20 1.4757 · 10−3 1.4455 · 10−3

10−6 ATN 38 1.0507 · 10−4 9.8722 · 10−5

ATC 38 1.7636 · 10−4 1.7403 · 10−4

Table 7: Example 5.4: Results for different values of δ and `end. ATN stands for the Arnoldi-
Tikhonov method with the regularization parameter determined by Newton’s method, ATC
denotes the Arnoldi-Tikhonov method with the regularization parameter determined by solv-
ing the cubic equation (27).

necessary to satisfy the discrepancy principle. While it may be tempting to
replace the Arnoldi process by the Lanczos process when the matrix A in (1) is
symmetric, our numerical results suggest that this may not be a good idea due to
loss of orthogonality of the Lanczos vectors, which results in computed solutions
of inferior quality than solutions determined when the Arnoldi process is applied.
We conclude that the Arnoldi process should be applied for both nonsymmetric
and symmetric matrices A. Reorthogonalization in the Arnoldi process did not
result in computed solutions of improved quality. A new algorithm for including
auxiliary vectors in the solution subspace is described, and computed examples
illustrate that it may be beneficial to enhance Krylov solution subspaces by
user chosen-vectors. Finally, two approaches to determine the regularization
parameter are compared. We found the approach based on Newton’s method
described in Section 2 to perform the best.

The computed examples in our comparison stem from the discretization of
a few Fredholm integral equations of the first kind. The discretization gives
rise to nonsymmetric or symmetric matrices with singular values that decay to
zero quickly or slowly with increasing index number. The examples have been
chosen to be representative of a variety of linear discrete ill-posed problems with
a square system matrix.

The poor accuracy achieved when the Krylov subspace basis is determined
by the Lanczos process raises the question whether the quality of computed so-
lutions determined by applying Golub-Kahan bidiagonalization to A with initial
vector b to compute a Krylov subspace basis can be improved by reorthogonal-
ization. Golub-Kahan bidiagonalization uses a pair of short recurrence relations
to generate the solution subspace; see, e.g., [2, 7] for details. This technique
requires the evaluation of matrix-vector products with both the matrices A
and AT and therefore is outside the scope of methods discussed in this pa-
per. Nevertheless, we carried out a few computed examples using Golub-Kahan
bidiagonalization with and without reorthogonalization and found that the ap-
plication of reorthogonalization typically does not result in computed solutions
of significantly higher quality than when no reorthogonalization is carried out.
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However, the discrepancy principle generally is satisfied after fewer iterations
when reorthogonalization is applied. Numerical experiments showed that the
number of Golub-Kahan bidiagonalization steps required to satisfy the discrep-
ancy principle may be 50% larger without reorthogonalization.
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[2] Å. Björck, A bidiagonalization algorithm for solving large and sparse ill-
posed systems of linear equations, BIT Numer. Math., 18 (1988), pp. 659–
670.

[3] A. Buccini, M. Pasha, and L. Reichel, Generalized singular value decom-
position with iterated Tikhonov regularization, J. Comput. Appl. Math.,
373 (2020), Art. 112276.

[4] A. Buccini and L. Reichel, An `p-`q minimization method with cross-
validation for the restoration of impulse noise contaminated images, J.
Comput. Appl. Math., 375 (2020), Art. 112824.

[5] D. Calvetti, B. Lewis, and L. Reichel, Krylov subspace iterative methods
for nonsymmetric discrete ill-posed problems in image restoration, in Ad-
vanced Signal Processing Algorithms, Architectures, and Implementations
XI, ed. F.T. Luk, Proceedings of the Society of Photo-Optical Instrumen-
tation Engineers (SPIE), vol. 4474, The International Society for Optical
Engineering, Bellingham, WA, 2001, pp. 224–233.

[6] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, Tikhonov regularization
and the L-curve for large, discrete ill-posed problems, J. Comput. Appl.
Math., 123 (2000), pp. 423–446.

[7] D. Calvetti and L. Reichel, Tikhonov regularization of large linear prob-
lems, BIT Numer. Math., 43 (2003), pp. 263–283.

[8] T. F. Chan and K. R. Jackson, Nonlinearly preconditioned Krylov subspace
methods for discrete Newton algorithms, SIAM J. Sci. Statist. Comput., 5
(1984), pp. 533–542.

[9] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogo-
nalization and stable algorithms for updating the Gram-Schmidt QR fac-
torization, Math. Comp., 30 (1976), pp. 772–795.

20



[10] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Prob-
lems, Kluwer, Dordrecht, 1996.

[11] S. Gazzola and P. Novati, Multi-parameter Arnoldi-Tikhonov methods,
Electron. Trans. Numer. Anal., 40 (2013), pp. 452–475.

[12] S. Gazzola, P. Novati, and M. R. Russo, On Krylov projection methods
and Tikhonov regularization, Electron. Trans. Numer. Anal., 44 (2015),
pp. 83–123.

[13] L. Greengard and V. Rokhlin, A new version of the fast multipole method
for the Laplace equation in three dimensions, Acta Numerica, 6 (1997), pp.
229–269.

[14] P. C. Hansen, Regularization Tools, version 4.0 for Matlab 7.3, Numer.
Algorithms, 46 (2007), pp. 189–194.

[15] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM,
Philadelphia, 1998.

[16] G. Huang, L. Reichel, and F. Yin, On the choice of solution subspace
for nonstationary iterated Tikhonov regularization, Numer. Algorithms, 72
(2016), pp. 1043–1063.

[17] S. Kindermann, Discretization independent convergence rates for noise
level-free parameter choice rules for the regularization of ill-conditioned
problems, Electron. Trans. Numer. Anal., 38 (2011), pp. 233–257.

[18] S. Kindermann and K. Raik, A simplified L-curve method as error estima-
tor, Electron. Trans. Numer. Anal., 53 (2020), pp. 217–238.

[19] K. Morikuni, L. Reichel, and K. Hayami, FGMRES for linear discrete ill-
posed problems, Appl. Numer. Math., 75 (2014), pp. 175–187.

[20] A. Neubauer, An a posteriori parameter choice for Tikhonov regularization
in the presence of modeling error, Appl. Numer. Math., 4 (1988), pp. 507–
519.

[21] D. L. Phillips, A technique for the numerical solution of certain integral
equations of the first kind, J. ACM, 9 (1962), pp. 84–97.

[22] R. Ramlau and L. Reichel, Error estimates for Arnoldi-Tikhonov regular-
ization for ill-posed operator equations, Inverse Problems, 35 (2019), Art.
055002.

[23] L. Reichel and G. Rodriguez, Old and new parameter choice rules for dis-
crete ill-posed problems, Numer. Algorithms, 63 (2013), pp. 65–87.

[24] L. Reichel and A. Shyshkov. A new zero-finder for Tikhonov regularization,
BIT Numer. Math., 48 (2008), pp. 627–643.

21



[25] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM
J. Sci. Comput., 14 (1993), pp. 461–469.

[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM,
Philadelphia, 2003.

[27] C. B. Shaw, Jr., Improvements of the resolution of an instrument by nu-
merical solution of an integral equation, J. Math. Anal. Appl., 37 (1972),
pp. 83–112.

22


