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Abstract. This paper is concerned with the determination of a close real banded positive
definite Toeplitz matrix in the Frobenius norm to a given square real banded matrix. While it
is straightforward to determine the closest banded Toeplitz matrix to a given square matrix, the
additional requirement of positive definiteness makes the problem difficult. We review available
theoretical results and provide a simple approach to determine a banded positive definite Toeplitz
matrix.
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1. Introduction. Matrix nearness problems are the focus of much research in
linear algebra; see, e.g., [9, 10, 21, 23, 38]. In particular, characterizations of the alge-
braic variety of normal matrices and distance measures to this variety have received
considerable attention [11, 12, 13, 15, 19, 26, 28, 30, 31, 39]. Normal Toeplitz matrices
are characterized in [13, 20, 26], and the distance of Toeplitz matrices to the algebraic
variety of normal Toeplitz matrices, measured with the Frobenius norm and referred
to as the Toeplitz structured distance to normality, is investigated in [36], where also
an application to preconditioning is described. The present paper is concerned with
the distance of banded Toeplitz matrices to the variety of similarly structured positive
semidefinite matrices, and with determining the closest matrix in this variety.

We denote banded Toeplitz matrices in R
n×n with bandwidth 2k + 1 by

T(k) = (n; k;σ, δ, τ) =




δ τ1 τ2 . . . τk 0
σ1 δ τ1

σ2 σ1
. . .

. . .
...

. . . τk

σk

. . .
. . .

. . .
...

τ1 τ2
. . . σ1 δ τ1

0 σk . . . σ2 σ1 δ




. (1.1)

Some of the scalars σj , δ, and τj may vanish. We say that the matrix (1.1) has band-
width 2k+1, or equivalently, is (2k+1)-banded, even if σk or τk vanish. All Toeplitz
matrices in this paper are real. Banded Toeplitz matrices arise in many applications
including signal processing, time-series analysis, and numerical methods for the solu-
tion of differential equations; see, e.g., [5, 14, 18, 27, 43]. Low-rank modifications of
symmetric banded Toeplitz matrices are considered in [32].

Necessary and sufficient conditions for a banded Toeplitz matrix (1.1) to be nor-
mal are given in [35], where also the distance of (2k+ 1)-banded Toeplitz matrices of
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order n, with k less than or equal to the integer part of n/2, to the algebraic variety
of normal Toeplitz matrices of the same bandwidth, is investigated. The distance is
measured with the Frobenius norm. Since the given matrix (1.1) and the closest nor-
mal Toeplitz matrix both are banded Toeplitz matrices, we refer to their distance as
the banded Toeplitz structured distance to normality. Whether this distance measure
is more meaningful than the Toeplitz structured distance depends on the application.

Let A = [aij ]
n
i,j=1 ∈ R

n×n and define the Frobenius norm

‖A‖F =

√√√√
n∑

i,j=1

a2ij .

The distance from A to the set of symmetric positive semidefinite n × n matrices in
the Frobenius norm is given by

δ+F (A) := min{‖E‖F : E ∈ R
n×n, A+ E symmetric positive semidefinite}. (1.2)

This distance can be expressed as

δ+F (A) =

√ ∑

λi(B)<0

λi(B)2 + ‖C‖2F , (1.3)

where B and C are the symmetric and skew-symmetric parts of A, respectively,
and λ1(B), λ2(B), . . . , λn(B) are the eigenvalues of B. The nearest symmetric pos-
itive semidefinite matrix in the Frobenius norm is A+ := (B + H)/2, with H the
symmetric polar factor of B defined as follows: Consider the spectral factorization
B = Z diag(λi(B))ZT with Z an orthogonal matrix. Then H = Z diag(|λi(B)|)ZT ;
see Higham [22, Theorem 2.1]. Unfortunately, neither the matrices A + E nor A+

generally have the same structure as A. In fact, the polar factor of a symmetric
banded Toeplitz matrix typically is neither Toeplitz nor banded.

We are interested in determining the banded Toeplitz structured distance to sym-
metric positive semidefiniteness, ∆+

F , as well as the projection, T
+
(k), of a given banded

Toeplitz matrix T(k) in the set of the similarly structured symmetric positive semidef-

inite matrices. The matrix T+
(k) has potential application to preconditioning; see

Section 5. Our next example shows that the closest Toeplitz matrix in the Frobenius
norm to a symmetric positive definite matrix might not be symmetric positive def-
inite. Therefore, it is not straightforward to determine δ+F (A) and ∆+

F even in this
special situation.

Example 1. Let

A =




100 99 0
99 100 1/2
0 1/2 1


 .

The spectrum of A is approximately {0.6461, 1.3532, 199.0006}. Thus, A is sym-
metric positive definite. The closest Toeplitz matrix in the Frobenius norm to A is
obtained by averaging the entries of A on every diagonal,

T =




67 49.75 0
49.75 67 49.75
0 49.75 67


 ,
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and has the spectrum {−3.3571, 67.0000, 137.357}. Hence, T is symmetric indefi-
nite.

This paper is organized as follows. Section 2 discusses the structured distance
of banded Toeplitz matrices to normality in the Frobenius norm and Section 3 is
concerned with the structured distance to the set of positive semidefinite Toeplitz
matrices. Also an approach to inexpensively determine a banded symmetric positive
definite matrix that is close to a given banded Toeplitz matrix is described. The
special case of tridiagonal matrices is considered in Section 4. Some remarks on the
application of the symmetric positive definite banded Toeplitz matrices determined in
Sections 3 and 4 to the solution of linear systems of equations are provided in Section
5. Concluding remarks can be found in Section 6.

2. Structured distance to normality. This section reviews notation and re-
sults from [34, 35] that will be useful in the sequel.

Theorem 2.1. ([35]) The real (2k+1)-banded Toeplitz matrix T(k) = (n; k;σ, δ, τ)
of order n with k ≤ ⌊n/2⌋ is normal if and only if it is either symmetric or shifted
skew-symmetric (i.e., obtained by adding to a skew-symmetric matrix a multiple of
the identity). Consider the sum

k∑

h=1

(n− h)σhτh (2.1)

associated with the matrix T(k) = (n; k;σ, δ, τ). If this sum is positive, then the pro-
jection of T(k) onto the algebraic variety of similarly structured normal matrices is the
real symmetric (2k + 1)-banded Toeplitz matrix

T ∗

1,(k) = (n; k;
σ + τ

2
, δ,

σ + τ

2
).

If, instead, the sum (2.1) is negative, then the projection of T(k) onto the algebraic
variety of similarly structured normal matrices is the real shifted skew-symmetric (2k+
1)-banded Toeplitz matrix

T ∗

2,(k) = (n; k;
σ − τ

2
, δ,

τ − σ

2
).

Finally, if the sum (2.1) vanishes, then both matrices T ∗

1,(k) and T ∗

2,(k) are closest ma-
trices to T(k) in the algebraic variety of similarly structured normal matrices. More-
over, the squared banded Toeplitz structured distance to normality from T(k) is

∆F (T(k))
2 =

1

2
min





k∑

j=1

(n− j)(σj − τj)
2,

k∑

j=1

(n− j)(σj + τj)
2



 .

Note that the matrices T(k) and T(k) − δIn = (n; k;σ, 0, τ) ∈ R
n×n have the

same banded Toeplitz structured distance to normality; however, they have different
projections onto the algebraic variety of similarly structured normal matrices (at
distance

√
n|δ|).

Theorem 2.1 greatly simplifies in the tridiagonal case and the following result
holds.
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Corollary 2.2. ([34, Theorem 3.3]) The squared 3-banded Toeplitz structured
distance to normality from T(1) is

∆F (T(1))
2 =

n− 1

2
min

{
(σ1 − τ1)

2, (σ1 + τ1)
2
}
=

n− 1

2
||σ1| − |τ1||2 .

Moreover, the normal tridiagonal Toeplitz matrix closest to T(1) is the symmetric
matrix T ∗

1,(1) = (n; 1; σ1+τ1
2 , δ, σ1+τ1

2 ) if σ1τ1 ≥ 0, and the shifted skew-symmetric

matrix T ∗

2,(1) = (n; 1; σ1−τ1
2 , δ, τ1−σ1

2 ) if σ1τ1 ≤ 0.

3. Structured distance to symmetric positive semidefiniteness. It fol-
lows from (1.3) that the squared distance of a real (2k+1)-banded (possibly nonsym-
metric) Toeplitz matrix T(k) = (n; k;σ, δ, τ) to the set of symmetric positive semidef-
inite matrices is

δ+F (T(k))
2 =

∑

λ
(k)
i

<0

(λ
(k)
i )2 +

k∑

i=1

n− i

2
(σi − τi)

2, (3.1)

where the λ
(k)
i denote the eigenvalues of the closest symmetric matrix (in the Frobenius

norm) to T(k). We note that the closest symmetric matrix to T(k) in the Frobenius
norm is T ∗

1,(k) = (n; k; σ+τ
2 , δ, σ+τ

2 ), but the latter matrix is not guaranteed to be

positive definite. Moreover, T ∗

2,(k) − δIn = (n; k; σ−τ
2 , 0, τ−σ

2 ) is the closest skew-

symmetric matrix to T(k) (in the Frobenius norm) and

‖T ∗

2,(k) − δIn‖2F =

k∑

i=1

n− i

2
(σi − τi)

2.

We are interested in determining the closest symmetric positive semidefinite (2k+
1)-banded Toeplitz matrix T+

(k) to T(k), as well as the distance

∆+
F (T(k)) := ‖T(k) − T+

(k)‖F .

There is no simple expression available for T+
(k) even when T(k) is symmetric. We

therefore seek to determine an approximation T̃+
(k) of T

+
(k), as well as the upper bound

∆̃+
F (T(k)) := ‖T(k) − T̃+

(k)‖F

for ∆+
F (T(k)). A natural approach to determine a suitable approximation T̃+

(k) of T
+
(k)

is to shift the matrix T ∗

1,(k) so that all eigenvalues of the shifted matrix are nonnegative

and one of them is zero. The following well-known result (see, e.g., [18, 5]) provides
an approach to choose the shift, which we denote by γ.

Proposition 3.1. The set {λ(n)
h }nh=1 of eigenvalues of the symmetric banded

Toeplitz matrix T(k) = (n; k;σ, δ, σ), ordered so that λ
(n)
1 ≥ λ

(n)
2 ≥ . . . ≥ λ

(n)
n , are

distributed as {g( hπ
n+2 )}nh=1, where g is the symbol for the matrix T(k), i.e.,

g(θ) = δ + 2

k∑

j=1

σj cos(jθ), θ ∈ (−π, π).
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Moreover, if g(θ) ≥ 0, ∀θ ∈ (−π, π), then T(k) is positive semidefinite or positive
definite.

Remark 1. Notice that the matrix T(k) = (n; k;σ, δ, σ) is positive definite if its
symbol g(θ) has only isolated zeros; see, e.g., [42].

Let T(k) be a general banded Toeplitz matrix. One obtains a symmetric positive
semidefinite (2k+ 1)-banded Toeplitz matrix by shifting the symmetric matrix T ∗

1,(k)

by γIn, where

γ = max{0,
k∑

j=1

|σj + τj | − δ}. (3.2)

We remark that an application of Gershgorin disks suggests the same shift.
The following result can be used to bound the distance between the spectra of

T ∗

1,(k) and T̃+
(k) := T ∗

1,(k) + γIn, with γ defined by (3.2).

Proposition 3.2. ([3]) Let the matrices A ∈ R
n×n and B ∈ R

n×n be symmetric
and measure the distance between the matrices A and B in the Frobenius norm,

dA,B := ‖A−B‖F .

Let the eigenvalues of the matrices A and B be ordered to be nonincreasing as a
function of their index. Introduce the vectors

λ(A) = [λ1(A), λ2(A), . . . , λn(A)]
T , λ(B) = [λ1(B), λ2(B), . . . , λn(B)]T ,

containing all eigenvalues λj(A) of A and λj(B) of B, respectively, and define the
distance between these vectors by means of the Euclidean norm ‖ · ‖,

dλ(A,B) := ‖λ(A)− λ(B)‖.

Then

dA,B ≥ dλ(A,B). (3.3)

In our context, we obtain equality in (3.3),

d
T∗

1,(k)
,T̃

+
(k)

= ‖T ∗

1,(k) − T̃+
(k)‖F =

√
nγ = ‖λ(T ∗

1,(k))− λ(T̃+
(k))‖ = d

λ(T∗

1,(k)
,T̃

+
(k)

) .

We define for future reference

∆̃+
F (T

∗

1,(k)) = ‖T ∗

1,(k) − T̃+
(k)‖F .

Remark 2. Notice that the matrix δIn may be considered a (2k + 1)-banded
Toeplitz matrix for any k less than or equal to the integer part of n/2. It is symmetric
positive semidefinite if and only if δ ≥ 0.

Using (1.3), the (unstructured) nearness to symmetric positive semidefiniteness
of T ∗

1,(k) can be bounded by

δ+F (T
∗

1,(k))
2 =

∑

λi(T∗

1,(k)
)<0

λi(T
∗

1,(k))
2

≤
n∑

i=1

λi(T
∗

1,(k))
2 = ‖T ∗

1,(k)‖2F =

k∑

i=1

n− i

2
(σi + τi)

2 + nδ2,
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where equality is attained when the spectrum of T ∗

1,(k) is confined to the negative real
axis. In this case, the closest symmetric positive semidefinite matrix to T ∗

1,(k) is the
zero matrix On, because

max{0, δ} = max

{
0,

n∑

i=1

λi(T
∗

1,(k))

}
= 0.

Thus, for ∆+
F (T

∗

1,(k)), i.e., for the banded Toeplitz structured nearness to symmetric
positive semidefiniteness of T ∗

1,(k), one obtains the lower and upper bounds

δ+F (T
∗

1,(k)) ≤ ∆+
F (T

∗

1,(k)) ≤ min{‖T ∗

1,(k) −max{0, δ}In‖F , ∆̃+
F (T

∗

1,(k))}.

We conclude with the observation that, since ‖B+C‖2F = ‖B‖2F+‖C‖2F if B = BT

and C = −CT , the above inequalities also hold for the banded Toeplitz structured
distance of T(k) to the set of symmetric positive semidefinite matrices. We have

δ+F (T(k))
2 ≤ ∆+

F (T(k))
2

≤ min{‖T ∗

1,(k) −max{0, δ}In‖F , ∆̃+
F (T

∗

1,(k))}2 + ‖T ∗

2,(k) − δIn‖2,
(3.4)

where equality is achieved if the spectrum of T ∗

1,(k) is confined to the negative real

axis, so that δ+F (T(k)) = ∆+
F (T(k)) = ‖T(k)‖F .

Theorem 3.3. We have the following upper bounds for the squared (2k + 1)-
banded Toeplitz structured distance to symmetric positive semidefiniteness of T(k) =
(n; k;σ, δ, τ):

min





k∑

i=1

(n− i)(σ2
i + τ2i ), nmax

{
0,

k∑

i=1

|σi + τi| − δ

}2

+

k∑

i=1

n− i

2
(σi − τi)

2





if δ > 0, and

min





k∑

i=1

(n− i)(σ2
i + τ2i ) + nδ2, n

(
k∑

i=1

|σi + τi| − δ

)2

+

k∑

i=1

n− i

2
(σi − τi)

2





if δ ≤ 0. These bounds can be computed in O(k) arithmetic floating point operations
(flops).

Proof. The bounds follow from the upper bound in (3.4), by replacing ∆̃+
F (T

∗

1,(k))

by
√
nγ, with γ given by (3.2), and by observing that

k∑

i=1

n− i

2
(σi + τi)

2 +
k∑

i=1

n− i

2
(σi − τi)

2 =
k∑

i=1

(n− i)(σ2
i + τ2i ).

Moreover, it is straightforward to observe that the cost of computing these bounds
increases linearly with the bandwidth of the (2k + 1)-banded Toeplitz matrix T(k).
This concludes the proof.

Example 2. Consider the symmetric pentadiagonal Toeplitz matrices T(2)(p) =
(100; 2;σ, δ, τ), with entries σ1 = τ1 = 0.05, σ2 = τ2 = p, and δ = 0.1, where p ranges
from 0.04 to 0.06 with step 0.0001. Figure 3.1 shows for each p the squared distances
d1 =

∑2
i=1

n−i
2 (σi + τi)

2 and d2 = nmax{0,∑2
i=1 |σi + τi| − δ}2 in red and green,
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Fig. 3.1. Example 2. Upper bound for the 5-banded Toeplitz structured nearness to symmetric
positive semidefiniteness of T(2)(p) = (100; 2; [0.05, p], 0.1, [0.05, p]), with p = 0.04 : 0.0001 : 0.06.

respectively. The squared distance d3 =
∑2

i=1
n−i
2 (σi− τi)

2 always vanishes, since the
matrices considered are symmetric.

It is easy to verify that the upper bounds in (3.4) for ∆+
F (T(2)(p))

2 are attained by
d2 = min{d1, d2}+ d3 for p ranging from 0.04 to 0.0492 and by d1 = min{d1, d2}+ d3
for p ranging from 0.0493 to 0.06.

4. Structured distance to symmetric positive semidefiniteness in the

tridiagonal case. This section considers real tridiagonal Toeplitz matrices. The
eigenvalues of such matrices are known to be

λi(T(1)) = δ + 2
√
σ1τ1 cos

iπ

n+ 1
, i = 1, 2, . . . , n.

It is therefore possible to construct the symmetric tridiagonal semidefinite Toeplitz
matrix T̃+

(1) by adding the matrix γnIn, where γn ≥ 0 depends on the order n, to the

symmetric part of T(1), i.e., to T ∗

1,(1), to obtain T̃+
(1).

4.1. The case δ = 0. This subsection considers real tridiagonal Toeplitz ma-
trices with vanishing diagonal entries. We may assume that the matrix T(1) =
(n; 1;σ1, 0, τ1) is of odd order n. The eigenvalues of T ∗

1,(1) then are given by

λ
(1)
i = |σ1 + τ1| cos

iπ

n+ 1
, i = 1, 2, . . . , n.

Thus, they are real and allocated symmetrically with respect to the origin, one of
them vanishes; see, e.g., [34]. If, instead, T(1) is of even order, then no eigenvalue of
T ∗

1,(1) vanishes.

The closest symmetric positive semidefinite (not necessarily tridiagonal Toeplitz)
matrix computed by the algorithm in [22] has the same (n−1)/2 [or n/2, if n is even]
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positive eigenvalues as T ∗

1,(1), whereas the remaining eigenvalues vanish. A matrix

with such a spectrum cannot be a tridiagonal Toeplitz matrix; see, e.g., [34].
Proposition 4.1. The distance of the symmetric part T ∗

1,(1) of T(1) to symmetric
positive semidefiniteness is

δ+F (T
∗

1,(1)) =

√
n− 1

2
|σ1 + τ1|.

Proof. According to (3.1), one has

δ+F (T
∗

1,(1))
2 =

∑

λ
(1)
i

<0

(λ
(1)
i )2.

The eigenvalues of T ∗

1,(1) are allocated symmetrically with respect to the origin. There-
fore,

δ+F (T
∗

1,(1))
2 =

1

2
‖T ∗

1,(1)‖2F =
n− 1

4
(σ1 + τ1)

2.

This concludes the proof.
We are in a position to determine upper and lower bounds for ∆+

F (T
∗

1,(1)).
Corollary 4.2.

√
n− 1

2
|σ1 + τ1| ≤ ∆+

F (T
∗

1,(1)) ≤
√

n− 1

2
|σ1 + τ1| (4.1)

for all n = 1, 2, . . . .
Proof. Theorem 3.3 applied to T ∗

1,(1) = (n; 1; σ1+τ1
2 , 0, σ1+τ1

2 ) and Proposition 4.1
yield the lower and upper bounds

√
n− 1

2
|σ1 + τ1| ≤ ∆+

F (T
∗

1,(1)) ≤ min

{√
n− 1

2
|σ1 + τ1|,

√
n|σ1 + τ1|

}
,

from which (4.1) straightforwardly follows.
Alternatively, one might consider shifting T ∗

1,(1) by a multiple of the identity so
that all eigenvalues become nonnegative. Since the eigenvalues of T ∗

1,(1) are allocated
symmetrically with respect to the origin, this means that we could add a multiple of
the identity, γnIn, to T ∗

1,(1), with γn equal to the spectral radius

ρ(T ∗

1,(1)) = |σ1 + τ1| cos
π

n+ 1
.

Notice that γn = 0 if and only if σ1 = −τ1, i.e., T
∗

1,(1) = On and T ∗

2,(1) = T(1).
This way, one would get

∆̃+
F (T

∗

1,(1)) =
√
n|σ1 + τ1| cos

π

n+ 1
.

However, it is easy to show that

√
n− 1

2
|σ1 + τ1| ≤

√
n|σ1 + τ1| cos

π

n+ 1
, (4.2)
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for all n = 1, 2, . . . . Hence, the upper bound in (4.1) is sharper. Indeed, direct
computations show equality in (4.2) for n ∈ {1, 2} and, for n ≥ 3, one has

1

2
≤ cos2

(
π

n+ 1

)
.

We next show lower and upper bounds for the 3-banded Toeplitz structured dis-
tance of T(1) = (n; 1;σ1, 0, τ1) to symmetric positive semidefiniteness in the Frobenius
norm.

Theorem 4.3. For the squared 3-banded Toeplitz structured distance to symmet-
ric positive semidefiniteness of the matrix T(1) = (n; 1;σ1, 0, τ1), we have the lower
and upper bounds

n− 1

4
(3σ2

1 + 3 τ21 − 2σ1τ1) ≤ ∆+
F (T(1))

2 ≤ (n− 1)(σ2
1 + τ21 ). (4.3)

Proof. The upper bound follows from

∆+
F (T(1))

2 ≤ ‖T(1)‖2F = (n− 1)(σ2
1 + τ21 ).

The lower bound is obtained from

∆+
F (T(1))

2 ≥ δ+F (T(1))
2 = δ+F (T

∗

1,(1))
2 + ‖T ∗

2,(1)‖2F ,
where the equality is a consequence of (1.3). The first term on the right-hand side is
given by Proposition 4.1 and the second term is evaluated in a straightforward manner
to give the lower bound (4.3).

Example 3. Consider the downshift matrix

T(1) = (n; 1; 1, 0, 0) =




0 0 · · · · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
... 0

. . .
...

...
...

...
...

. . .
. . . 0 0

0 · · · · · · 0 1 0




. (4.4)

Its squared distances in the Frobenius norm to the sets of the symmetric and skew-
symmetric (banded Toeplitz) matrices are both n−1

2 . Thus, the squared banded Toeplitz
structured distance to normality is n−1

2 . It is shown in [33, Section 9] that the squared
(non-banded) Toeplitz structured distance to normality is n−1

n
, and a circulant being

at this distance is described. Moreover, it is shown in [16, Proposition 2.1] that the
squared distance to the set of the symmetric positive semidefinite matrices in the

Frobenius norm is δ+F (T(1))
2 = 3(n−1)

4 . These results are consistent with Theorem 4.3.
Applying our approach to constructing an approximate nearest symmetric tridi-

agonal positive semidefinite matrix T̃+
(1) to T(1), we obtain

T̃+
(1) = (n; 1;

1

2
, cos

π

n+ 1
,
1

2
) =




cos π
n+1

1
2 · · · · · · 0

1
2 cos π

n+1
1
2 · · · 0

0 1
2 . . . · · · 0

... 0
. . .

...
...

...
...

. . .
. . . 1

2
0 · · · · · · 1

2 cos π
n+1




. (4.5)
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and

∆̃+
F (T(1))

2 = ‖T(1) − T̃+
(1)‖

2 = ‖T ∗

1,(1) − T̃+
(1)‖

2
F + ‖T ∗

2,(1)‖2F = n cos2
π

n+ 1
+

n− 1

2
.

Moreover, the squared distance between the spectrum of T ∗

1,(1) and the spectrum of T̃+
(1)

is ‖λ(1) − λ̃+‖2 = n cos2 π
n+1 , whereas the squared distance between the spectrum of

T ∗

1,(1) and the spectrum of the (not necessarily tridiagonal Toeplitz) closest symmetric

positive semidefinite matrix is ‖λ(1) − λ+‖2 = n−1
4 . Here λ(1) is the vector of all

eigenvalues of T ∗

1,(1) ordered nonincreasingly, λ̃+ denotes the vector of eigenvalues of

T̃+
(1) ordered in the same manner, and λ+ is a vector of all eigenvalues of the closest

symmetric positive semidefinite matrix ordered similarly; ‖ · ‖ denotes the Euclidean
norm.

Finally, regard the approximate nearest symmetric positive semidefinite tridiago-
nal Toeplitz matrix On ∈ R

n×n. The squared distance from T(1) to On is ‖T(1)‖2F =
n − 1, whereas the squared distance between the spectrum of T ∗

1,(1) and the spectrum

of On is ‖λ(1)‖2 = n−1
2 . We obtain

3(n− 1)

4
= δ+F (T(1))

2 ≤ ∆+
F (T(1))

2 ≤ ‖T(1)‖2F = n− 1.

4.2. The case δ 6= 0. We consider general tridiagonal Toeplitz matrices T(1) =

(n; 1;σ1, δ, τ1). The distance δ+F to symmetric positive semidefiniteness depends on
the eigenvalues of T ∗

1,(1), which are given by

λ
(1)
i = δ + |σ1 + τ1| cos

iπ

n+ 1
, i = 1, 2, . . . , n.

When δ < |σ1 + τ1| cos π
n+1 , the closest symmetric positive semidefinite matrix

computed as in [22] has the same nonnegative eigenvalues as T ∗

1,(1) and the remaining

eigenvalues are zero. If, instead, δ ≥ |σ1+τ1| cos π
n+1 , then T ∗

1,(1) is symmetric positive
semidefinite and the following argument is not needed.

Assume that the matrix T ∗

1,(1) is not symmetric positive semidefinite. Then we
can add a multiple of the identity, γnIn, to T ∗

1,(1) with

γn = |δ − |σ1 + τ1| cos
π

n+ 1
| (4.6)

so that the matrix T̃+
(1) = T ∗

1,(1) + γnIn is positive semidefinite. We have

T̃+
(1) = (n; 1; (σ1 + τ1)/2, |σ1 + τ1| cos

π

n+ 1
, (σ1 + τ1)/2).

Alternatively, one may consider max{0, δ}In as an approximate nearest symmetric
positive semidefinite tridiagonal Toeplitz matrix.

Theorem 4.4. For the squared 3-banded Toeplitz structured distance to symmet-
ric positive semidefiniteness of the matrix T(1) = (n; 1;σ1, δ, τ1), we have the upper
bounds

min

{
(n− 1)(σ2

1 + τ21 ), nmax

{
0, |σ1 + τ1| cos

π

n+ 1
− δ

}2

+
n− 1

2
(σ1 − τ1)

2

}
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Fig. 4.1. Example 4. Upper bounds for the tridiagonal Toeplitz structured distance to symmetric
positive semidefiniteness of T(1)(p) = (15; 1; 0.05, p, 0.05) for p = 0.02 : 0.0001 : 0.05. In the
left graph the upper bounds are determined by Theorem 3.3, whereas in the right graph they are
determined by Theorem 4.4.

if δ > 0, and

min

{
(n− 1)(σ2

1 + τ21 ) + nδ2, n

(
|σ1 + τ1| cos

π

n+ 1
− δ

)2

+
n− 1

2
(σ1 − τ1)

2

}

if δ ≤ 0. The cost of computing these upper bounds is O(1) flops.

Proof. The bounds follow from (3.4), where ∆̃+
F (T

∗

1,(k)) is given by the shift γn in

(4.6) (instead of the shift γ in (3.2), as in Theorem 3.3).
Example 4. Consider the symmetric tridiagonal Toeplitz matrices T(1)(p) =

(15; 1;σ1, δ, τ1) with σ1 = τ1 = 0.05 and δ = p, where p ranges from 0.02 to 0.05 with
step 0.0001. The left-hand side graphs of Figure 4.1 show, for each p, the squared
distances

d1 =
n− 1

2
(σ1 + τ1)

2, d2 = nmax{0, |σ1 + τ1| − δ}2

that come from Theorem 3.3, in red and green, respectively. Since the squared distance
d3 = n−1

2 (σ1 − τ1)
2 vanishes, both d1 and d2 provide upper bounds for the squared 3-

banded Toeplitz structured distance to symmetric positive semidefiniteness. The graphs
on the right-hand side of Figure 4.1 show, for each p, the squared distances

d1 =
n− 1

2
(σ1 + τ1)

2, d2 = nmax{0, |σ1 + τ1| cos
π

n+ 1
− δ}2

that come from Theorem 4.4, in red and green, respectively. These distances provide
upper bounds for the squared 3-banded Toeplitz structured distance to symmetric pos-
itive semidefiniteness. It is easy to verify that they are sharper. For instance, for
p = 0.03, one has d1 = 0.0700 and, in the former case, d2 = 0.0735 (left graph),
whereas in the latter case d2 = 0.0695 (right graph).

5. Remarks on applications to the solution of linear systems of equa-

tions. Consider the solution of a linear system of equations

Ax = b, A ∈ R
n×n, x, b ∈ R

n, (5.1)
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with a large matrix A. This matrix is not required to have any particular structure,
but we assume that A is close to a banded symmetric positive definite Toeplitz matrix
T+. It is natural to use the matrix T+ as a preconditioner, because linear systems
of equations with a banded symmetric positive definite Toeplitz matrix can be solved
rapidly and stably by exploiting the Toeplitz structure by Schur or generalized Schur
algorithms described in [1, 2, 8, 27, 29]1, as well as by the method by Bini and Meini
[4].

When the matrix A is symmetric positive definite, we can solve (5.1) by the
preconditioned conjugate gradient method using T+ as a preconditioner; see, e.g., [17,
Algorithm 11.5.1]. If A is symmetric indefinite, then the conjugate gradient method
should be replaced by the SYMMLQ algorithm; see [37] for a description of the latter.
Finally, when A is nonsymmetric, a preconditioned iterative method designed for the
solution of systems of equations with a nonsymmetric matrix should be used, such
as preconditioned GMRES; see [17, 40]. In all these situations, the preconditioned
iterative methods are simpler when using a symmetric positive definite preconditioner,
because Schur and generalized Schur algorithms can be applied to rapidly solve linear
systems of equations with such a preconditioner matrix. Though, the application of
an indefinite or nonsymmetric preconditioner for the solution of Toeplitz systems also
has been described in the literature; see [7, 25, 41].

Large banded matrices that are close to the set of banded symmetric positive
definite Toeplitz matrices arise when discretizing second order differential equations
in one space dimension on the interval 0 < t < 1 at equidistant grid points using
the standard symmetric second order 3-point finite difference approximation of the
second derivative −d2/dt2 with some boundary conditions. For instance, Neumann
boundary conditions give rise to a symmetric tridiagonal matrix of the form

1

h2
(T(1) − e1e

T
1 − ene

T
n ), (5.2)

where ej = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R
n denotes the jth canonical basis vector, T(1) =

(n, 1;−1, 2,−1), and h = 1/(n + 1). The matrix T(1) is symmetric positive definite,
while the matrix (5.2) is singular. Consistent linear systems of equations with the
latter matrix have a unique solution x = [x1, x2, . . . , xn]

T such that
∑n

j=1 xj = 0.
The matrix T(1) can be used as a preconditioner. Analogous formulas arise in higher
space dimensions.

Other techniques for determining positive definite banded Toeplitz precondition-
ers with applications to the solution of partial differential equations are described by
Chan [6] and Hon et al. [24], who apply the Remez algorithm to compute a nonneg-
ative low-degree trigonometric polynomial that approximates the symbol associated
with a given symmetric indefinite Toeplitz matrix. This can be fairly expensive. The
approach described in the present paper is much cheaper, but may give a banded
Toeplitz matrix of lower quality. A careful comparison of these approaches to con-
struct preconditioners is a topic of future work.

6. Conclusion. This paper discusses the determination of a positive definite
banded Toeplitz matrix that is close to a Toeplitz matrix with the same band struc-
ture. A simple fast method is described.

Acknowledgment. The authors would like to thank Greg Ammar and a referee
for comments that lead to clarifications of the presentation.

1The superfast generalized Schur algorithms described in [1, 2] do not exploit bandedness.
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[18] U. Grenander and G. Szegő, Toeplitz Forms and Their Applications, Chelsea, New York,
1984.

[19] R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, Normal matrices, Linear Algebra
Appl., 87 (1987), pp. 213–225.

[20] C. Gu and L. Patton, Commutation relations for Toeplitz and Hankel matrices, SIAM J.
Matrix Anal. Appl., 24 (2003), pp. 728–746.

[21] P. Henrici, Bounds for iterates, inverses, spectral variation and field of values of non-normal
matrices, Numer. Math., 4 (1962), pp. 24–40.

[22] N. J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra
Appl., 103 (1988), pp. 103–118.

[23] N. J. Higham, Matrix nearness problems and applications, in Applications of Matrix Theory,
M. J. C. Gover and S. Barnett, eds., Oxford University Press, Oxford, 1989, pp. 1–27.

[24] S. Hon, S. Serra-Capizzano, and A. Wathen, Band-Toeplitz preconditioners for ill-
conditioned Toeplitz systems, BIT Numer. Math., 62 (2022), pp. 465–491.

[25] T. Huckle, S. Serra-Capizzano, and C. Tablino-Possio, Preconditioning strategies for non-
Hermitian Toeplitz linear systems, Numer. Linear Algebra Appl., 12 (2005), pp. 211–220.

[26] T. Ito, Every normal Toeplitz matrix is either of type I or of type II, SIAM J. Matrix Anal.
Appl., 17 (1996), pp. 998–1006.

[27] T. Kailath (ed.), Modern Signal Processing, Hemisphere Publishing, Washington, 1985.
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