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Abstract

The reduction of a large-scale symmetric linear discrete ill-posed problem with mul-
tiple right-hand sides to a smaller problemwith a symmetric block tridiagonal matrix
can easily be carried out by the application of a small number of steps of the sym-
metric block Lanczos method. We show that the subdiagonal blocks of the reduced
problem converge to zero fairly rapidly with increasing block number. This quick
convergence indicates that there is little advantage in expressing the solutions of
discrete ill-posed problems in terms of eigenvectors of the coefficient matrix when
compared to using a basis of block Lanczos vectors, which are simpler and cheaper to
compute. Similarly, for nonsymmetric linear discrete ill-posed problems with multi-
ple right-hand sides, we show that the solution subspace defined by a few steps of the
block Golub–Kahan bidiagonalization method usually can be applied instead of the
solution subspace determined by the singular value decomposition of the coefficient
matrix without significant, if any, reduction of the quality of the computed solution.
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1 INTRODUCTION

Consider the minimization problem
min
X∈ℝn×p

‖AX − B‖F . (1)

with a large matrix A ∈ ℝl×n, whose singular values gradually approach zero without significant gap. Thus, A is very ill-
conditioned and may be rank deficient. The data matrix B ∈ ℝl×p with 1 < p ≪ l is a “block vector” with many more rows
than columns. The Frobenius norm ‖M‖F of a matrixM is defined as follows. For two matricesM1,M2 ∈ ℝn×p, we introduce
the inner product

⟨M1,M2⟩F = trace(MT
1 M2) ,

where the superscript T denotes transposition and trace(⋅) stands for the trace of a square matrix. Then

‖M‖F =
√

⟨M,M⟩F .

The usual inner product of elements u, v ∈ ℝn is denoted by ⟨u, v⟩2 = uT v and the Euclidean norm by ‖u‖2 =
√

⟨u, u⟩. Finally,
in the following,(M) stands for the range of the matrixM .

†This is an example for title footnote.
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Minimization problems like the one appearing in equation (1) with a matrix with the properties described are commonly
referred to as discrete ill-posed problems; see, e.g.,11 and the references therein. They arise, for instance, from the discretization
of linear ill-posed problems, such as Fredholm integral equations of the first kind. Applications include color and hyperspectral
image restoration; see, e.g.,2, 13.
In discrete ill-posed problems of the form (1) that arise in applications in science and engineering, the matrix B typically

represents measured data that are contaminated by an error E ∈ ℝl×p. Thus,

B = Btrue + E, (2)

where Btrue ∈ ℝl×p represents the (unknown) noise-free block vector associated with B. We would ideally like to compute an
approximation of the solution Xtrue ∈ ℝn×p of minimal Frobenius norm of the minimization problem

min
X∈ℝn×p

‖AX − Btrue‖F .

Let A† denote the Moore–Penrose pseudoinverse of the matrix A. Then, Xtrue = A†Btrue. Note that the solution of (1), given
by

X ∶= A†B = A†(Btrue + E) = Xtrue + A†E,

is not a useful approximation of Xtrue because, generally, ‖A†E‖F ≫ ‖Xtrue‖F due to the presence of tiny positive singular
values of A.
The computation of a meaningful approximation ofXtrue from (1) requires that the system be regularized before solution, i.e.,

the system (1) has to be modified so that its solution is less sensitive to the errorE inB than the solution of (1). We regularize the
system (1) in two steps: firstA is projected to a generally fairly small block tridiagonal or block bidiagonal matrix by application
of a few iterations of the block Lanczos tridiagonalization (BLT) algorithm to A (when A is symmetric) or of the block Golub–
Kahan bidiagonalization (BGKB) algorithm (when A is non-symmetric), respectively; then the reduced problem so obtained is
solved by Tikhonov regularization. Discussions of these block algorithms for discrete inverse problems of the form (1) can be
found in1 and10, Section 10.3.6 (for BLT), and2 (for BGKB), as well as in Section 2. Also, recent advances in understanding the
convergence behavior of block Krylov methods based on the Arnoldi algorithm can be found in16, where ways of constructing
matrices and right-hand sides producing any admissible convergence behavior are presented. The point of view adopted in this
paper is fundamentally different, as the derivations presented here are targeted at problems of the kind (1). Indeed, it is the
purpose of this paper to discuss the structure and properties of the block tridiagonal and block bidiagonal matrices determined
by the BLT or BGKB algorithms, respectively, and to show the performance of Tikhonov regularization used jointly with these
decompositions.
This paper is organized as follows. Section 2 reviews some background material, namely: first, summaries are given about

the BLT method for symmetric matrices A and the BGKB algorithm for non-symmetric, possibly rectangular, matrices A;
then, a description is added about how Tikhonov regularization can be applied to solve the reduced problems obtained by such
algorithms. Section 3 presents new theoretical bounds for the diagonal and subdiagonal BLT and BGKB blocks when A stems
from the discretization of a linear ill-posed problem. A few computed examples are presented in Section 4. Finally, Section 5
contains concluding remarks.

2 BLOCK ALGORITHMS AND TIKHONOV REGULARIZATION

Summaries of the BLT and BGKB algorithms are given in Sections 2.1 and 2.2, respectively. A solution method based on
Tikhonov regularization applied to the projected problems associated to BLT and BGKB is described in Section 2.3.

2.1 Block Lanczos tridiagonalization (BLT)
Let A ∈ ℝn×n be a symmetric matrix and let B = X1S1 be a compact QR factorization of B ∈ ℝn×p with 1 ≤ p ≪ n, where
X1 ∈ ℝn×p has orthonormal columns and S1 ∈ ℝp×p is upper triangular. Then, application of m ≪ n∕p steps of the block
Lanczos method to A with initial block vector X1 yields a decomposition of the form

AQm = Qm+1Tm+1,m, (3)
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where the block columns of Qm = [X1,… , Xm] ∈ ℝn×pm and Qm+1 = [Qm, Xm+1] ∈ ℝn×p(m+1) are such that Xi ∈ ℝn×p and

XT
i Xj =

{

Ip, i = j,
Op, i ≠ j,

for i, j = 1, 2,… , m + 1. Here Ip ∈ ℝp×p denotes the identity matrix and Op ∈ ℝp×p the zero matrix. Moreover, the matrix

Tm+1,m =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M1 ST2
S2 M2 ST3

S3 M3 ⋱
⋱ ⋱ STm−1

Sm−1 Mm−1 STm
Sm Mm

Sm+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝp(m+1)×pm, (4)

is block tridiagonal with a leading symmetric pm × pm submatrix, which we denote by Tm,m. The diagonal blocksMi ∈ ℝp×p,
i = 1, 2,… , m, are symmetric, and the subdiagonal blocks Sj ∈ ℝp×p, j = 2, 3,… , m + 1, are upper triangular. We tacitly
assume that m is small enough so that the decomposition (3) exists and can be computed as summarized in Algorithm 1.

Algorithm 1 Block Lanczos tridiagonalization (BLT).
Input: A, B, m.
1. Compute the compact QR factorization B = X1S1.
2.M1 = XT

1 AX1.
3. B2 = AX1 −X1M1.
4. Compute the compact QR factorization B2 = X2S2.
5. For j = 2,… , m

(a)Mj = XT
j AXj .

(b) Bj+1 = AXj −XjMj −Xj−1STj .
(c) Compute the compact QR factorization Bj+1 = Xj+1Sj+1.

6. EndFor
Output: Block Lanczos decomposition (3)

The block columns Xi, i = 1, 2,… , m, of the matrix Qm form an orthonormal basis for the block Krylov subspace

Km(A,X1) = span{X1, AX1, A
2X1,… , Am−1X1}, m ⩾ 1.

An approximate solution of (1) can be computed by the truncated block Lanczos tridiagonalization method as follows:
compute the solution Ym ∈ ℝpm×p of the small minimization problem on the right-hand side of

min
X∈Km(A,X1)

‖AX − B‖F = min
Y∈ℝpm×p

‖Tm+1,mY − E1S1‖F , (5)

where E1 = [Ip, Op,… , Op]T ∈ ℝp(m+1)×p. Then, X̂m ∶= QmYm is the solution of the large minimization problem on the left-
hand side of (5), as well as an approximate solution of (1). By choosing m suitably small, we can ensure that the matrix Tm+1,m
is of full rank and that the effect of the error E in B on the computed solution X̂m is smaller than if we attempt to solve the
original problem (1). The latter is a consequence of the fact that the condition number of Tm+1,m, given by

�(Tm+1,m) ∶= ‖Tm+1,m‖2‖T
†
m+1,m‖2,

is an increasing function of m. Here and below ‖ ⋅ ‖2 denotes the spectral norm of a matrix. A large condition number indicates
that the solution Ym of the problem on the right-hand side of (5) is very sensitive to errors in the data as well as to round-off
errors introduced during the computations. In Section 3 we will discuss properties of the block tridiagonal matrix Tm+1,m, and in
Section 2.3 how to stabilize the solution process by Tikhonov regularization; the solution method so obtained does not require
the matrix Tm+1,m to be of full rank.
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2.2 Block Golub–Kahan bidiagonalization (BGKB)
A large nonsymmetric and possibly rectangular matrix A ∈ ℝl×n can be reduced to a small lower block bidiagonal matrix by
application of a few steps of the block Golub–Kahan bidiagonalization (BGKB) algorithm. This reduction method can be used
to determine an approximate solution of the minimization problem

min
X∈ℝn×p

‖AX − B‖F , (6)

where the block vector B ∈ ℝl×p is error-contaminated and can be written as (2). We assume for notational simplicity that
1 ⩽ n ⩽ l. Introduce the compact QR factorization B = P1R1, where P1 ∈ ℝl×p has orthonormal columns and R1 ∈ ℝp×p is
upper triangular. Then,m ≪ n∕p steps of the BGKB algorithm applied toAwith initial block vector P1 give the decompositions

AWm = Um+1Cm+1,m, ATUm = WmC
T
m,m, (7)

where the matrices Um+1 = [P1,… , Pm+1] ∈ ℝl×p(m+1) andWm = [Z1,… , Zm] ∈ ℝn×pm have orthonormal columns and

Cm+1,m =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

L1
R2 L2

⋱ ⋱
Rm Lm

Rm+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝp(m+1)×pm

is lower block bidiagonal with lower triangular diagonal blocks Lj ∈ ℝp×p and upper triangular subdiagonal blocks Rj ∈ ℝp×p.
The matrix Um consists of the m first block columns of Um+1, and Cm,m is the pm × pm leading principal submatrix of Cm+1,m.
We assume that the number of steps, m, is small enough so that the decompositions (7) with the stated properties exists. The
main steps required to compute these decompositions are summarized in Algorithm 2.

Algorithm 2 Block Golub–Kahan bidiagonalization (BGKB).
Input: A, B, m
1. Compute the compact QR factorization B = P1R1
2. F1 = ATP1
3. Compute the compact QR factorization F1 = Z1LT1
4. For j = 1,… , m

(a)Hj = AZj − PjLj
(b) Compute the compact QR factorizationHj = Pj+1Rj+1
(c) If j < m

i. Fj+1 ∶= ATPj+1 −ZjRTj+1
ii. Compute the compact QR factorization Fj+1 = Zj+1LTj+1

(c) EndIf
4. EndFor
Output: Block Golub–Kahan decompositions (7)

We will use the connection between the BGKB of A and the BLT of ATA in our analysis of the decompositions (3) and (7).
Multiplying the left-hand side decomposition of (7) by AT from the left-hand side gives

ATAWm = ATUm+1Cm+1,m = Wm+1 C
T
m+1,m+1Cm+1,m

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=∶Tm+1,m

. (8)

Thus, this decomposition is analogous to (3). In particular, the matrix Tm+1,m is block tridiagonal with block size p × p and its
leading pm × pm submatrix is symmetric. We conclude that (8) is a block Lanczos tridiagonalization of ATA with initial block
vectorZ1. Since Tm+1,m is block tridiagonal, equation (8) shows that the block columnsZj ofWm satisfy a three-term recurrence
relation. Moreover, the block columns Z1, Z2,… , Zm form an orthonormal basis for the block Krylov subspace

Km(ATA,ATP1) = span{ATP1, (ATA)ATP1,… , (ATA)m−1ATP1}, m ⩾ 1.
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The block LSQR method applied to the solution of (6) solves at step m the minimization problem

min
X∈Km(ATA,AT P1)

‖AX − B‖F = min
Y∈ℝpm×p

‖Cm+1,mY − E1R1‖F , (9)

where the right-hand side is obtained by substituting decomposition (7) into the left-hand side. Assume for the moment that
the matrix Cm+1,m is of full rank, and denote the solution of the problem appearing on the right-hand side of (9) by Ym. Then,
X̂m = WmYm is the solution of the problem appearing on the left-hand side of (9), which is an approximate solution of (6).

2.3 Tikhonov regularization
The block tridiagonal or lower block bidiagonal matrices in the reduced problems (5) and (9), respectively, might be numerically
rank deficient. This often is the case when these matrices are large, because the singular values of the matrix A “cluster” at the
origin. It follows that the reduced problems may have to be regularized before solution. We will apply Tikhonov regularization
to the reduced problems obtained by BLT and BGKB; we provide details for the former only (i.e., for the problem appearing on
the right-hand side of (5)). Tikhonov regularization applied to this setting gives a minimization problem of the form

min
Y∈ℝpm×p

{

‖Tm+1,mY − E1S1‖2F + �‖Y ‖
2
F

}

. (10)

For a given value of the regularization parameter � > 0, the solution of (10) can be expressed as

Y� =
(

T Tm+1,mTm+1,m + �I
)−1

T Tm+1,mE1S1. (11)

There are several techniques for determining a suitable value of �, including the discrepancy principle, generalized cross valida-
tion, and the L-curve criterion; see4, 5, 7, 9, 14, 15, 18 for discussions on these and other methods. In the computed examples of this
paper, we will use the discrepancy principle, which was first discussed by Morozov in17. This approach to determine � requires
that a bound for the error E in B, cf. (2), be known,

‖E‖F ≤ �,

and prescribes that � > 0 be chosen so that the solution (11) of (10) satisfies

‖Tm+1,mY� − E1S1‖F = ��, (12)

where � > 1 is a user-chosen constant that is independent of �; when the available estimate of ‖E‖F is deemed accurate, the
parameter � is generally chosen to be close to unity. We note that there is a � > 0 that satisfies (12) only if the number of steps,
m, is large enough. It follows from (10) that � → ‖Tm+1,mY� − E1S1‖F is an increasing function of � ≥ 0. In our examples, we
choose m as small as possible so that ‖Tm+1,mY� −E1S1‖F < ��. Then a zero-finder is applied to solve (12) for � > 0; see2 for
further details. Thus, the discrepancy principle is used both to determine the number of steps m and � > 0.
Similar derivations and analogous expressions for the norm of the residual errors can be obtained when applying the BGKB

algorithm.

3 BLT AND BGKB APPLIED TO LINEAR DISCRETE ILL-POSED PROBLEMS

This section first discusses the convergence of the subdiagonal and diagonal block entries of the matrices Tm+1,m and Cm+1,m
in (3) and (7), respectively, with increasing block index. Unless otherwise stated, and with a slight abuse of notation, here and
in the following, we will denote by A the square matrix of order n + q, whose leading principal submatrix of order n is the
coefficient matrix A appearing in (3), padded with 0 ≤ q < p rows and columns of zeros, where p is the block size used in the
block Lanczos or block Golub–Kahan algorithms. For A symmetric, the following proofs use the spectral factorization

A =ΛT , (13)

where the matrix = [w1, w2,… , wn+q] ∈ ℝ(n+q)×(n+q) is orthogonal and

Λ = diag[�1, �2,… , �n+q] ∈ ℝ(n+q)×(n+q), |�1| ≥ |�2| ≥⋯ ≥ |�n+q| ≥ 0. (14)

We will use the notation
Ei = [Op,… , Op, Ip, Op,… , Op]T ∈ ℝ(n+q)×p, i = 1, 2,… , r,

where Ip is the ith block, and where 0 < r ∶= (n + q)∕p with q being the smallest non-negative integer such that r ∈ ℕ.
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Theorem 1. Assume that the block Lanczos method applied to the symmetric and positive semidefinite matrixA ∈ ℝ(n+q)×(n+q)

with initial block matrix X1 ∈ ℝ(n+q)×p with orthonormal columns does not break down, i.e., that r ∶= (n + q)∕p steps of
the method can be carried out. Let the eigenvalues of A be ordered according to (14), and let S2, S3,… , Sm+1, m ≤ r, be the
subdiagonal blocks of the matrix Tm+1,m determined by m steps of the block Lanczos methods; cf. (4). Define Sr+1 = Op. Then,

‖Sm+1Sm⋯S2‖2 ≤
m
∏

j=1
�j , m = 1, 2,… , r. (15)

Proof. Introduce the monic polynomial pm(t) =
∏m

j=1(t − �j) defined by the m largest eigenvalues of A. Using the spectral
factorization (13), we obtain

‖pm(A)‖2 = ‖pm(Λ)‖2 = max
m+1≤j≤n+q

|pm(�j)| ≤ |pm(0)| =
m
∏

j=1
�j ,

where the inequality follows from the fact that all �j are nonnegative. Hence,

‖pm(A)X1‖2 ≤ ‖pm(A)‖2 ⋅ ‖X1‖2 = ‖pm(A)‖2 ≤
m
∏

j=1
�j . (16)

Application of r steps of the block Lanczos method gives the decomposition A = QrTr,rQT
r , where Tr,r ∈ ℝ(n+q)×(n+q) is

symmetric block tridiagonal. We have

pm(A)X1 = pm(QrTr,rQ
T
r )X1 = Qrpm(Tr,r) QT

r X1 = Qrpm(Tr,r)E1.

Thus,
‖pm(A)X1‖2 = ‖pm(Tr,r)E1‖2 ≥ ‖ET

m+1pm(Tr,r)E1‖2. (17)
The above inequality follows by direct computations. We are going to show by induction over m that

ET
m+1pm(Tr,r)E1 = Sm+1Sm⋯S2, (18)

for any m < r. When m = 1, equation (18) becomes

ET
2 (Tr,r − �1In+q)E1 =

[

S2, (M2 − �1Ip), ST3 , Op, ⋯ , Op
]

E1 = S2.

When m = 2, let us consider
ET
3 (Tr,r − �2In+q)(Tr,r − �1In+q)E1. (19)

The first two factors in (19) are

ET
3 (Tr,r − �2In+q) =

[

Op, S3, (M3 − �2Ip), ST4 , Op, ⋯ , Op
]

= S3ET
2 + (M3 − �2Ip)ET

3 + S
T
4 E

T
4 ,

while the remaining two factors are

(Tr,r − �1In+q)E1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

M1 − �1Ip
S2
Op
⋮
Op

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= (M1 − �1Ip)E1 + S2E2.

It follows that the expression (19) can be written as
(

S3E
T
2 + (M3 − �2Ip)ET

3 + S
T
4 E

T
4
) (

(M1 − �1Ip)E1 + S2E2
)

= S3S2.

More generally, by induction, assume that (18) is valid for 2 ≤ m < r − 1. This means

ET
m+1pm(Tr,r)E1 = Sm+1Sm⋯S2. (20)

We would like to show that (18) is valid for 2 ≤ m + 1 < r. From

ET
m+2pm+1(Tr,r)E1 = E

T
m+2(Tr,r − �m+1In+q)pm(Tr,r)E1

=
(

Sm+2E
T
m+1 + (Mm+2 − �m+1Ip)ET

m+2 + S
T
m+3E

T
m+3

)

pm(Tr,r)E1
= Sm+2ET

m+1pm(Tr,r)E1 (since pm(Tr,r) is (2m + 1)-block-banded)
= Sm+2Sm+1Sm⋯S2, (by (20))
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it follows that
ET
m+2pm+1(Tr,r)E1 = Sm+2Sm+1⋯S2.

Hence, (18) is valid. Combining (16), (17) and (18) proves the theorem.

We are interested in problems for which the right-hand side of (15) decreases to zero an m increases. This holds for all
symmetric linear discrete ill-posed problems that we have encountered in various applications. It depends on that the eigenvalues
of A “cluster” at the origin. In fact, we found the bound (15) to be quite sharp. We give a numerical illustration of the latter in
Section 4.

Corollary 1. Let thematrixA ∈ ℝ(n+q)×(n+q) be symmetric and positive semidefinite. Assume that the eigenvalues ofA “cluster”
at the origin so that the right-hand side of (15) decreases to zero as m increases, and that the block Lanczos method applied to
A with initial block vector X1 with orthonormal columns does not break down. Further, assume that, for all j > s,

‖Sj‖2
min
1⩽i⩽s

‖Si‖2
⩽ C (21)

for some constant C independent of j and s. Then, both the diagonal and subdiagonal block matricesMj and Sj of the block
tridiagonal Lanczos matrix Tr,r, defined by (3), converge to Op as j increases.

Proof. We first remark that when we let the index j increase in (21), we also may have to increase m in (3). By Theorem 1, we
have the bound

‖Sm+1Sm⋯S2‖2 ≤
m
∏

j=1
�j .

The product
∏m

j=1 �j converges to zero as m increases. It follows that ‖Sm+1Sm⋯S2‖2 converges to zero as m increases.
Therefore,

Sm+1Sm⋯S2 → Op, as m→∞.

In view of (21), the subdiagonal blocks Sj of Tr,r approach Op as j increases.
We turn to the block diagonal entriesMj of the matrix Tr,r. Let � > 0 be arbitrarily small. Since A = QrTr,rQT

r , the matrices
A and Tr,r are similar. Therefore, the eigenvalues of matrix Tr,r “cluster” at the origin, which is the only cluster point. Split the
matrix Tr,r = T̃j,j + Ẽj , where

T̃j,j =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M1 ST2
S2 M2 ST3

⋱ ⋱ ⋱
Sj−1 Mj−1 STj

Sj Mj Op
Op ⋱ ⋱

⋱ Op
Op Mr−1 Op

Op Mr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Ẽj =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

O

Op STj+1
Sj+1 Op ⋱

⋱ ⋱
Op STr
Sr Op

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and j is chosen so that ‖Ẽj‖2 ≤ �. Thus, T̃j,j is a symmetric block tridiagonal matrix, which is obtained by setting the subdiagonal
blocks of Tr,r in the block rows j + 1, j + 2,… , r to zero (the corresponding superdiagonal blocks also are set to zero). The
matrix Ẽj contains the blocks set to zero in Tr,r.
Since the eigenvalues of Tr,r “cluster” at the origin, it follows from the Bauer–Fike theorem that the eigenvalues of the matrix

T̃j,j “cluster” in the interval [−�, �]. For some � > 0 arbitrarily small, there is an index s, depending on �, such that all eigenvalues
of the blocksMk are in the interval [−� − �, � + �] for all k ≥ s. Hence, ‖Mk‖2 ≤ � + � for all k ≥ s. Since � and � can be
chosen arbitrarily small, this shows that the diagonal blocksMj converge to the zero matrix as j increases.

Corollary 1 is stated in8 for block size p = 1 without the condition (21). Numerical experiments with a large number of
discrete ill-posed problems indicate that this condition does not have to be imposed. We conjecture that this is the case.
The following example illustrates that condition (21) is required if the matrix A is not a discretization of an ill-posed operator

equation.
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Example. Let p = 1 and consider the symmetric tridiagonal matrix T2m with subdiagonal entries S2j = 1, j = 1, 2,… , m,
and S2j+1 = 10−j , j = 1, 2,… , m − 1, and diagonal entriesMj equal to the sum of the subdiagonal and superdiagonal entries
in the same row. Then, T2m satisfies the conditions of Corollary 1 except for (21). Its eigenvalues cluster at the origin and at 2.
Since the eigenvalues of T2m cluster at two points, the matrix is not a discretization of a linear operator of an ill-posed problem.
Neither the diagonal nor subdiagonal entries of T2m converge to zero for increasing index number as m increases. □

We observe that the decrease of the subdiagonal blocks Sj of Tr,r to the zero matrix follows from the clustering of the
eigenvalues of A. It is not necessary that they cluster at the origin. This can be seen by replacing the matrix A in Corollary 1 by
A + cIn for some constant c ∈ ℝ.
We turn to symmetric indefinite matrices.

Theorem 2. Let the eigenvalues {�j}
n+q
j=1 of the symmetric matrix A ∈ ℝ(n+q)×(n+q) be ordered according to (14). Assume that

the block Lanczos method applied to A with initial matrix X1 does not break down. Then

‖Sm+1Sm⋯S2‖2 ≤
m
∏

j=1
( |�m+1| + |�j|), m = 1, 2,… , r − 1. (22)

Proof. Let pm(t) be the monic polynomial of the proof of Theorem 1. Then, just like in that proof

‖pm(A)‖2 = ‖pm(Λ)‖2 = max
m+1≤j≤n+q

|pm(�j)|.

Due to the ordering (14), it follows that the eigenvalues �m+1, �m+2,… , �n+q are contained in the interval [−|�m+1|, |�m+1|]. Thus,

‖pm(A)‖2 = max
m+1≤j≤n+q

|pm(�j)| ⩽ max
−|�m+1|≤t≤|�m+1|

|pm(t)| = max
−|�m+1|≤t≤|�m+1|

m
∏

k=1
|t − �k|

⩽ max
−|�m+1|≤t≤|�m+1|

m
∏

k=1
(|t| + |�k|) =

m
∏

k=1
(|�m+1| + |�k|).

Therefore,

‖pm(A)X1‖2 ≤ ‖pm(A)‖2 ⋅ ‖X1‖2 ⩽
m
∏

k=1
( |�m+1| + |�k| ).

Also, we have shown in (18) that

‖pm(A)X1‖2 ≥ ‖ET
m+1pm(Tr,r)E1‖2 = ‖Sm+1Sm⋯S2‖2.

Hence,
m
∏

k=1
( |�m+1| + |�k| ) ⩾ ‖pm(A)X1‖2 ⩾ ‖Sm+1Sm⋯S2‖2.

Assume that the eigenvalues of A cluster at the origin. Then, Theorem 2 shows that the quantity ‖Sm+1Sm⋯S2‖2 decreases
to zero, because the factors |�m+1| + |�k| decrease to zero as m and k increase, with 1 ⩽ k ⩽ m. Moreover, the more block
Lanczos steps are taken, the tighter is the bound for the norm of the product of the subdiagonal block matrices of the matrix Tr,r.
We can obtain sharper bounds if more information about the spectrum of A is available. For instance, if all but a few eigen-

values of A are known to be nonnegative, then only factors with negative eigenvalues have to be modified as in Theorem 2,
resulting in improved bounds for ‖Sm+1Sm⋯S2‖2. In the next corollary, we derive a simpler, but cruder, bound than (22).

Corollary 2. Let the eigenvalues {�j}
n+q
j=1 of the symmetric matrix A ∈ ℝ(n+q)×(n+q) be ordered according to (14). Assume that

the block Lanczos method applied to A with initial block vector X1 with orthonormal columns does not break down. Then

‖Sm+1Sm⋯S2‖2 ≤
m
∏

k=1
(2|�k|), m = 1, 2,… , r − 1.

Proof. By Theorem 2, since |�m+1| ≤ |�k| for 1 ≤ k ≤ m, we have

‖Sm+1Sm⋯S2‖2 ≤
m
∏

k=1
(|�m+1| + |�k|) ≤

m
∏

k=1
(|�k| + |�k|) =

m
∏

k=1
(2|�k|).
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A block vector X ∈ ℝ(n+q)×p is said to be invariant under the matrix A ∈ ℝ(n+q)×(n+q) if AX ⊂ (X), where (X) is the
range space of X. Thus, there is a matrix M ∈ ℝp×p such that AX = XM . Let � > 0. We say that the block vector X with
orthonormal columns is �-invariant under A if there is a matrixM ∈ ℝp×p such that

‖AX −XM‖2 ≤ �.

Theorem 3. Let the conditions of Corollary 1 hold, and let � > 0. Then, for j sufficiently large, the block vectorsXj ∈ ℝ(n+q)×p

determined by the block Lanczos algorithm are �-invariant under A withM = Op.

Proof. We have
‖AXj‖2 = ‖AQmEj‖2 = ‖Qm+1Tm+1,mEj‖2 = ‖Xj−1S

T
j +XjMj +Xj+1Sj+1‖2.

BecauseMj and Sj approachOp as j increases, we can conclude that the Lanczos block vectorsXj are �-invariant underAwith
M = Op for j large.

We conclude this subsection by deriving an estimate that is analogous to the one in Theorem 1 for nonsymmetric and poten-
tially rectangular matrices that require the use of the BGKB partial factorization. This estimate involves both the diagonal and
lower diagonal blocks of the matrix Cm+1,m in (7), and leverages the fact that (8) is a block Lanczos decomposition ofATA, anal-
ogous to (3). Here we assume thatA ∈ ℝl×(n+q), with l ≥ (n+q), is a matrix whose first n columns contain the coefficient matrix
A appearing in (7), padded with q ≥ 0 columns of zeros; q is the smallest non-negative integer such that r ∶= (n + q)∕p ∈ ℕ.

Corollary 3. LetA ∈ ℝl×(n+q) have the singular values �1 ⩾ �2 ⩾⋯ ⩾ �n+q ⩾ 0, and assume that the BGKB algorithm applied
to A with initial block vector P1 does not break down, i.e., that r ∶= (n + q)∕p steps of the method can be carried out. Then

‖LTm+1Rm+1L
T
mRm⋯LT2R2‖2 ≤

m
∏

j=1
�2j , m = 1, 2,… , r. (23)

Proof. The block entries of the block tridiagonal matrix in (8) can be expressed as

Tm+1,m = CT
m+1,m+1Cm+1,m =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

D1 RT2L2
LT2R2 D2 RT3L3

⋱ ⋱ ⋱

⋱ ⋱ RTmLm

LTmRm Dm
LTm+1Rm+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

with Dj = LTj Lj + R
T
j+1Rj+1. Since the block subdiagonal entries of the matrix Tm+1,m are LTj Rj , and the eigenvalues of ATA

are �2j , the result follows from Theorem 1.

Note that, since the singular value decomposition of A can be characterized in terms of the eigendecompositions of ATA and
AAT , the bound (23) can only be given in terms of both the diagonal and lower diagonal blocks of the matrix Cm+1,m.
We are interested in problems for which the right-hand side of (23) decreases to zero an m increases. This holds for all linear

discrete ill-posed problems that we have come across in many applications.

4 COMPUTED EXAMPLES

To illustrate the properties discussed in the previous sections, we applied the symmetric block Lanczos method and the block
Golub–Kahan bidiagonalization method to a set of test matrices that stem from the discretization of ill-posed problems. The
numerical experiments were carried out using MATLAB R2017a with about 15 significant decimal digits, on a Xeon E-2244G
computer (8 cores, 16 threads) with 16 Gbyte RAM. Although the results of many numerical tests validating the use of BLT
and BGKB are already provided in1 and2, respectively, the ones presented in this section illustrate the theoretical results in this
paper, include new comparisons with other direct and sequential solution methods, and span a wider set of test problems.



10 A. Alqahtani ET AL

A first set of experiments uses fairly small square test matrices of order 200 (unless otherwise stated), so that computing the
eigendecomposition and the SVD is computationally affordable; indeed, the properties discussed in this paper can be observed
already for quite small matrices. The symmetric test matrices are listed in the upper part of Table 1, and the nonsymmetric ones
in the bottom part of the same table. Among the symmetric matrices, gravity is positive definite, deriv2 is negative definite,
and phillips is indefinite. In the case of the nonsymmetric test matrix tomo, we set the size to 400 × 400, because of the very
slow decay of its singular values. All matrices but one (i.e., lotkin from MATLAB’s gallery) in this set of experiments are
from the REGULARIZATION TOOLS package12. More precisely, we use the test problems from12 to define matrices A, the first
column ofBtrue, and the associated error-free solution x0 in the first column of the block vector solutionXtrue. The other columns
of Xtrue are obtained by setting xi = xi−1 +

y
2
for i = 1, 2,… , p − 1, where y is a vector obtained by discretizing a function of

the form 1
2
cos t

3
+ 1

4
at equidistant points on the interval −6 ⩽ t ⩽ 6. Consequently, the other columns of Btrue are obtained

by taking bi = Axi for i = 1, 2,… , p − 1. The solution of the lotkin example is the same as for the phillips example. The
contaminated data block vector is given by (2) with

E = Ĕ‖Btrue‖F �,

where the random block vector Ĕ ∈ ℝn×p models Gaussian white noise with mean zero and variance one, and � is a chosen
noise level. In our experiments, we let � ∈ {10−6, 10−4, 10−2}. Unless otherwise stated, the blocksize is p = 5. As prescribed by
Algorithms 1 and 2, the BLT and BGKB algorithms are initiated with the block vectorB. One reorthogonalization step is carried
out; the process is repeated if needed. The computed results do not agree with the theory developed in the previous section when
no reorthogonalization is carried out. The quantity K ≤ r denotes the number of BLT or BGKB steps performed for each test
problem. The last experiment models image deblurring of a color image, and uses some of the functionalities available within
the IR TOOLS package6.
In the first set of experiments we use an error-free initial block, both in the BLT and BGKB algorithms, that is, we set

B = Btrue. We verified that the graphs in Figures 1–5 do not change significantly for noise levels up to 10−2.
We first illustrate the properties derived in Section 3. Figure 1 displays, in logarithmic scale, the values taken by the left-

hand side and right-hand side in the inequalities (15), (22), and (23), as functions of the number of iterations. Iterations were
carried out until breakdown, that is, m = 1, 2,… , K ≤ r. The graphs show that for symmetric discrete ill-posed problems the
decay of the subdiagonal blocks of Tm+1,m to zero may be much faster than suggested by the bounds (15) and (22). It follows
that the ability of the Lanczos block vectors to approximate the space spanned by the principal eigenvectors often is stronger
than indicated by the bounds (15) and (22). The same holds true for the BGKB method. We also remark that round-off errors
introduced during the computation of the eigenvalues and subdiagonal blocks of the matrices Tm,m, m = 1, 2,…, may affect the
graphs. In any case, when m is large, the matrix Tm,m has eigenvalues of “tiny” absolute value.

0 10 20 30 40
10

-200

10
-150

10
-100

10
-50

10
0

deriv2

0 10 20 30 40

10
-150

10
-100

10
-50

10
0

phillips

0 10 20 30 40

10
-300

10
-200

10
-100

10
0

heat

FIGURE 1 Behavior of the bounds (15) (left), (22) (center), and (23) (right), as functions of the iteration number m. The test
matrices are (from left to right) symmetric positive definite, symmetric indefinite, nonsymmetric. The left-hand side of each
inequality is represented by crosses, and the right-hand side by circles. The sign of the test matrix deriv2, which is negative
definite, has been inverted.
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We next illustrate that the subspaces (Qk) generated by the block Lanczos method (3) essentially contain subspaces of
eigenvectors of A associated with the eigenvalues of largest absolute value. In addition, we show the convergence of the largest
eigenvalues (in absolute value) of the matrices Tk,k in (3) to the largest eigenvalues (in absolute value) of A as k increases.
Here, Tk,k ∈ ℝpk×pk denotes the matrix obtained by neglecting the last block row of the matrix Tk+1,k ∈ ℝp(k+1)×pk in (3), with
m replaced by k. The block Lanczos method is applied until breakdown occurs. For each k, consider the spectral factorization
Tk,k = W̆kΛ̆kW̆ T

k , where

Λ̆k = diag[�̆
(k)
1 , �̆

(k)
2 ,… , �̆(k)pk ], |�̆(k)1 | ≥⋯ ≥ |�̆(k)pk |, and W̆k = [w̆

(k)
1 , w̆

(k)
2 ,… , w̆(k)

pk ] .

The eigenvalues {�̆(k)i }
pk
i=1 are commonly referred to as Ritz values of A. We compare the Ritz values of largest absolute value

to the corresponding eigenvalues of the matrix A. For each step k of the block Lanczos algorithm, we compute the relative
difference

R�k ∶= max
i=1,2,…,⌈pk∕3⌉

|�̆(k)i − �i|
|�i|

, k = 1, 2,… , K,

i.e., we compare the ⌈pk∕3⌉ eigenvalues of largest absolute value of Tk,k and A, where ⌈�⌉ denotes the integer closest to � ≥ 0.
Figure 2 shows excellent agreement between the first ⌈pk∕3⌉ Ritz values of A and the corresponding eigenvalues already for
small k.
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FIGURE 2 The graphs in the left-hand side column display the relative difference R�k versus k between the ⌈pk∕3⌉ eigenvalues
of largest absolute value of the symmetric test matrices and the corresponding Ritz values. The right-hand side column shows
the behavior of R�k versus k for nonsymmetric problems.
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We turn to a comparison of subspaces determined by the span of the Lanczos block vectors of A associated with the Ritz
values of largest absolute value. For each k, consider Qk ∈ ℝn×pk made up of the first k block columns of the matrix Qm in
(3). Partition the eigenvector matrix of A, cf. (13), according to  = [ (1)

i  (2)
n−i], where the columns wj (j = 1,… , i) of

 (1)
i ∈ ℝn×i are the first i eigenvectors, and let the columns  (2)

n−i ∈ ℝn×(n−i) be the remaining eigenvectors. The columns of
 (1)

i and (2)
n−i span orthogonal subspaces.
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FIGURE 3 Distances Rwk,i (resp. R
(u,v)
k,i ), versus i = 1, 2,… , pk, between the subspaces spanned by the first i eigenvectors

(resp. singular vectors) of the symmetric (resp. nonsymmetric) test matrices, and the subspaces spanned by the corresponding
k Lanczos (resp. Golub–Kahan) block vectors. Here, k = ⌈n∕(2p)⌉, unless a breakdown occurred.

Let k = In −QkQT
k be the orthogonal projector onto(Qk)⟂, the subspace orthogonal to the range of Qk. We consider the

quantities
Rwk,i ∶= ‖k

(1)
i ‖F , k = 1, 2,… , K , i = 1, 2,… , pk .

The value of Rwk,i is small when span{wj}ij=1 is approximately contained in span{qj}
pk
j=1, that is, when the solution subspace

generated by the block Lanczos vectors essentially contains the space generated by the first i eigenvectors. The graphs in the
left-hand side column of Figure 3 depict Rwk,i for k = ⌈n∕(2p)⌉ (k = K if a breakdown occurred) and i = 1, 2,… , pk, for the
symmetric test matrices. They show that, for a fixed k, only a fraction of the eigenvectors are well approximated by pk Lanczos
vectors.
The left-hand side column of Figure 4 displays the values of Rwk,⌈pk∕3⌉ (k = 1, 2,… , K , if a breakdown occurred, and pK <

⌈n∕2⌉), while the right-hand side column of the same figure represents the behavior ofRwk,⌈pk∕2⌉, (k = 1, 2,… , K , if a breakdown
occurred, and pK < ⌈n∕2⌉).
A few comments on the graphs of Figure 4 are in order. The left-hand side graphs show that the span of the first ⌈pk∕3⌉

eigenvectors of A is numerically contained in the span of the first pk Lanczos vectors already for quite small values of k. We
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FIGURE 4 The graphs in the left-hand side column display the distances Rwk,⌈pk∕3⌉, versus k = 1, 2,… , ⌈n∕p⌉, between the
space spanned by the ⌈pk∕3⌉ principal eigenvectors of the symmetric test matrices and the space spanned by the first k Lanczos
block vectors. The right-hand side column shows the behavior of Rwk,⌈pk∕2⌉.

remark that this is not true if we compare the spaces spanned by the first pk eigenvectors of A and by the first k Lanczos block
vectors. Graphs in the right-hand side column, that compare the span of the first ⌈pk∕2⌉ eigenvectors of A with the span of the
first pk Lanczos vectors, look similar to the graphs in the left-hand side column, but display slower convergence.
We turn to nonsymmetric matrices A. Introduce the singular value decomposition

A = UΣV T . (24)

Thus, U ∈ ℝl×l and V ∈ ℝn×n are orthogonal matrices, and

Σ = diag[�1, �2,… , �n] ∈ ℝl×n, �1 ⩾ �2 ⩾⋯ ⩾ �r > �r+1 =⋯ = �n = 0,

where r is the rank of A. The block Lanczos method in the above experiments is replaced by the block Golub–Kahan method
(7). The latter method is applied until iteration pK ≤ r, when breakdown occurs. The graphs in the right-hand side column of
Figure 2 show the relative differences

R�k ∶= max
i=1,2,…,⌈pk∕3⌉

|�̆(k)i − �i|
|�i|

, k = 1, 2,… , K,

between the singular values �̆(k)i of Ck+1,k and the corresponding singular values of A.
Let U and V be the orthogonal matrices in the singular value decomposition (24) of A, let l = n, and partition these

matrices similarly to what was done for the eigenvector matrix for symmetric matrices A, that is, we let U = [U (1)
i , U (2)

n−i] and
V = [V (1)

i , V (2)
n−i], where the submatrices U (1)

i and V (1)
i contain the first i left and right singular vectors, and the submatrices U (2)

n−i
and V (2)

n−i contain the remaining n − i left and right singular vectors, respectively.
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FIGURE 5 The graphs in the left-hand side column display the distance Ru,vk,⌈pk∕3⌉, versus k = 1,… , ⌈n∕p⌉, between the space
spanned by the first ⌈pk∕3⌉ singular vectors of the nonsymmetric test matrices and the first k Golub–Kahan block vectors. The
right-hand side column shows the behavior of Ru,vk,⌈pk∕2⌉.

To investigate the convergence of subspaces, we introduce the orthogonal projectors

L
k = In − UkU

T
k , R

k = In −WkW
T
k ,

where the matrices Uk andWk contain the first k block columns of the matrices Um andWm, respectively, in the decompositions
(7). To measure the distance between the spaces spanned by the singular vectors of A and those spanned by vectors computed
with the BGKB method, we define the following merit index

R(u,v)k,i ∶= max{‖L
k U

(1)
i ‖F , ‖R

k V
(1)
i ‖F }, k = 1, 2,… , K, i = 1, 2,… , pk .

The quantities R(u,v)k,i are displayed, for k = ⌈n∕(2p)⌉ (k = K in case a breakdown occurred) and i = 1, 2,… , pk, in the right-
hand side column of Figure 3. The figures illustrate that the subspaces spanned by the first few columns determined by the
block Lanczos and block Golub–Kahan algorithms are close to the subspace spanned by the first few eigenvectors and singular
vectors, respectively, of the matrix A. Figure 5 depicts graphs for the quantities R(u,v)k,⌈pk∕3⌉ and R

(u,v)
k,⌈pk∕2⌉, for k = 1, 2,… , ⌈n∕p⌉

(k = 1, 2,… , K , if a breakdown occurred).
We finally illustrate the performances of the BLT and BGKB algorithms when applied to the solution of discrete ill-posed

problems. Since we assume that the desired solution Xtrue is known, we first use it to elucidate that the solution subspaces
determined by these algorithms can give approximations of Xtrue of as high quality as the solution subspaces defined by the
truncated eigenvalue or singular value decompositions of A. Subsequently, we present examples that regularize the discrete ill-
posed problem by Tikhonov regularization as described in Section 2.3. The latter examples do not require knowledge of Xtrue
and show how applications to real-world discrete ill-posed problems can be carried out.



A. Alqahtani ET AL 15

In the experiments reported in Table 1,the test matrices are of size 200 × 200 (400 × 400 for the tomo matrix), and the block
size is p = 5. We measure the accuracy of the approximations ofXtrue determined by each regularization method by the relative
error

Emethod =
‖Xkmethod

−Xtrue‖F

‖Xtrue‖F
= min

k=1,2,…,m

‖Xk −Xtrue‖F

‖Xtrue‖F
, (25)

which is obtained by choosing the value k = kmethod that minimizes the error in the computed solution. We remark that this
approach to choosing k is not practical, but it shows the smallest possible error that can be determined by using the computed
solution subspaces.

TABLE 1 Solution of symmetric linear systems: the errors EBLT and ETEIG are optimal for truncated block Lanczos iteration
and truncated eigenvalue decomposition, the errors EBGKB and ETSVD are optimal for BGKB and truncated singular value
decomposition (TSVD). The corresponding truncation parameters are denoted by kBLT, kTEIG, kBGKB, and kTSVD. The Tikhonov
regularization parameter � is presented in the 4th column. Three noise levels are considered; m denotes the number of iterations
performed. The test matrices are of size 200 × 200 (400 × 400 for the tomo matrix).

Noise level Matrix m � EBLT kBLT ETEIG kTEIG

10−6
deriv2 39 2.63 × 10−5 3.48 × 10−3 8 4.19 × 10−3 81
gravity 10 1.02 × 10−3 1.24 × 10−3 5 1.24 × 10−3 15
phillips 39 3.18 × 10−3 4.17 × 10−4 6 3.61 × 10−4 29

10−4
deriv2 39 3.54 × 10−4 8.40 × 10−3 5 9.29 × 10−3 19
gravity 10 1.96 × 10−2 5.39 × 10−3 5 4.96 × 10−3 11
phillips 39 2.87 × 10−2 2.25 × 10−3 4 1.69 × 10−3 12

10−2
deriv2 39 3.06 × 10−3 2.58 × 10−2 5 2.58 × 10−2 5
gravity 10 2.15 × 10−1 2.59 × 10−2 4 2.59 × 10−2 7
phillips 39 2.40 × 10−1 9.66 × 10−3 3 9.79 × 10−3 7

Noise level Matrix m � EBGKB kBGKB ETSVD kTSVD

10−6
heat 39 3.43 × 10−5 1.87 × 10−2 18 1.84 × 10−2 79

lotkin 4 2.99 × 10−5 2.47 × 10−1 3 2.29 × 10−1 10
tomo 79 2.46 × 10−6 5.74 × 10−2 79 3.16 × 10−2 398

10−4
heat 39 8.01 × 10−4 2.83 × 10−2 11 2.79 × 10−2 37

lotkin 4 4.17 × 10−3 3.05 × 10−1 2 3.03 × 10−1 7
tomo 79 3.48 × 10−2 5.95 × 10−2 79 3.79 × 10−2 397

10−2
heat 39 1.01 × 10−2 8.49 × 10−2 5 8.93 × 10−2 15

lotkin 4 2.13 × 10−1 3.68 × 10−1 3 3.71 × 10−1 3
tomo 79 9.22 × 10−1 2.36 × 10−1 60 2.29 × 10−1 362

The upper part of Table 1 reports the approximate solutions obtained by truncated block Lanczos decomposition (5) and
truncated eigenvalue decomposition, for test problems with symmetric matrices. The minimal error (25) obtained by applying
the block Lanczos method and the truncated eigenvalue decomposition method, denoted by EBLT and ETEIG, respectively, are
reported in the fifth and seventh columns. The truncation parameter values that produce the minimal errors are listed in the
sixth and eighth columns. The third column shows how many block Lanczos iterations were executed; an entry smaller than
40 indicates that breakdown occurred. The results in Table 1 suggest that, for the test problems considered, the truncated block
Lanczos projection method is able to produce solutions of essentially the same quality as truncated eigenvalue decomposition.
We remark that the application of BLT is much cheaper than the evaluation of the truncated eigenvalue decomposition. We also
remark that, since the best approximation of A of rank k is furnished by the k largest singular triplets of A, we may require
more vectors to determine an accurate approximate solution when approximating A by block Lanczos vectors than when using
singular triplets. On the other hand, since the singular triplets are independent of the right-hand side vector and the block Lanczos
vectors are not, some examples require fewer block Lanczos vectors than singular triplets. Our interest in using block Lanczos
vectors instead of singular vectors stems from the fact that the former are cheaper to compute.
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The bottom part of Table 1 reports results obtained for nonsymmetric linear discrete ill-posed problems (6). Here, the block
Golub–Kahan bidiagonalization method is compared to TSVD. This table shows that conclusions similar to those for symmetric
matrices are obtained.
Table 1 shows the smallest achievable error. However, in real-world applications the exact solution is not known.We therefore

complement these table with Table 2, which shows experiments in which the computed solutions are determined with the aid of
the discrepancy principle. The matrices are of order 1000 × 1000 (1024 × 1024 for the tomo matrix), the block size is p = 10,
and the truncation parameter k = kmethod is determined by applying the discrepancy principle (12).
Regularization by truncated iteration is not reliable, in general, for blockmethods. Therefore, in Table 2 the reduced problem is

solved by Tikhonov regularization as was discussed in Section 2.3. The upper part of Table 2 shows that the solutions determined
by using a few steps of the block Lanczos tridiagonalization are as accurate approximations ofXtrue as the solutions X̆k computed
with the aid of the full truncated eigenvalue decomposition method, while being much cheaper to evaluate. Similarly, the bottom
part of Table 2 shows that the block Golub–Kahan bidiagonalization method produces solutions that are equivalent in quality to
those obtained by TSVD, but are much cheaper to compute. Table 3 test different values of the block size p; the matrix size is
1000 for the gravity test matrix, and 1024 for the tomo problem.

TABLE 2Comparison of the quality of computed solutions that are determined by truncated block Lanczos (BLT) and truncated
eigenvalue decomposition (TEIG) methods (upper table), and by truncated BGKB and truncated singular value decomposition
methods (bottom table). The truncation indexes kBLT, kTEIG, kBGKB, and kTSVD, are determined by the discrepancy principle
(12). The test matrix is of size 1000 × 1000 for gravity, and of size 1024 × 1024 for tomo.

Noise level Matrix kBLT � EBLT kTEIG ETEIG

10−6
deriv2 7 1.24 × 10−5 4.72 × 10−3 88 5.08 × 10−3

gravity 3 8.24 × 10−4 7.75 × 10−4 14 5.61 × 10−4

phillips 4 2.05 × 10−3 2.57 × 10−4 26 2.87 × 10−4

10−4
deriv2 4 2.26 × 10−4 1.03 × 10−2 18 1.08 × 10−2

gravity 3 1.48 × 10−2 3.66 × 10−3 8 4.91 × 10−3

phillips 3 2.10 × 10−2 1.61 × 10−3 10 1.17 × 10−3

10−2
deriv2 2 2.81 × 10−3 2.25 × 10−2 4 1.82 × 10−2

gravity 3 1.28 × 10−2 1.85 × 10−2 6 1.41 × 10−2

phillips 2 2.60 × 10−2 9.71 × 10−3 6 9.02 × 10−3

Noise level Matrix kBGKB � EBGKB kTSVD ETSVD

10−6
heat 7 1.44 × 10−5 2.10 × 10−2 76 2.10 × 10−2

lotkin 2 4.14 × 10−5 1.74 × 10−1 10 1.68 × 10−1

tomo 101 3.52 × 10−6 3.08 × 10−2 1018 2.09 × 10−2

10−4
heat 5 4.91 × 10−4 2.94 × 10−2 34 3.10 × 10−2

lotkin 1 3.17 × 10−3 2.39 × 10−1 6 2.41 × 10−1

tomo 89 3.34 × 10−2 8.68 × 10−2 1002 9.38 × 10−2

10−2
heat 2 8.11 × 10−3 5.81 × 10−2 12 6.29 × 10−2

lotkin 1 2.99 × 10−1 3.42 × 10−1 2 3.47 × 10−1

tomo 9 1.80 × 10+00 1.71 × 10−1 656 1.94 × 10−1

It is well known that block algorithms perform better than vector implementations on modern computers endowed with
optimized basic linear algebra software. To illustrate this fact, we applied both the Lanczos and the block-Lanczos methods
to the solution of p symmetric random linear systems of size 1000, letting p = 5, 10,… , 50. We let both the implementations
of the Lanczos methods perform all the iterations allowed, that is, 1000∕p for the block version and 1000 for the standard
Lanczos method. The same was done for a 2000×1000 random linear least-squares problem, by applying BGKB and the LSQR
methods. The computing times are reported in Figure 6. No breakdown occurred during the tests. The two graphs show that, as
expected, while the execution time increases for the vector methods as the number of linear systems grows, the timings for the
block algorithms first decreases, as the block size increases, and then stabilizes. Indeed, the time required for a block or a vector
operations are roughly equivalent, and the number of iterations performed by the block algorithms decreases as the block size p
increases.
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TABLE 3 Comparison of the quality of computed solutions that are determined by the BLT and TEIG methods (upper table),
and by the truncated BGKB and truncated singular value decomposition methods (bottom table), with different block sizes. The
truncation indexes kBLT, kTEIG, kBGKB, and kTSVD, are determined by the discrepancy principle (12). The test matrix is of size
1000 × 1000 for gravity, and of size 1024 × 1024 for tomo.

Matrix Noise level Block size � kBLT EBLT kTEIG ETEIG

gravity 10−4
10 1.42 × 10−2 3 3.66 × 10−3 8 4.91 × 10−3

20 1.46 × 10−2 2 3.72 × 10−3 10 3.26 × 10−3

30 1.45 × 10−5 2 3.88 × 10−3 10 3.33 × 10−3

Matrix Noise level Block size � kBGKB EBGKB kTSVD ETSVD

tomo 10−4
10 4.79 × 10−2 75 4.22 × 10−2 990 4.78 × 10−2

20 8.54 × 10−2 48 4.72 × 10−2 987 5.32 × 10−2

30 6.73 × 10−2 32 4.27 × 10−2 983 4.55 × 10−2
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FIGURE 6 Computing times in seconds for solving p square 1000 × 1000 random symmetric linear systems by the Lanczos
and the BLT methods (graph on the left), and for solving p random least squares problems of size 2000 × 1000 by the BGKB
and LSQR methods (graph on the right), for p = 5, 10,… , 50.

Our last example is concerned with deblurring a color image. This example is generated with IR TOOLS 6. We take as the true
image, Xtrue, a subimage of the tissue.png test image available in MATLAB’s Image Processing Toolbox. According to the
RGB encoding, a color image can be represented as an array of N × N pixels in each one of the three channels representing
red, green, and blue; see13. For this example, N = 256. We assume that each color channel of Xtrue has been contaminated by
the same shaking blur having a Kronecker product structure. This is the so-called “within-channel” blur; we assume that there
is no “cross-channel” blur. Under these assumptions, an approximation of Xtrue can be obtained by regularizing a block linear
system of the form (1), where n = N2 = 65536 and p = 3. More specifically, X = [x(1), x(2), x(3)], B = [b(1), b(2), b(3)] ∈ ℝn×3,
where x(i), b(i) ∈ ℝn are the vectorized images that appear in the ith channel, i = 1, 2, 3; see2 for more details. The blurring
matrix A = K1 ⊗K2 is generated by the following MATLAB instructions from IR TOOLS:

A = PRblurshake(256,opt); Kall = kronApprox(A); K1 = Kall.a{1}; K2 = Kall.b{1};

The image encoded in B is contaminated by Gaussian white noise E of level ‖E‖F∕‖Btrue‖F = 10−2. Exact and corrupted
images are displayed in the leftmost and central frames of Figure 7, respectively.
The leftmost frame of Figure 8 displays, in logarithmic scale, the upper bound given in (23) as a function of the number

of iterations. Despite this problem being large-scale, the quantities on the right-hand side of (23) can be easily computed by
exploiting the Kronecker product structure of A.
The remaining frames of Figure 8 display the values of the relative error and the regularization parameter versus the number

of iterations, for both the regularization method based on BGKB used together with Tikhonov regularization (see Section 2.3)
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(a) (b) (c)

FIGURE 7 Color image deblurring test problem. (a) exact image; (b) blurred & noisy image; (c) restored image computed by
BGKB and Tikhonov regularization (relative error 1.22 × 10−1, regularization parameter 4.94 × 10−2).
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FIGURE 8 Color image deblurring test problem. (a) bound in (23) versus number of iterations (the left-hand and right-hand
sides of (23) are represented by crosses and circles, respectively); (b) relative errors versus number of iterations for methods
based on BGKB and the classical GKB; (c) regularization parameters versus number of iterations for methods based on BGKB
and the classical GKB.

and for a classical regularization method based on GKB, i.e., Golub–Kahan bidiagonalization with block size one, and Tikhonov
regularization; see, e.g.,3, 6, 7 for discussions of this solution method. Running the methods based on GKB and BGKB took 5.4
and 1.7 seconds, respectively (note that, in order to compare approximation subspaces of the same dimension, 150 GKB and 50
BGKB iterations were performed).

5 CONCLUSION

This paper applies a few steps of the block Lanczos or the block Golub–Kahan bidiagonalization methods to large discrete ill-
posed problem to determine the solution by solving a projected problem of fairly small size. The eigenvalues or singular values
of the projected matrix are shown to be accurate approximations of the corresponding largest eigenvalues (in absolute value)
or singular values of the discrete ill-posed problem, respectively. The same result holds for the corresponding eigenvectors
and singular vectors. This suggests that in order to determine a solution of a given large discrete ill-posed problem, it often
suffices to use a partial Lanczos block tridiagonalization or a partial Golub–Kahan block bidiagonalization, instead of computing
partial spectral or singular value decompositions. This is advantageous because the computation of a partial Lanczos block
tridiagonalization or a partial Golub–Kahan block bidiagonalization is much cheaper. Computed examples provide illustrations.
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