
Numerical considerations of block GMRES methods
when applied to linear discrete ill-posed problems

Lucas Oniska, Lothar Reichela, Hassane Sadokb

aDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA.
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Abstract

Linear systems of equations with a matrix whose singular values decay to zero
with increasing index number without a significant gap are commonly referred
to as linear discrete ill-posed problems. We are interested in solving large sys-
tems of this kind when the right-hand side has k > 1 column vectors. The
systems may be regarded as one system of equations with a block vector (with
k columns) as the right-hand side and then solved by a block iterative method,
or as k linear systems of equations (one for each right-hand side vector) that can
be solved independently. Thus, the solution is a block vector with k columns.
In many applications, including the restoration of color images, the right-hand
side represents measurements that are contaminated by errors. Block iterative
methods compute all columns of the solution block vector simultaneously. We
will illustrate the performance of standard block GMRES methods and global
GMRES methods, which also are block methods, and show that they may deter-
mine computed solutions of lower quality than when each column of the solution
block vector is computed independently by a “standard” iterative method. We
introduce a new local block GMRES method that can overcome the problems
associated with block GMRES methods applied to linear discrete ill-posed prob-
lems.

Keywords: ill-posed problems, iterative method, block Arnoldi process, global
Arnoldi process, GMRES, block GMRES
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1. Introduction

We are concerned with the approximate solution of linear systems of equa-
tions

AX = Bδ, (1)
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where A ∈ Rn×n is a large matrix whose singular values decay to zero with
increasing index number without a significant gap. This makes the matrix A
severely ill-conditioned and possibly rank-deficient. Linear systems of equations
with a matrix of this kind are commonly referred to as linear discrete ill-posed
problems. They arise, for instance, from the discretization of a Fredholm integral
equations of the first kind; see, e.g., Engl et al. [1] and Hansen [2] for discussions
on ill-posed and linear discrete ill-posed problems, respectively. The right-hand

side Bδ =
[
bδ1, . . . , b

δ
k

]
∈ Rn×k is a block vector, i.e., a matrix with k > 1

columns. In many applications k ≪ n, but this is not required by the algorithms
considered in this paper.

In linear discrete ill-posed problems that arise in applications in science
and engineering, the right-hand side typically represents measured data that is
contaminated by an error, which is denoted by E ∈ Rn×k. Throughout, we
will assume that the entries of E are i.i.d. following a Gaussian distribution
with mean zero. Let B ∈ Rn×k denote the unknown error-free block vector
associated with Bδ. Then

Bδ = B +E.

We assume that B is in the range of A, and that we are interested in computing
an accurate approximation of the solution X† of minimal Frobenius norm of the
unavailable linear systems of equations

AX = B. (2)

The discrepancy principle (see below) can be used to determine how many steps
of the chosen iterative method to carry out. Note that due to the ill-conditioning
of A and the error E in Bδ, the least-squares solution of minimal Frobenius
norm of (1) typically does not provide a useful approximation of X†.

Let X0 = 0 be the initial iterate used by an iterative method. The succes-
sive iterates, X1,X2, . . . , generated by the methods discussed in this paper
approach X† with increasing index number when the index number is small
enough. However, due to the error in Bδ, iterates Xp with large index will

diverge from X†. Thus, one is interested in finding the optimal iterate Xs such
that ∥∥∥Xs −X†

∥∥∥ ≤
∥∥∥Xp −X†

∥∥∥ , p = 0, 1, . . . .

Throughout this paper ∥·∥ denotes the Frobenius matrix norm unless otherwise
noted.

Let a bound
∥E∥ ≤ δ

be known. The discrepancy principle prescribes that the iterations of an iter-
ative method for the approximate solution of (1) be terminated as soon as an
iterate Xp that satisfies ∥∥∥AXp −Bδ

∥∥∥ ≤ τδ,

is found. Here τ > 1 is a user-specified constant that is independent of δ; see
[1] for a discussion on the discrepancy principle.
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We note that when an upper bound for ∥E∥ is not available or the system
(2) is not consistent, other approaches to identify a suitable iterate can be
used, including the L-curve criterion and generalized cross validation; see, e.g.,
[3, 4, 5, 6, 7, 8, 9] for discussions. Some of these references are concerned
with Tikhonov regularization, which is an alternative to the truncated iteration
scheme outlined above. Many methods developed for Tikhonov regularization
can be modified so that they can be used with truncated iteration.

The block generalized minimum residual (BGMRES) method is a popular
iterative method for the solution of linear systems of algebraic equations with a
large nonsymmetric matrix that stems from the discretization of a linear well-
posed problem, such as an elliptic partial differential equations with Dirichlet
boundary conditions and with a right-hand side block vector; see, e.g., [10]. The
application of BGMRES to the solution of linear discrete ill-posed problems is
described in, e.g., [11]. Tensor GMRES methods described in, e.g., [12, 13] also
are block GMRES methods and the findings of the present paper apply.

Let the initial iterate be X0 = 0 ∈ Rn×k. Then the pth iterate, Xp, com-
puted by the standard BGMRES method applied to (1) satisfies∥∥∥AXp −Bδ

∥∥∥ = min
X∈Kp(A,Bδ)

∥∥∥AX −Bδ
∥∥∥ , (3)

where

Kp(A,Bδ) = block span
{
Bδ,ABδ, . . . ,Ap−1Bδ

}
=

{
X ∈ Rn×k : X =

p−1∑
i=0

AiBδΩi, Ωi ∈ Rk×k for i = 0, 1, . . . , p− 1

}

is a block Krylov subspace of order p; see, e.g., [14]. We tacitly assume that p is
sufficiently small so that all required computations can be carried out without
breakdown.

It is the purpose of the present paper to illustrate that block GMRES meth-
ods may yield inferior accuracy when compared to the standard GMRES meth-
ods applied to the k linear systems of equations with the matrix A and right-
hand side vectors bδj , j = 1, 2, . . . , k. The ℓ-shifted BGMRES method intro-
duced in [11] was found to often yield solutions of higher accuracy than the
unshifted BGMRES method (0-shifted BGMRES). It is a block generalization
of the GMRES-type method discussed in [15]. Our comparison also includes the
ℓ-shifted global GMRES (gl-GMRES) method. This block method differs from
the BGMRES methods in the choice of inner product in the block orthogonal-
ization process. The gl-GMRES method without shift (0-shifted gl-GMRES)
was introduced by Jbilou et al. [16, 17] and the shifted variant is discussed
in [11]. Finally, we introduce local BGMRES (lo-BGMRES) methods (both
shifted and unshifted) that can overcome the inferior results achieved by the
aforementioned block GMRES methods.

This paper is organized as follows. Section 2 reviews the available block
GMRES methods used in our comparison and introduces the new local block
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GMRES methods, specifically, the lo-BGMRES and the ℓ-shifted lo-BGMRES
methods. Computed examples are presented in Section 3, and concluding re-
marks can be found in Section 4.

2. Block GMRES methods

This section discusses in order the ℓ-shifted BGMRES method, the ℓ-shifted
gl-GMRES method, and the new local BGMRES methods: lo-BGMRES and
ℓ-shifted lo-BGMRES.

2.1. ℓ-shifted BGMRES

The block Arnoldi process, defined by Algorithm 1 below, is initialized by
computing the QR factorization Bδ = Q̂R̂ with Q̂ ∈ Rn×k having orthonormal
columns and R̂ ∈ Rk×k being upper triangular. If the columns of Bδ are
linearly dependent, then we reduce k so that the range of the so obtained matrix
Q̂ ∈ Rn×k′

with k′ < k agrees with the range of Bδ. We will for notational
simplicity assume that k′ = k. The pth step of the block Arnoldi iteration
applied to the matrix A with initial matrix V 1 = Q̂ gives the block Arnoldi
decomposition

AV pk = V (p+1)kH(p+1)k,pk, (4)

where the matrix V (p+1)k = [V 1,V 2, . . . ,V p+1] ∈ Rn×(p+1)k has orthonormal

columns and H(p+1)k,pk ∈ R(p+1)k×pk is of upper block Hessenberg form with k
subdiagonal blocks of size p×p. The blocks V i of V (p+1)k for i = 1, 2, . . . , p+1

are of size n × k and the matrix V pk ∈ Rn×pk contains the first p blocks of
V (p+1)k. Moreover,

V T
i V j =

{
Ik for i = j,
Ok for i ̸= j,

where Ik and Ok denote the identity and zero matrices of order k, respectively.
The range of the matrix V (p+1)k is the block Krylov subspace Kp+1(A,Bδ) un-
der the assumption that all upper Hessenberg matrices generated by Algorithm
1 are nonsingular. This algorithm is the foundation of the BGMRES method
(see [10, 18]) and its ℓ-shifted variant.

The ℓ-shifted BGMRES method solves the minimization problem∥∥∥AX(ℓ)
p −Bδ

∥∥∥ = min
X∈Kp(A,AℓBδ)

∥∥∥AX −Bδ
∥∥∥ , (5)

where the solution of minimal norm is sought in the range restricted block
Krylov subspace

Kp(A,AℓBδ) = block span
{
AℓBδ,Aℓ+1Bδ, . . . ,Aℓ+p−1Bδ

}
(6)

for ℓ ∈ N small (usually 1 - 4). When ℓ = 0, we define Aℓ = In. In this case the
above minimization problem reduces to (3). As part of the ℓ-shifted BGMRES
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Algorithm 1: Block Arnoldi

Input: A ∈ Rn×n and Bδ ∈ Rn×k

Output: V (p+1)k ∈ Rn×(p+1)k and H(p+1)k,pk ∈ R(p+1)k×pk

1 Compute QR factorization
[
Q̂, R̂

]
= Bδ;

2 Set V 1 = Q̂;
3 for p = 1, 2, . . . , n do
4 Compute W p = AV p;
5 for i = 1, 2, . . . , p do

6 Hi,p = V T
i W p;

7 W p = W p − V iHi,p;

8 end
9 Compute QR factorization [V p+1,Hp+1,p] = W p;

10 end

method, the minimization problem (5) may be rewritten as∥∥∥AX(ℓ)
p −Bδ

∥∥∥ = min
Y ∈Rpk×k

∥∥∥∥R(ℓ+1)
(ℓ+p+1)k,pkY −

(
Q

(ℓ+1)
(ℓ+p+1)k

)T

E1R̂

∥∥∥∥ , (7)

where the matrix E1 ∈ R(ℓ+p+1)k×k is made up of the first k columns of

I(ℓ+p+1)k and zeros elsewhere. The matrices Q
(ℓ+1)
(ℓ+p+1)k ∈ R(ℓ+p+1)k×(ℓ+p+1)k

and R
(ℓ+1)
(ℓ+p+1)k,pk ∈ R(ℓ+p+1)k×pk come from the (ℓ + 1)st QR factorization of

the method. Denote the solution of (7) by Y (ℓ)
p . Then the approximate solu-

tion of (1) determined by the ℓ-shifted BGMRES method is given by X(ℓ)
p =

V (ℓ+p)kQ
(ℓ)
(ℓ+p)k,pkY

(ℓ)
p . Algorithm 2 below computes X(ℓ)

p and is terminated

according to the discrepancy principle. Further details and discussion can be
found in [11].

2.2. ℓ-shifted gl-GMRES

We begin by introducing notation necessary to describe the global Arnoldi
iteration and the gl-GMRES method. These techniques were first discussed by
Jbilou et al. [16, 17]. We then outline the ℓ-shifted gl-GMRES algorithm.

The Kronecker product of two matrices G = [gi,j ] ∈ Rn×n and H ∈ Rp×p is
defined by

G⊗H :=


g1,1H g1,2H · · · g1,nH
g2,1H g2,2H · · · g2,nH

...
...

...
gn,1H gn,2H · · · gn,nH

 ∈ Rnp×np.

For two general matrices A and B, we have

A⊗B = (I ⊗B)(A⊗ I)

= (A⊗ I)(I ⊗B),
(8)
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Algorithm 2: ℓ-shifted BGMRES (ℓ ≥ 1) with discrepancy principle

Input: A ∈ Rn×n, Bδ ∈ Rn×k, and ℓ ∈ {1, 2, 3, . . . }
Output: X(ℓ)

p ∈ Rn×k

1 Compute QR factorization:
[
Q̂, R̂

]
= Bδ;

2 Set V 1 = Q̂ & X
(ℓ)
0 = 0;

3 Compute ℓ steps of block Arnoldi: AV ℓk = V (ℓ+1)kH(ℓ+1)k,ℓk;
4 for p = 1, 2, . . . do
5 Compute next block Arnoldi step:

AV (ℓ+p)k = V (ℓ+p+1)kH(ℓ+p+1)k,(ℓ+p)k;

6 Compute QR factorization:
[
Q

(1)
(p+1)k,R

(1)
(p+1)k,pk

]
= H(p+1)k,pk;

7 for j = 1, 2, . . . , ℓ do
8 Compute QR factorization:[

Q
(j+1)
(j+p+1)k,R

(j+1)
(j+p+1)k,pk

]
= H(j+p+1)k,(j+p)kQ

(j)
(j+p)k,pk;

9 end

10 Compute Y (ℓ)
p as the minimizer of∥∥∥∥R(ℓ+1)

(ℓ+p+1)k,pkY −
(
Q

(ℓ+1)
(ℓ+p+1)k

)T

E1R̂

∥∥∥∥;
11 Compute X(ℓ)

p = V (ℓ+p)kQ
(ℓ)
(ℓ+p)k,pkY

(ℓ)
p ;

12 Compute ∥rp∥ =
∥∥∥AX(ℓ)

p −Bδ
∥∥∥;

13 if ∥rp∥ ≤ τδ then
14 Stop;
15 end

16 end
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for suitably sized identity matrices I. We define vec(·) as the operation which
transforms a general matrix A ∈ Rm×n to a vector a ∈ Rmn by stacking the
columns of A from left to right. Additionally, we define the inner product

⟨A,B⟩F : = tr(ATB)

= (vec(A))
T
vec(B),

(9)

where tr(·) denotes the trace.

Let a = [a1 a2 · · · ap]T ∈ Rp and introduce the product

V pk ∗ a =

p∑
i=1

aiV i,

where V pk = [V 1,V 2, . . . ,V p] ∈ Rn×pk and V i ∈ Rn×k for i = 1, 2, . . . , p.
Further, we have that

V pk ∗H = [V pk ∗H :,1,V pk ∗H :,2, . . . ,V pk ∗H :,p]

= V pk

(
H ⊗ Ik

)
,

(10)

where H :,i, for i = 1, 2, . . . , p, denotes the ith column of the matrix H ∈ Rp×p.
Additionally, it can be shown that

(V pk ∗H) ∗ a = V pk ∗Ha.

The global Arnoldi iteration, implemented by Algorithm 3, uses the inner prod-
uct (9). This algorithm executes p steps with the matrix A and initial block
vector V 1 = Bδ/∥Bδ∥.

Algorithm 3: Global Arnoldi

Input: A ∈ Rn×n and Bδ ∈ Rn×k

Output: V (p+1)k ∈ Rn×(p+1)k and Hp+1,p ∈ R(p+1)×p

1 Set V 1 = Bδ/∥Bδ∥;
2 for p = 1, 2, . . . , n do
3 Compute W p := AV p;
4 for i = 1, 2, . . . , p do
5 hi,p = ⟨W p,V i⟩F ;
6 W p := W p − hi,pV i;

7 end
8 hp+1,p = ∥W p∥ ;
9 V p+1 = W p/hp+1,p;

10 end

At step p, the global Arnoldi iteration gives the relation

AV pk = V (p+1)k ∗Hp+1,p, (11)
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where V (p+1)k = [V 1,V 2, . . . ,V p+1] ∈ Rn×(p+1)k is the same as defined in the

previous section and the block column vectors V i ∈ Rn×k are F-orthonormal,
i.e.,

⟨V i,V j⟩F =

{
1 for i = j,
0 for i ̸= j.

(12)

The matrix V pk ∈ Rn×pk is composed of the first p blocks of V (p+1)k. We also
note that the Hessenberg matrix is of dimension (p+1)×p. We assume that all
subdiagonal entries of Hp+1,p are positive. This is the generic case. For linear
discrete ill-posed problems breakdown occurs exceedingly rarely. We therefore
will not discuss this issue.

The ℓ-shifted gl-GMRES method solves the minimization problem (5) which
may be rewritten as

min
y∈Rp

∥∥∥∥R(ℓ+1)
ℓ+p+1,py − ∥Bδ∥

(
Q

(ℓ+1)
ℓ+p+1

)T

e1

∥∥∥∥ , (13)

where e1 ∈ Rℓ+p+1 denotes the first axis vector. The matrices R
(ℓ+1)
ℓ+p+1,p and

Q
(ℓ+1)
ℓ+p+1 come from the (ℓ + 1)st QR factorization during the execution of the

method. Further details may be found in [11]. Denoting the solution of (13) by

y
(ℓ)
p , the approximate solution of (1) using the ℓ-shifted gl-GMRES method is

given by

X(ℓ)
p = V (ℓ+p)k

(
Q

(ℓ)
ℓ+p,py

(ℓ)
p ⊗ Ik

)
.

Algorithm 4 describes the ℓ-shifted gl-GMRES method. Termination of the
algorithm is achieved with the discrepancy principle.

2.3. Local BGMRES methods

We now turn our attention to the new local variants of BGMRES: lo-
BGMRES and ℓ-shifted lo-BGMRES. As we demonstrate in Section 3, these
methods can achieve higher accuracy than BGMRES, gl-GMRES and their ℓ-
shifted variants when applied to the solution of linear discrete ill-posed problems.

The lo-BGMRES method determines an approximate solution to (1) by com-
puting approximate solutions to the systems of equations

Ax = bδj for j = 1, 2, . . . , k. (14)

For j = 1, 2, . . . , k, let xj 0 = 0 ∈ Rn. Then the pth iterate of the jth subproblem,
which is denoted by xj p and computed by lo-BGMRES, satisfies∥∥∥A xj p − bδj

∥∥∥ = min
x∈ Kj p(A,bδ

j )

∥∥∥Ax− bδj

∥∥∥ , (15)

where Kj p(A, bδj) = span
{
bδj ,Abδj , . . . ,A

p−1bδj

}
is the jth Krylov subspace.

Here and throughout this subsection ∥ · ∥ stands for the Euclidean vector norm.
We assume that p is small enough so that dim( Kj p(A, bδj)) = p. For clarity,
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Algorithm 4: ℓ-shifted gl-GMRES (ℓ ≥ 1) with discrepancy principle

Input: A ∈ Rn×n,Bδ ∈ Rn×k, and ℓ ∈ {1, 2, 3, . . . }
Output: X(ℓ)

p ∈ Rn×k

1 Set V 1 = Bδ/∥Bδ∥ & X
(ℓ)
0 = 0;

2 Compute ℓ steps of global Arnoldi: AV ℓk = V (ℓ+1)k ∗Hℓ+1,ℓ;
3 for p = 1, 2, . . . do
4 Compute next global Arnoldi step:

AV (ℓ+p)k = V (ℓ+p+1)k ∗Hℓ+p+1,ℓ+p;

5 Compute QR factorization:
[
Q

(1)
p+1,R

(1)
p+1,p

]
= Hp+1,p;

6 for j = 1, 2, . . . , ℓ do
7 Compute QR factorization:[

Q
(j+1)
j+p+1,R

(j+1)
j+p+1,p

]
= Hj+p+1,j+pQ

(j)
j+p,p;

8 end

9 Compute y
(ℓ)
p as the minimizer of∥∥∥∥R(ℓ+1)

ℓ+p+1,py − ∥Bδ∥
(
Q

(ℓ+1)
ℓ+p+1

)T

e1

∥∥∥∥;
10 Compute X(ℓ)

p = V (ℓ+p)k

(
Q

(ℓ)
ℓ+p,py

(ℓ)
p ⊗ Ik

)
;

11 Compute ∥rp∥ =
∥∥∥AX(ℓ)

p −Bδ
∥∥∥;

12 if ∥rp∥ ≤ τδ then
13 Stop;
14 end

15 end
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we let the pre-superscript of a matrix in Algorithm 5 denote the index of the
column being selected; elsewhere in this paper this superscript indicates that
the jth subproblem is being considered.

Differently from applying k independent instances of a modified Gram-
Schmidt-based Arnoldi iteration, the computations of the local block Arnoldi
process described by Algorithm 5 are initiated by

V 1 =
[
bδ1/∥b

δ
1∥, b

δ
2/∥b

δ
2∥, . . . , b

δ
k/∥b

δ
k∥
]
.

The matrix A is then multiplied by V i for i = 1, 2, . . . , p in each step of the
iterative process. The inner jth loop (lines 4 − 11) of Algorithm 5 may be
viewed as a modified Gram-Schmidt process for local orthogonalization and can
be carried out in parallel.

Algorithm 5: Local block Arnoldi

Input: A ∈ Rn×n and Bδ ∈ Rn×k

Output: Ṽ
j

p+1 ∈ Rn×(p+1) and Hj p+1,p ∈ R(p+1)×p for j = 1, . . . , k

1 Set V 1 =
[
bδ1/∥b

δ
1∥, b

δ
2/∥b

δ
2∥, . . . , b

δ
k/∥b

δ
k∥
]
;

2 for p = 1, 2, . . . , n do
3 Compute W p = AV p;
4 for j = 1, 2, . . . , k do
5 for s = 1, 2, . . . , p do

6 hj s,p =
(
Vj s

)T
Wj p;

7 Wj p = Wj p − hj s,p Vj s;

8 end

9 hj p+1,p = ∥ Wj p∥;
10 Vj p+1 = Wj p/ hj p+1,p;

11 end

12 end

The pth step of the jth local Arnoldi process computed by Algorithm 5 is
given by

A Ṽ
j

p = Ṽ
j

p+1 Hj p+1,p for j = 1, 2, . . . , k, (16)

where the matrix Ṽ
j

p+1 = [ ṽj 1, ṽj 2, . . . , ṽj p+1] ∈ Rn×(p+1) has orthonormal

columns with initial column ṽj 1 = bδj/∥b
δ
j∥. The matrix Ṽ

j

p ∈ Rn×p is made up

of the first p columns of Vj p+1 and Hj p+1,p ∈ R(p+1)×p is an upper Hessenberg

matrix with positive subdiagonal entries. The columns of Ṽ
j

p+1 span the jth

Krylov subspace Kj p+1(A, bδj). The decomposition (16) is the foundation for
the implementation of the lo-BGMRES and ℓ-shifted lo-BGMRES methods.

Post initialization, lo-BGMRES and ℓ-shifted lo-BGMRES may be viewed
as block versions of GMRES and ℓ-shifted GMRES, respectively. Using the
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notation defined so far, the minimization problem (15) may be rewritten as

min
x∈ Kj p(A,bδ

j )

∥∥∥Ax− bδj

∥∥∥ = min
y∈Rp

∥∥∥A Ṽ
j

py − bδj

∥∥∥
= min

y∈Rp

∥∥∥∥ Rj p+1,py − ∥bδj∥
(

Qj p+1

)T

e1

∥∥∥∥ (17)

for j = 1, 2, . . . , k, where e1 ∈ Rp+1 is the first unit axis vector. Here, we have
used the relation (16) and the QR factorization Hj p+1,p = Qj p+1 Rj p+1,p. In

equation (17), we also used the fact that the first column of Ṽ
j

p+1 is bδj/∥b
δ
j∥.

Denote the minimizer of (17) by yj p for j = 1, 2, . . . , k. Then the approximate

solution of (14) may be written as xj p = Ṽ
j

p yj p. Thus, the pth approximate

solution of (1) via lo-BGMRES may be written as Xp = [ x1 p, x2 p, . . . , xk p].
Algorithm 6 below summarizes the lo-BGMRES method and is terminated ac-
cording to the discrepancy principle.

Algorithm 6: lo-BGMRES with discrepancy principle

Input: A ∈ Rn×n and Bδ ∈ Rn×k

Output: Xp ∈ Rn×k

1 Set V 1 =
[
bδ1/∥b

δ
1∥, b

δ
2/∥b

δ
2∥, . . . , b

δ
k/∥b

δ
k∥
]
& X0 = 0;

2 for p = 1, 2, . . . do
3 Compute next local block Arnoldi step:

A Ṽ
j

p = Ṽ
j

p+1 Hj p+1,p for j = 1, 2, . . . , k;

4 for j = 1, 2, . . . , k do

5 Compute QR factorization:
[
Qj p+1, Rj p+1,p

]
= Hj p+1,p;

6 Compute yj p as the minimizer of∥∥∥∥ Rj p+1,py − ∥bδj∥
(

Qj p+1

)T

e1

∥∥∥∥;
7 Compute xj p = Ṽ

j

p yj p and update jth column of Xp with xj p;

8 Compute
∥∥ rj p

∥∥ =
∥∥∥A xj p − bδj

∥∥∥;
9 if

∥∥jrp∥∥ ≤ τδ then
10 Stop;
11 end

12 end

13 end

We note that computation of the norm of the residual in line 8 of Algorithm 6
does not require an additional matrix-vector product evaluation with the matrix
A (see Proposition 6.9 in [10]). This result was extended in [11] to ℓ-shifted
GMRES, gl-GMRES, and BGMRES methods and therefore applies to this work.
Additionally, we clarify that δ in line 9 corresponds to the norm of the error in
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the jth right-hand side vector bδj for j = 1, 2, . . . , k, i.e.,∥∥∥bδj − bj

∥∥∥ ≤ δ.

The same details hold for Algorithm 7 that follows the exposition below.
Similarly to the lo-BGMRES method, the ℓ-shifted lo-BGMRES method de-

termines an approximate solution to (1) by computing an approximate solution

to the minimization problem (14). Letting x
j (ℓ)

0 = 0 ∈ Rn, the pth iterate of

the jth subproblem x
j (ℓ)

p computed by ℓ-shifted lo-BGMRES satisfies∥∥∥A xj (ℓ)
p − bδj

∥∥∥ = min
x∈ Kj p(A,Aℓbδ

j )

∥∥∥Ax− bδj

∥∥∥ , (18)

where Kj p(A,Aℓbδj) = span
{
Aℓbδj ,A

ℓ+1bδj , . . . ,A
ℓ+p−1bδj

}
denotes the jth

Krylov subspace. As in the previous sections, when ℓ = 0 the problem (18)
simplifies to (15). Additionally, we again assume that p is small enough so that
dim( Kj p(A, bδj)) = p.

To utilize the ℓ-shifted lo-BGMRES method, the minimization problem (18)
may be expressed as

min
y∈Rp

∥∥∥∥ R
j (ℓ+1)

ℓ+p+1,py − ∥bδj∥
(

Q
j (ℓ+1)

ℓ+p+1

)T

e1

∥∥∥∥ (19)

for j = 1, 2, . . . , k, where e1 ∈ Rℓ+p+1 is the first unit axis vector. Full details for
the jth subproblem can be found in [11, Section 2]. Denoting the minimizer of

(19) by y
j (ℓ)

p for j = 1, 2, . . . , k, the approximate solution of (14) may be written

as x
j (ℓ)

p = Ṽ
j

ℓ+p Q
j (ℓ)

ℓ+p,p y
j (ℓ)

p . With this, the pth approximate solution of (3) via

the ℓ-shifted lo-BGMRES method is given by X(ℓ)
p =

[
x

1 (ℓ)
p , x

2 (ℓ)
p , . . . , x

k (ℓ)
p

]
.

Algorithm 7 below summarizes the ℓ-shifted lo-BGMRES method. The method
is terminated according to the discrepancy principle.

3. Numerical examples

We illustrate the performance of the aforementioned block GMRES meth-
ods with several examples. As noted in the previous sections, all algorithms
terminate the iterations according to the discrepancy principle. In detail, the
iterations are terminated when the relative residual error is smaller than or
equal to τδ with τ = 1.01 and δ = v which is defined in the first example be-
low. To evaluate the quality of the computed solutions, we compute the relative
reconstructive error (RRE) defined by

RRE
(
X(ℓ)

p

)
=

∥∥∥X(ℓ)
p −X†

∥∥∥∥∥∥X†
∥∥∥ & RRE

(
xj (ℓ)
p

)
=

∥∥∥ x
j (ℓ)

p − x†
∥∥∥

∥x†∥
,

12



Algorithm 7: ℓ-shifted lo-BGMRES (ℓ ≥ 1) with discrepancy principle

Input: A ∈ Rn×n and Bδ ∈ Rn×k

Output: X(ℓ)
p ∈ Rn×k

1 Set V 1 =
[
bδ1/∥b

δ
1∥, b

δ
2/∥b

δ
2∥, . . . , b

δ
k/∥b

δ
k∥
]
& X

(ℓ)
0 = 0;

2 Compute ℓ steps of local block Arnoldi:

A Ṽ
j

ℓ = Ṽ
j

ℓ+1 Hj ℓ+1,ℓ for j = 1, 2, . . . , k;

3 for p = 1, 2, . . . do
4 Compute next local block Arnoldi step:

A Ṽ
j

ℓ+p = Ṽ
j

ℓ+p+1 Hj ℓ+p+1,ℓ+p for j = 1, 2, . . . , k;

5 for j = 1, 2, . . . , k do

6 Compute QR factorization:
[
Q

j (1)
p+1, R

j (1)
p+1,p

]
= Hj p+1,p;

7 for i = 1, 2, . . . , ℓ do
8 Compute QR factorization:[

Q
j (i+1)

i+p+1, R
j (i+1)

i+p+1,i+p

]
= Hj i+p+1,i+p Q

j (i)
i+p,p;

9 end

10 Compute y
j (ℓ)

p as the minimizer of∥∥∥∥ R
j (ℓ+1)

ℓ+p+1,py − ∥bδj∥
(

Q
j (ℓ+1)

ℓ+p+1

)T

e1

∥∥∥∥;
11 Compute x

j (ℓ)
p = Ṽ

j

ℓ+p Q
j (ℓ)

ℓ+p,p y
j (ℓ)

p and update jth column of

X(ℓ)
p with x

j (ℓ)
p ;

12 Compute
∥∥ rj p

∥∥ =
∥∥∥A x

j (ℓ)
p − bδj

∥∥∥;
13 if

∥∥jrp∥∥ ≤ τδ then
14 Stop;
15 end

16 end

17 end
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where X(ℓ)
p and x

j (ℓ)
p denote the solutions determined by the appropriate algo-

rithms at iteration p applied to the block linear and linear systems, respectively.
Here, the Euclidean vector norm and the Frobenius matrix norm are used in
their appropriate contexts. The exact solutions are denoted by X† and x† de-
pending on the context. We refer to the RRE of the pth iterate computed by
the appropriate method terminated by the discrepancy principle as the breakout
RRE value.

To provide a measure of the computational effort required by the block
methods in our examples, we tabulate the number of iterations required by
each method to terminate according to the discrepancy principle. The number
of matrix-vector product evaluations with A may be computed by adding the
shifted quantity ℓ to the tabulated number of iterations and then multiplying
by the number of right-hand sides k for any shifted or unshifted method. While
shifted variants do require additional matrix-block-vector or matrix-vector prod-
ucts with A, they may yield computed approximate solutions with lower RRE
values, as is illustrated in [11, 19, 15].

We consider three Fredholm integral equations of the first kind in one space-
dimension and one linear PDE test problem in two-dimensions as our examples
to facilitate our discussion of important considerations when applying block
GMRES methods. Block linear systems of equations can arise when considering
repeated experimental runs with a linear discrete ill-posed problem with k = 1.
This is the situation we will focus on. We first consider when the norm of the
error in the right-hand side block vector varies between columns and then when
the number of right-hand sides varies. Finally, we will investigate the effect of
the block size k and of the ill-posedness of a problem when applying the 0-shifted
BGMRES method.

Our computational work was carried out in MATLAB R2020b on a MacBook
Pro laptop running MacOS Catalina with an i5 Dual-Core Intel processor with
@2.7 GHz and 8 GB of RAM. The computations were carried out with about
15 significant decimal digits.

(Noise variation) - Our first two examples consider the situation when
the errors in the columns of the right-hand side of the block linear system varies
by some known quantity. The first example will consider the Fredholm integral
equation of the first kind discussed by Phillips in [20] and the second will focus
on an inverse diffusion application utilizing the software package IR Tools [21].
Both examples contain the same number of right-hand sides and have the same
noise contamination to compare the performance of the block methods when the
singular spectra between examples differs. We comment on this further below.

The integral equation due to Phillips is defined by∫ 6

−6

κ (ω, σ) x (σ) dσ = b (ω) , −6 ≤ ω ≤ 6, (20)
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whose solution, right-hand side, and kernel are given by

x (σ) =

{
1 + cos

(
π
3σ

)
if |σ| < 3,

0 otherwise,

b (ω) = (6− |ω|)
(
1 +

1

2
cos

(π
3
ω
))

+
9

2π
sin

(π
3
|ω|

)
,

κ (ω, σ) = x (ω − σ) ,

respectively. The matrix A is obtained by discretizing the integral (20) using a
Nyström method based on a composite trapezoidal quadrature rule with 1000
equidistant nodes [22]. This discretization gives a nonsymmetric matrix A ∈
R1000×1000. Application of these equations are described in [20]. The exact
solution x† of the discretized problem satisfies b = Ax†, where x†, b ∈ R1000. A
vector e ∈ R1000 is formed with normally distributed random entries with zero
mean to simulate noise so that bδ = b+ e; it is scaled so as to correspond to a
specific noise percentage level

v = 100

(
∥e∥
∥b∥

)
.

We will refer to v as the noise level.
For both examples, we consider the situation when the amount of noise in

6 right-hand side vectors varies between 2-3%. For simplicity we add 2% noise
to the first column of the block right-hand side vector and 3% noise to the 6th

column with increasing noise increments of 0.2% for the columns in-between.
We assume that a fairly accurate error bound is known for each right-hand side
so that the discrepancy principle may be used for each right-hand side in the lo-
BGMRES methods. The gl-GMRES and BGMRES type methods may only use
the larger 3% error bound for the entire block system so as to avoid propagating
errors stemming from over-solving some of the right-hand sides with more noise.

With knowledge of the true solutions and the amount of noise in each column
of the block linear system, we computed the mean, minimum, maximum, and
standard deviation (SD) of the breakout RRE values for each block GMRES
method considered using the 6 right-hand sides. These summary statistics along
with the iteration count for each method considered are shown in Table 1 for the
Phillips example. We note that the 1-shifted lo-BGMRES method performed the
best with the smallest mean breakout RRE amongst the block GMRES methods
considered. Figure 1 displays the true solutions of each right-hand side as well as
the best solutions by each of the considered block methods with smallest mean
breakout RRE values. The visually largest variance in the computed solutions
is in the tails.

Our next example is an inverse diffusion problem provided by the software
package IR Tools. The domain for the problem is [0, T ]× [0, 1]× [0, 1], and the
solution u satisfies

∂u

∂t
= ∇2u (21)
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Method Mean RRE Min RRE Max RRE SD RRE Iter.

0-shifted gl-GMRES 0.1171 0.1007 0.1352 0.0130 3
1-shifted gl-GMRES 0.0835 0.0820 0.0852 0.0012 3
2-shifted gl-GMRES 0.0989 0.0983 0.0995 0.0005 3
0-shifted BGMRES 2.1432 1.0494 3.3764 0.8674 2
1-shifted BGMRES 0.1609 0.1570 0.1640 0.0025 1
2-shifted BGMRES 0.0919 0.0905 0.0936 0.0011 1

0-shifted lo-BGMRES 0.1171 0.1007 0.1353 0.0130 3
1-shifted lo-BGMRES 0.0250 0.0235 0.0272 0.0013 4
2-shifted lo-BGMRES 0.0348 0.0258 0.0557 0.0121 4

Table 1: Results for the noise variation Phillips example comparing the accuracy of the block
iterative methods for a block vector of size k = 6 with noise ranging from 2− 3%. The mean,
minimum, maximum, and standard deviation of the RRE values at breakout are provided. In
the case of the lo-BGMRES methods, the maximum number of iterations among the right-
hand sides is presented.

(a) (b)

(c) (d)

Figure 1: Noise variation Phillips example: The true solutions of the Phillips problem are
shown in (a). The highest quality solutions in terms of lowest mean RRE values for (b)
1-shifted gl-GMRES, (c) 1-shifted lo-BGMRES, (d) 2-shifted BGMRES reconstructions at
breakout.

16



with homogeneous Neumann boundary conditions and a smooth function u0

as the initial condition at time t = 0. In the forward problem, u0 is mapped
to uT at time t = T . The forward computation given by the function handle
A is the numerical solution of the PDE (21). It is computed in IR Tools by
the Crank-Nicolson-Galerkin finite element method. The smooth function u is
discretized on a uniform finite element mesh. We set T = 0.01 and denote the
solution of the discretized forward problem by uT ∈ RN . The so obtained noise-
contaminated discrete solution is shown in Figure 2(b) where we have added 2%
noise. The noise is not visible.

The inverse problem is to reconstruct the initial function u0 from uT . Fur-
ther details regarding this kind of problems may be found in [21, 23]. In our
example, the diffusion time was set to T = 0.01, the number of steps to 100, and
the discretization carried out on a 64× 64 grid which gives N = 642. The exact
solution x† = u0 of the discretized problem (21) satisfies Ax† = uT where we
set b = uT .

The discretized initial function u0 is displayed in Figure 2(a). Table 2 pro-
vides the summary statistics and iteration counts for the block methods ap-
plied to the inverse diffusion example. Similarly as for the Phillips problem,
the 1-shifted lo-BGMRES method determines approximate solutions with the
smallest mean breakout RRE value among the block GMRES methods consid-
ered. The solutions for the different right-hand sides computed by the 1-shifted
lo-BGMRES method are shown in Figure 3.

The singular spectra of the matrices A ∈ R1024×1024 from the Phillips and
inverse diffusion problems are displayed in Figure 4. The two problems have
drastically different singular spectra considering that the Phillips problem (green
curve) contains no numerically zero singular values, while the inverse diffusion
problem (magenta curve) contains several. It is noteworthy that both problems
achieved the lowest mean breakout RRE value when using the 1-shifted lo-
BGMRES method. This suggests that the robustness of the method may only
be mildly affected by the severity of ill-posedness of the problem. We note that
the size of the problems were modified from their original definition to make a
comparison of their singular spectra possible.

(Block size variation) - We now turn to the situation when the block size
is varied. Here, the noise level is held fixed at 1%, but the noise realization is
different in each right-hand side. We consider block sizes k = 3, 10, and 50. For
this example our problem is given by the Fredholm integral equation of the first
kind discussed by Shaw in [24]. The integral equation is defined by∫ π

2

−π
2

κ (ω, σ) x (σ) dσ = b (ω) , −π

2
≤ ω ≤ π

2
, (22)

with kernel

κ (ω, σ) =
(
cos (σ) + cos (ω)

)(
sin (ζ)

ζ

)2

,

where
ζ = π

(
sin(σ) + sin(ω)

)
.
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(a) (b)

Figure 2: Noise variation inverse diffusion example: (a) true solution u0 (N = 642) and (b)
the solution of the forward problem uT=0.01 with 2% added noise (N = 642).

Method Mean RRE Min RRE Max RRE SD RRE Iter.

0-shifted gl-GMRES 0.4543 0.4209 0.4786 2.4× 10−2 6
1-shifted gl-GMRES 0.4140 0.4129 0.4151 8.8× 10−4 8
2-shifted gl-GMRES 0.4183 0.4175 0.4190 5.9× 10−4 11
0-shifted BGMRES 2.5521 2.3410 2.9763 2.4× 10−1 4
1-shifted BGMRES 0.3934 0.3916 0.3960 1.7× 10−3 5
2-shifted BGMRES 0.4515 0.4486 0.4540 2.2× 10−3 5

0-shifted lo-BGMRES 0.4698 0.4370 0.4941 2.0× 10−2 6
1-shifted lo-BGMRES 0.3888 0.3875 0.3903 1.2× 10−3 11
2-shifted lo-BGMRES 0.3956 0.3879 0.4091 1.0× 10−2 12

Table 2: Results for the noise variation inverse diffusion example comparing the accuracy of
the block iterative methods for a block vector of size k = 6 with noise ranging from 2% to 3%.
The mean, minimum, maximum, and standard deviation of the RRE values at breakout are
provided. In the case of the lo-BGMRES methods, the maximum number of iterations among
the right-hand sides is presented.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Noise variation inverse diffusion example: Lowest mean RRE approximate solutions
determined by 1-shifted lo-BGMRES with noise levels (a) 2%, (b) 2.2%, (c) 2.4%, (d) 2.6%,
(e) 2.8%, and (f) 3%.
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Figure 4: Noise variation example: Singular values of the system matrices of size 1024×1024
for the Phillips problem (green curve) and for the inverse diffusion problem (magenta curve).

The matrix A is again obtained by discretizing the integral (22) using the same
Nyström method that was used to discretize equation (20). This gives a non-
symmetric matrix A ∈ R1000×1000. The right-hand side function b(ω) is chosen
so that the solution x(σ) is the sum of two Gaussian functions. Applications of
this equation are described in [24].

The basic summary statistics of the breakout RRE values and iteration
counts for this example are shown in Table 3 for the methods considered. In the
case when k = 3, the mean RRE values for all 2-shifted methods are competi-
tive, with 2-shifted BGMRES performing the best. However, we found that as
the number of right-hand sides increases to 10, the BGMRES methods perform
poorly, while the lo-BGMRES and gl-GMRES variants still tend to be compet-
itive. Finally, when k = 50 the mean RRE values of the BGMRES methods fail
to be relevant, while the 2-shifted lo-BGMRES performs the best on average
amongst the methods considered.

The iteration count for the BGMRES methods decreased as k was increased
from 3 to 10. We have found this behavior to hold for various discrete ill-
posed problems as the block size increases. Furthermore, we found (not shown
here) that an additional forced iteration with the BGMRES methods is usually
perilous to the RRE values, indicating that the discrepancy principle is a suitable
termination criterion for the BGMRES methods.

(Ill-conditioning) - Our final example seeks to shed light on the poor
performance of the BGMRES methods in the last example when k ≥ 3. As we
saw, the larger the block size, the larger the mean RRE values of the solutions
computed by the BGMRES methods. We offer the explanation that as the block
size increases, the conditioning of the block Hessenberg matrix H determined
by BGMRES also increases.

To illustrate this observed behavior, we consider the Fredholm integral equa-
tion of the first kind∫ π

0

κ (ω, σ) x (σ) dσ = b (ω) , 0 ≤ ω ≤ π

2
, (23)
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Method Mean RRE Min RRE Max RRE SD RRE Iter.

k = 3

0-shifted gl-GMRES 0.1566 0.1561 0.1575 0.0007 6
1-shifted gl-GMRES 0.1216 0.1212 0.1223 0.0006 5
2-shifted gl-GMRES 0.0603 0.0529 0.0692 0.0083 7
0-shifted BGMRES 0.5603 0.4655 0.6772 0.1075 3
1-shifted BGMRES 0.2017 0.1574 0.2606 0.05314 2
2-shifted BGMRES 0.0543 0.0533 0.0554 0.0011 2

0-shifted lo-BGMRES 0.1789 0.1244 0.2652 0.0756 6
1-shifted lo-BGMRES 0.1215 0.1209 0.1223 0.0007 5
2-shifted lo-BGMRES 0.0926 0.0599 0.1484 0.0486 6

k = 10

0-shifted gl-GMRES 0.1278 0.1252 0.1312 0.0021 6
1-shifted gl-GMRES 0.1228 0.1204 0.1256 0.0017 5
2-shifted gl-GMRES 0.1448 0.1346 0.1552 0.0067 6
0-shifted BGMRES 15.370 1.9556 30.258 9.7273 2
1-shifted BGMRES 14.979 6.9506 26.310 7.1952 1
2-shifted BGMRES 0.3602 0.0896 0.6828 0.1994 1

0-shifted lo-BGMRES 0.2198 0.1226 0.3616 0.0994 5
1-shifted lo-BGMRES 0.1226 0.1199 0.1253 0.0018 5
2-shifted lo-BGMRES 0.1190 0.0562 0.1484 0.0397 5

k = 50

0-shifted gl-GMRES 0.1266 0.1121 0.1375 0.0052 6
1-shifted gl-GMRES 0.1228 0.1090 0.1345 0.0050 5
2-shifted gl-GMRES 0.1448 0.1327 0.1589 0.0073 6
0-shifted BGMRES 9.9× 108 1.0× 108 3.5× 109 6.7× 108 2
1-shifted BGMRES 1.3× 109 1.2× 108 4.7× 109 8.1× 108 1
2-shifted BGMRES 7.2× 104 1.7× 104 1.8× 105 3.8× 104 1

0-shifted lo-BGMRES 0.2593 0.1157 0.3774 0.0929 6
1-shifted lo-BGMRES 0.1315 0.1144 0.2175 0.0246 5
2-shifted lo-BGMRES 0.1149 0.0529 0.1619 0.0369 5

Table 3: Results for the block size variation example that compare the accuracy of the block
iterative methods for block vector sizes k = 3, 10, and 50 with 1% noise. The mean, minimum,
maximum, and standard deviation of the RRE values at breakout are shown. In the case of
the ℓ-shifted lo-BGMRES methods, the maximum number of iterations among the right-hand
sides is displayed.
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with κ (ω, σ) = exp
(
ω cos (σ)

)
, b (ω) = 2 sinh(ω)/ω, and x (σ) = sin (σ). This

equation is discussed by Baart in [25]. The matrix A is obtained by discretizing
the integral (23) using a Galerkin method with 1000 orthonormal box functions
as test and trial functions; see [26]. This discretization gives a nonsymmetric
matrix A ∈ R1000×1000 and a scaled discrete approximation x† ∈ R1000 such
that Ax† = b with b ∈ R1000.

We will explore the conditioning of the upper block Hessenberg matrices
H determined by the BGMRES methods using the three Fredholm integral
problems from this section, where we refer to specific problems by the name of
the authors: Phillips, Shaw, and Baart. Specifically, we determine the condition
number of the final upper block Hessenberg matrix at breakout of the 0-shifted
BGMRES method for all three problems for different block sizes.

The condition number of a general matrix M ∈ Rm×n with m ≥ n is given
by σ1/σn, where σ1 ≥ σ2 ≥ . . . ≥ σn are the singular values of M . For each of
the problems will keep the noise level fixed at 1%, and use different realizations
of the noise, similarly as in the previous examples.

Figure 5(a) shows the block size of the specified problem in color solved by
0-shifted BGMRES versus the condition number of the upper block-Hessenberg
matrix upon termination of the method by the discrepancy principle. We recall
that the mean RRE results from the previous example for Shaw when k = 10
or k = 50 were both poor, with k = 50 significantly worse. From this plot we
notice that the computed condition numbers for the Shaw problem with k = 10
and k = 50 are approximately 105 and 1016, respectively. The latter value is
likely affected by the use of finite-dimensional arithmetic with about 15 decimal
digits. The condition number for the matrices of the Baart problem increases
rapidly with k; the increase is much slower for matrices associated with the
Phillips problem. In general, the worse the conditioning of the matrix of a
linear system of equations, the more sensitive is the computed solution to errors
in the right-hand side.

The singular values of the matrices A ∈ R1000×1000 for each problem are
shown in Figure 5(b). One can see that Baart (blue curve) has only few singular
values that are not numerically zero, Shaw (red curve) has more singular values
that are not numerically zero, and Phillips (green curve) has no tiny singular
value. The computed smallest singular value for Phillips is approximately 10−7,
while that for Baart and Shaw are 10−16; the latter value is likely affected by the
fact that arithmetic is carried out with about 15 significant decimal digits. The
plots in Figure 5 suggest that severely ill-posed problems solved by BGMRES
methods are vulnerable to ill-conditioning issues already when the block size is
modest (4-10).

4. Conclusions

We considered several aspects of the application of block GMRES methods
to the solution of linear discrete ill-posed problems when there is more than
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Figure 5: Ill-conditioning example: (a) Block size vs. condition number of the block upper-
Hessenberg matrix for the Shaw (red triangles), Phillips (green circles), and Baart (blue stars)
problems. (b) Singular values of the matrices of the Shaw (red curve), Phillips (green curve),
and Baart (blue curve) problems.

one right-hand side. In particular, we explored the performance of block meth-
ods when the right-hand sides of a block linear system are contaminated by
noise of various norm and when the block size is varied. We showed that our
new lo-BGMRES methods can provide superior RRE compared to both the
gl-GMRES and BGMRES type methods. Additionally, we illustrated that the
condition number of the upper block-Hessenberg matrix of the 0-shifted BGM-
RES method is a function of the block size and the severity of the ill-posedness
of the underlying problem.
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