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Abstract. The task of restoring an image that has been contaminated by blur and noise arises
in many applications. When the blurring matrix (or equivalently, the point-spread function) is
explicitly known, this task commonly is referred to as deconvolution. In many applications only
an approximation of the blurring matrix is available. The restoration task then is referred to as
blind deconvolution. This paper describes a family of blind deconvolution methods that allow a
user to adjust the blurring matrix used in the computation to achieve an improved restoration. The
methods are inexpensive to use; the major computational effort required for large-scale problems is
the partial reduction of an available large symmetric approximate blurring matrix by a few steps of
the symmetric Lanczos process. A real-time application to adaptive optics that requires fast blind
deconvolution is described.

Key words. image restoration, ill-posed problem, Lanczos tridiagonalization, discrepancy prin-
ciple.

1. Introduction. The need to restore images that have been contaminated by
blur and noise arises in many applications, including medical imaging and astronomy.
The blur may be caused by object motion, calibration error of the imaging device, or
random fluctuations of the medium, e.g., the atmosphere. Let the vector bδ ∈ Rn rep-
resent an available blur- and noise-contaminated (p× q)-pixel image with n = pq. For
instance, we may store the pixel values for the available noise- and blur-contaminated
image column-wise in bδ. We would like to determine an accurate approximation of
the associated unknown blur- and noise-free image, which we represent by the vector
xtrue ∈ Rn.

Let A ∈ Rn×n denote the matrix that models the blurring in the image bδ, and
let the vector eδ ∈ Rn represent the noise in bδ. We will assume that a bound δ > 0
for ‖eδ‖2 is known, i.e.,

‖eδ‖2 ≤ δ. (1.1)

Here and throughout this paper ‖ · ‖2 denotes the Euclidean vector norm or spectral
matrix norm. We also will use the 1-norm of a vector, denoted by ‖ · ‖1, and the
Frobenius matrix norm; it is defined by ‖M‖F = (trace(MTM))1/2 for a matrix M .
The available contaminated image bδ and the desired blur- and noise-free image xtrue
are assumed to be related by the linear degradation model

bδ = Axtrue + eδ. (1.2)

Many kinds of blur that arise in applications, such as Gaussian blur, can be modeled
by a symmetric blurring matrix A. Let the eigenvalues λ1, λ2, . . . , λn of A be ordered
so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. For many blurring matrices, the magnitude |λj |
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decreases quite quickly to zero as j increases. We are concerned with blurring matrices
of this kind. Throughout this paper, we assume that the eigenvalues of a matrix are
ordered in decreasing magnitude.

The task of determining an approximation of xtrue when the contaminated image
bδ and the associated blurring matrix A are explicitly known is commonly referred
to as deconvolution. Thus, given A and bδ, deconvolution amounts to determining
an approximation of xtrue by computing a suitable approximate solution of the least-
squares problem

min
x∈Rn

‖Ax− bδ‖2. (1.3)

A nice introduction to deconvolution is provided by Hansen et al. [16].
In many image restoration applications only an approximation, A0 ∈ Rn×n, of

the matrix A in (1.2) is known. Since A is symmetric, it is natural that A0 would also
be symmetric. Simply replacing A by A0 in (1.3) gives, in many situations, a poor
approximation of the desired image xtrue. The determination of a better approxima-
tion of xtrue typically requires that A0 be replaced by a more accurate approximation
of A. It may be possible to compute such an approximation simultaneously with the
determination of an approximation of xtrue. The task of determining both a restored
image and an improved approximation of the blurring matrix is commonly referred
to as blind deconvolution.

The dominating computational work for the blind deconvolution method of this
paper is the partial reduction of a large symmetric matrix A0 to a small symmetric
matrix by carrying out a few steps of the symmetric Lanczos process. The number
of steps required depends on how quickly the eigenvalues of A0 decay to zero in
magnitude as their index number increases and how well A0 approximates the actual
blurring matrix A. This reduction only has to be computed once. Therefore, our
blind deconvolution method is quite inexpensive to use. Our solution method has two
regularization parameters. This allows for the selection of a blurring matrix from a
family of matrices determined by A0. One of these parameters is determined by the
discrepancy principle; the other one is chosen interactively by the user. Alternatively,
the user may specify multiple input parameter pairings, as the reconstruction for each
pair can be computed fairly inexpensively from the same Krylov subspace.

Many approaches to blind deconvolution have been described in the literature; see,
e.g., [3, 4, 5, 6, 7, 8, 27, 29] and references therein. Some of the available methods are
computationally expensive, because they require the evaluation of a large number of
matrix-vector products with the large matrix A0 or with related blurring matrices that
are determined during the computations. Justen and Ramlau [20] proposed a fast non-
iterative blind deconvolution method for n×n block circulant blurring matrices with
circulant blocks. The structure of the blurring matrices makes it possible to reduce
the blind deconvolution problem to a problem with a diagonal matrix. The method
in [20] allows a user to choose two parameters to adjust a minimization problem to be
solved. These parameters determine the blurring matrix used for the restoration. For
each value of the parameter pair, the dominant computational effort for computing the
associated restoration is the evaluation of a fast Fourier transformation in O(n log n)
arithmetic floating point operations (flops). The method by Justen and Ramlau [20]
imposes periodic boundary conditions. This method is fast, but due to the imposed
periodicity, the computed restorations may be contaminated by artifacts. A related
blind deconvolution method that is based on a wavelet decomposition is described in
[21], and an extension of the method in [20] that allows reflective and anti-reflective
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boundary conditions, but requires more computational work, is discussed in [17].
It is the purpose of this paper to present a new blind deconvolution method that is

well suited for real-time applications that arise in adaptive optics. Speed of execution
is very important for this application, because the point-spread function (PSF) has to
be updated every 2 ms (or even more frequently). The use of fast numerical methods
therefore is imperative.

Our scheme first reduces the given large blind deconvolution problem to a small
one by applying a few steps of the symmetric Lanczos process to reduce A0. This is
followed by spectral factorization of the reduced matrix. The reduced matrix, gener-
ally, can be applied to the restoration of a sequence of blur- and noise-contaminated
images. The dominating computational effort is the reduction of A0. Each step of the
Lanczos process requires one matrix-vector product evaluation with A0. Typically, A0

has a structure, such as block Toeplitz with Toeplitz blocks, that allows the evaluation
of each matrix-vector product in only O(n log n) flops; see, e.g., Section 5.1. When the
spectral factorization of the reduction of A0 is available, the restoration of an image
requires only O(n) flops. The low flop count makes the proposed method fast and
applicable to real-time large-scale blind image restoration problems. We will apply
our method to a real-time active optics image restoration problem. This application
is described in Section 5.4.

This paper is organized as follows. Section 2 describes a minimization problem
and several simplifications. The solution of the latter yields restored images. Section
3 discusses the solution of the minimization problem. A discussion on how to choose
the values of the regularization parameters can be found in Section 4, and Section 5
presents a few computed examples. These include experiments from an astronomical
imaging application with a large ground-based telescope. Section 6 contains conclud-
ing remarks.

2. Minimization problems. Let the symmetric matrix A0 ∈ Rn×n denote an
available approximation of the unknown symmetric blurring matrix A ∈ Rn×n in
(1.2), and let x0 ∈ Rn denote an available approximation of the desired blur- and
noise-free image xtrue ∈ Rn. For instance, we may choose x0 to be bδ or simply the
zero vector. Introduce the two-parameter functional

F (α1, α2) := min
x∈Rn

A∈A

{
‖Ax− bδ‖22 + α1‖x− x0‖22 + α2‖A−A0‖2F

}
, (2.1)

where α1 > 0 and α2 > 0 are user-specified regularization parameters, and A is a set
of symmetric matrices in Rn×n for which (2.1) has unique minimizers {α1, α2} (e.g.,
a set of matrices which are simultaneously diagonalizeable with A0).

Example 2.1. Assume that n is small or that the symmetric matrix A0 ∈ Rn×n
has a structure that makes it feasible to compute its spectral factorization

A0 = U0Λ0U
T
0 . (2.2)

The former situation arises when bδ represents a signal in one space-dimension; the
latter case may arise when bδ represents a signal (image) in two or more space-
dimensions and A0 is the Kronecker product of small matrices. The matrix Λ0 ∈
Rn×n in (2.2) is diagonal, U0 ∈ Rn×n is orthogonal, and the superscript T denotes
transposition.

Define the n-parameter family of matrices

A := {A ∈ Rn×n : A = U0ΛUT0 , Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n},



4 L. Dykes, R. Ramlau, L. Reichel, K. M. Soodhalter, and R. Wagner

in which each element matrix is determined by the parameters λ1, λ2, . . . , λn. Thus,
the real eigenvalues of A are the parameters; the eigenvectors are prescribed to be
those of A0. With this choice of the set A, the minimization problem (2.1) can be
simplified to

F (α1, α2) = min
y∈Rn

Λ∈Rn×n

diagonal

{
‖Λy − b̃

δ
‖22 + α1‖y − y0‖22 + α2‖Λ− Λ0‖2F

}
, (2.3)

where

y = UT0 x, y0 = UT0 x0, b̃
δ

= UT0 bδ.

Because the matrices Λ and Λ0 are diagonal, each non-trivial entry of Λ and each
element of the vector y in the solution of the minimization problem (2.3) can be com-
puted independently by a nonlinear solver for each pair of positive parameters α1 and
α2. The solution of (2.3) therefore only requires O(n) flops. Since the computation of
each diagonal entry of Λ and associated component of y can be carried out indepen-
dently, this makes efficient execution in parallel possible. We will discuss properties
of the solution of (2.3) and its computation in Section 3. 2

Example 2.2. If n is large or A0 does not have a structure that makes it possible
to compute its spectral factorization rapidly, then we can reduce A0 to a small matrix
by orthogonal projection using the symmetric Lanczos process. Application of `� n
steps of the symmetric Lanczos process to A0 with initial unit vector v1 ∈ Rn yields
the partial Lanczos tridiagonalization

A0V` = V`T0,` + β`+1v`+1e
T
` , (2.4)

where the matrix V` = [v1,v2, . . . ,v`] ∈ Rn×` has orthonormal columns that span
the Krylov subspace

K`(A0,v1) = span{v1, A0v1, . . . , A
`−1
0 v1}, (2.5)

the matrix

T0,` =


α1 β2

β2 α2
. . .

. . .
. . . β`
β` α`

 ∈ R`×`

is symmetric and tridiagonal, e` denotes the `th Cartesian basis vector, and β`+1 ≥ 0;
see, e.g., [15, 28] for details on the Lanczos process. We will use the initial vector

v1 =
bδ

‖bδ‖2
(2.6)

in the computed examples of Section 5.
The Lanczos process is said to break down at step ` if β`+1 = 0 in (2.4). Then

the spectrum of T0,` is a subset of the spectrum of A0 and the computations with the
Lanczos process cannot be continued. One then may either use the matrix T0,` or
restart the Lanczos process with an initial unit vector that is orthogonal to the columns
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of V`. The occurrence of breakdown is rare and, therefore, will not be discussed
further. We remark that instead of the Lanczos process, one may apply the symmetric
block Lanczos process. This can be advantageous in certain computing environments;
see, e.g., [15] for a discussion on the symmetric block Lanczos process and [12] for an
overview of efficient implementation of numerical methods on a parallel computer.

We remark that in our application, generally, only very few steps, `, of the Lanczos
process are required. This reduces the possibility of breakdown. It also eliminates the
need to restart the Lanczos algorithm. Since the matrix A0 only is an approximation
of the actual unknown blurring matrix, it is not necessary to determine the eigenpairs
of A0 to high accuracy. Using the eigenpairs of T0,` generally suffices. In particular,
it is not necessary to improve the quality of the eigenpairs by applying a restarted
Lanczos method. We comment on the choice of ` below.

Computing the spectral factorization of T0,`, we obtain

T0,` = U0,`Λ0,`U
T
0,`, (2.7)

where the matrix U0,` ∈ R`×` is orthogonal and

Λ0,` = diag[λ0,1, λ0,2, . . . , λ0,`] ∈ R`×`. (2.8)

Define the vectors

y` = UT0,`V
T
` x, y0,` = UT0,`V

T
` x0, b̃

δ

` = UT0,`V
T
` bδ, (2.9)

and the `-parameter family of matrices

A` := {A ∈ Rn×n : A = V`U0,`Λ`U
T
0,`V

T
` , Λ` = diag[λ1, λ2, . . . , λ`] ∈ R`×`} (2.10)

determined by the parameters λ1, λ2, . . . , λ`, which are to be chosen. All matrices
in this set are of rank at most ` and have the same eigenspace. The minimization
problem (2.1) with A := A` can be written as the `-dimensional minimization problem
with diagonal matrices,

F (α1, α2) := min
y`∈R

`

Λ`∈R`×`

diagonal

{
‖Λ`y` − b̃

δ

`‖22 + α1‖y` − y0,`‖22 + α2‖Λ` − Λ0,`‖2F
}
. (2.11)

This functional is analogous to (2.3). We will show in Section 3 that the minimization
problem (2.11) is easy to solve. In numerous applications, we found the choice x0 = 0,
which yields y0 = 0, to be suitable. We found this choice typically to yield more
accurate approximations of xtrue than x0 = bδ.

Let {y∗` ,Λ∗`} minimize (2.11). The restored image then is given by

x∗ = V`U0,`y
∗
` . (2.12)

In many applications, the matrix A0 has a structure that allows fast evaluation
of matrix-vector products. For instance, when bδ represents an image in two space-
dimensions that has been contaminated by space-invariant Gaussian blur, A0 ∈ Rn×n
can be chosen to be a symmetric block Toeplitz matrix with Toeplitz blocks. The
evaluation of a matrix-vector product with such a matrix requires only O(n log n)
flops. The number of steps ` of the Lanczos process should be large enough so that
the largest eigenvalues and eigenvectors of A0 can be approximated fairly accurately by
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Ritz values and Ritz vectors defined by the Lanczos decomposition (2.4). This choice
is motivated by the model assumption that the invariant subspace of A0 associated
with the largest eigenvalues does not greatly depart from the corresponding invariant
subspace of the true operator A. In our practical adaptive optics example, cf., Figures
5.8–5.9, one sees that this is a reasonable assumption. Taking the eigenvalues to be
listed in order of descending magnitude, we observe that the eigenvalues many blurring
matrices A0 decay quite quickly to zero in magnitude. Thus, the number of Lanczos
steps ` generally can be chosen independently of n. Therefore, the flop count for
the Lanczos process typically is O(n log n). The choice of ` is also influenced by how
much the eigenvectors of A0 depart from those of the true operator A. This behavior
is illustrated in the first part of Section 5.

3. Solution of the minimization problem. This section discusses the solu-
tion of the minimization problem (2.11). Let the diagonal matrices Λ0,` and Λ` have
the nontrivial entries λ0,j and λj , 1 ≤ j ≤ `, respectively; see (2.8) and (2.10). Let

y` = [y1, y2, . . . , y`]
T ∈ R`,

y0,` = [y0,1, y0,2, . . . , y0,`]
T ∈ R`,

b̃
δ

` = [b̃δ1, b̃
δ
2, . . . , b̃

δ
` ]
T ∈ R`.

Then the minimization problem (2.11) is equivalent to the ` decoupled minimization
problems

min
yj ,λj∈R

{
(λjyj − b̃δj)2 + α1(yj − y0,j)

2 + α2(λj − λ0,j)
2
}
, j = 1, 2, . . . , `. (3.1)

We first note that we do not consider the case α1 = α2 = 0. Clearly, the mini-
mization problems (3.1) do not have a unique solution in this situation. Also when α1

and α2 are positive, the solution might not be unique. This is illustrated in Example
3.2 below. However, this case was not encountered in any of the practical problems
we tested.

Example 3.1. Let b̃δj = 1, α1 = α2 = 1/10, and y0,j = 1, and λ0,j = 0 in (3.1).
Figure 3.1 displays the function

fj(yj , λj) = (λjyj − 1)2 +
1

10
((yj − 1)2 + λ2

j ), −2 ≤ yj , λj ≤ 2.

The minimum of fj at approximately yj = 1.4 and λj = 0.7 is marked by a red star.
2

One convenient choice in applications is to enforce a linear dependence between
the parameters, with α1 := α and α2 := αt in (3.1), where t ≥ 0 is a fixed, user-defined
constant and α ≥ 0 is a regularization parameter to be determined. This simplifies
the solution of the minimization (3.1) and allows the user to determine t based on
knowledge of the specific reconstruction problem. Substitution into (3.1) yields

fj(y, λ) := (λy − b̃δj)2 + α((y − y0,j)
2 + t(λ− λ0,j)

2), j = 1, 2, . . . , `. (3.2)

The gradient and Hessian of fj are given by

∇fj(y, λ) =


∂fj
∂y

(y, λ)

∂fj
∂λ

(y, λ)

 =

[
2(yλ− b̃δj)λ+ 2α(y − y0,j)

2(yλ− b̃δj)y + 2αt(λ− λ0,j)

]
(3.3)
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Fig. 3.1: Generic function fj(y, λ) for −2 ≤ y ≤ 2 and −2 ≤ λ ≤ 2.

and

∆fj(y, λ) =

[
2(λ2 + α) 4yλ− 2b̃δj
4yλ− 2b̃δj 2(y2 + αt)

]
. (3.4)

Proposition 3.1. Let α > 0 and t ≥ 0. Then the Hessian (3.4) has (at least)
one positive eigenvalue. If y 6= 0 or t > 0, then the other eigenvalue is positive for
α > 0 sufficiently large, in which case the function fj is convex in a neighborhood of
(y, λ).

Proof. The trace of the Hessian is positive. Therefore, the sum of the eigenvalues
is positive. The product of the eigenvalues is given by the determinant,

det (∆fj(y, λ)) = 4(λ2 + α)(y2 + αt)− 4(2yλ− b̃δj)2,

and may be negative, in which case the Hessian is indefinite. For fixed {y, λ, b̃δj}, the
Hessian can be made positive definite by choosing α sufficiently large provided that
y 6= 0 or t > 0.

To find y- and λ-values that minimize fj(y, λ), we first consider values such that

∇fj(y, λ) = 0. We obtain from
∂fj
∂λ (y, λ) = 0 that

λ =
b̃δjy + αtλ0,j

y2 + αt
. (3.5)

Let us assume that the conditions on α, t, and y of Proposition 3.1 hold. Then
y2 + αt > 0. Substituting (3.5) into

∂fj
∂y (y, λ) = 0 yields the equation p(y) = 0 for a

polynomial in y of degree five,

p(y) = y5 − y0,jy
4 + 2αty3 + (λ0,j b̃

δ
jt− 2y0,jαt)y

2 (3.6)

+(α2t2 − (b̃δj)
2t+ λ2

0,jαt
2)y − y0,jα

2t2 − b̃δjλ0,jαt
2.
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Having computed its zeros y
(k)
j , k = 1, 2, . . . , 5, we determine the associated λ-values

from (3.5), i.e., from

λ
(k)
j =

b̃δjy
(k)
j + αtλ0,j

(y
(k)
j )2 + αt

, k = 1, 2, . . . , 5.

We are only interested in the real zeros. The points (y
(k)
j , λ

(k)
j ) associated with the

real zeros y
(k)
j of p are possible minima of fj(y, λ). We evaluate the function fj at

these points to determine all solutions of (2.11) with α1 = α and α2 = αt. If fj(y, λ)
achieves the minimum at more than one point, then we choose a point that yields the

largest |λ(k)
j | to obtain a matrix A with eigenvalues of the largest possible magnitude.

We note that if t2(α2y0,j + αb̃δjλ0,j) = 0, then p(y) = yq(y) for a polynomial q of
degree four. This gives the zero y = 0 and the associated value λ = λ0,j . We also
obtain

y0,j = −
b̃δj
α
λ0,j .

This relation can be used to check whether y = 0 is a zero (in the case that t > 0 so
that the conditions of Proposition 3.1 are fulfilled).

Under certain conditions, the solution of ∇fj(y, λ) = 0 can be reduced to the
determination of the zeros of a polynomial of degree three in y. We will discuss this
situation and use it to illustrate that the minimization problem (3.1) may have more
than one solution. Assume that yλ 6= 0 and let t = 1. Multiplying ∂fj/∂y and ∂fj/∂λ
by y and λ, respectively, gives the nonlinear system of equations

λ2y2 + αy2 = b̃δjλy + αy0,jy,

λ2y2 + αλ2 = b̃δjλy + αλ0,jλ.

Subtracting the second equation from the first one yields

y2 − λ2 = y0,jy − λ0,jλ, (3.7)

where we have used that α > 0. Assume that we have the special situation that
λ0,j = y0,j . Then (3.7) becomes y2 − λ2 = y0,j(y − λ). Thus, either λ = y or
λ = y0,j − y. Substitution into (3.5) yields two types of cubic polynomial equations

λ = y : y3 + (α− b̃δj)y − αy0,j = 0,

λ = y0,j − y : y(y2 − y0,jy + α+ b̃δj) = 0.

In the second cubic, y = 0 is an extraneous solution. It is easily verified that the
product of the first cubic and the quadratic factor of the second cubic will give the
original fifth degree polynomial when t = 1.

Example 3.2. Let b̃δj = 1, α = 1/10, t = 1, and y0,j = λ0,j = 0. Then the
above discussion yields two third degree polynomials in y. The real solutions are
{0,±3/

√
10}. The minimum of fj(y, λ) is achieved at {y, λ} for y = λ = ± 3√

10
.

4. Selection of parameters. The blind deconvolution method described in
the previous sections requires the selection of three parameters: two regularization
parameters α1 and α2, as well as the number of Lanczos steps `. In computations, we
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will determine the parameter α1 := α with the aid of the discrepancy principle (see
below), and let α2 := αt for some user-chosen fixed parameter t ≥ 0. This parameter
balances the influence of the regularization terms in (3.1). For instance, letting α > 0
and t = ∞ gives (standard) Tikhonov regularization restricted to a subset of Ritz
vectors associated with A0. This is an appropriate regularization method when the
blur in the available blur- and noise-contaminated image is accurately modeled by the
matrix A := A0. In many of the computed examples of Section 5, we let

t = ‖b̃
δ

`‖22/‖Λ0‖2F . (4.1)

This choice of t balances the influence of the regularization terms in (3.1). If one
knows nothing else about the problem, this is a sound choice, but for particular
reconstructions, one may find that a different value of t works better, cf., Section 5.4.

The third parameter required is the dimension ` of the subspace (2.10), which is
used to determine the blurring matrix A. This dimension equals the number of steps
of the symmetric Lanczos process applied to A0. The value of ` should be chosen large
when A0 is an accurate approximation of the true blurring matrix than when it is not;
the value also should be chosen larger when the available image bδ is contaminated
by a significant amount of noise than when it is not. In our experience, ` generally
can be chosen quite small. It is difficult to determine a suitable value of ` without
some experimentation for each kind of problem of interest. In the adaptive optics
problems of Subsection 5.4, the available matrices A0 can be chosen to be the same
for all restoration problems, and the amount of error in the vector bδ also is about the
same for all problems. This allows us to determine a suitable value of ` by carrying
out some experiments. We then can use this `-value for all restoration problems. We
use the initial vector (2.6) for the Lanczos process.

The discrepancy principle is a popular approach to determine the regularization
parameter in (standard) Tikhonov regularization when a fairly accurate bound (1.1)
for the norm of the “noise” vector eδ in bδ is known; see, e.g., [10]. As a first step
in our blind deconvolution method, we solve a (standard) Tikhonov regularization
problem with the available blurring matrix A0. Thus, we solve

min
x∈Rn

{‖A0x− bδ‖22 + α‖x‖22}. (4.2)

This minimization problem has a unique solution for any α > 0. Denote the solution
by xα. The discrepancy principle prescribes that α > 0 be chosen such that

‖A0xα − bδ‖2 = τδ, (4.3)

where τ > 1 is a user-specified constant independent of δ; see [10] for details. When
the matrix A0 is small enough so that it is feasible to compute its spectral factorization
(2.2), the solution xα of (4.2) that satisfies the constraint (4.3) easily can be computed.
For large-scale problems, determining α via the discrepancy principle using bδ and
A0 can be done efficiently using an Arnoldi-Tikhonov iteration, in particular because
we already iteratively generate the Krylov subspace in our proposed algorithm. We
denote the regularization parameter determined in this manner by α0. The parameter
` has to be chosen large enough so that the discrepancy principle can be satisfied.

We present this process as Algorithm 1, using the parameter choice rule described
in eq. (4.1) and where α > 0 is chosen in advance or according to a discrepancy
principle of the form (4.3).
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Algorithm 1: Lanczos-based blind deconvolution

1 Input: A0 ∈ Rn×n, x0, b
δ ∈ Rn, image regularization parameter α > 0, noise

level δ > 0
2 Set t according to (4.1);

3 Use Lanczos process to build K`
(
A0, b

δ
)

producing T0,` and V`;

4 Compute eigendecomposition U0Λ0U
T
0 with eigenvalues in descending order

by magnitude;
5 Set j ≤ ` to be the last index such that |λj,0| > δ;
6 Truncate U0 ← U0(:, 1 : j) and Λ0 ← Λ0(1 : j, 1 : j);
7 for i = 1, 2, . . . j do

8 Compute zeros of p(y) from (3.6) using λ0,j , y0,j , and b̃0,j ;
9 for each y a root of p(y) do

10 Compute associated λ according to (3.5);
11 end
12 Determine which of these computed pairs (y, λ) minimizes (3.2);
13 Set (yi, λi)← (y, λ)

14 end

15 Set y =
[
y1 y2 · · · yj

]T
and Λ = diag {λ1, λ2, . . . , λj};

16 Set x` = x0 + V`U0y and A` = V`U0Λ (V`U0)
T

;

5. Computed examples. This section presents two sets of computed examples.
All examples were executed on a MacBook Pro with a 3.1 Ghz Intel Core i5 processor
and 8GB of 2133 MHz LPDDR3 main memory and a solid state drive. Except for in
the adaptive optics examples in Section 5.4, the regularization parameter α was chosen
to satisfy the discrepancy principle, either directly or using an Arnoldi-Tikhonov [23]
iteration, applied to the perturbed operator and noisy right-hand side. The parameter
t was chosen according to (4.1). In the first set of examples, reported in Section 5.1,
we carry out experiments using a sample Gaussian blurring problem with perturbed
eigenvalues. The second set of tests, shown in Section 5.4, discuss an adaptive optics
application problem. Comparisons with a method described by Buccini et al. [2] are
presented in Sections 5.2 and 5.3. However, we omit comparisons in some experiments
for brevity. Our experience has been that the algorithm presented in [2] produces
reconstructions of higher quality than the method presented in this paper, but it is
much slower as it is more computationally intensive.

In our computed examples, we show the relative error of our reconstruction, which
for a particular reconstruction xrecon is calculated as

‖xtrue − xrecon‖2
‖xtrue‖2

,

and we also compute the peak signal-to-noise ratio (PSNR),

PSNR(xrecon,xtrue) = 10 log10

(
2552

‖xrecon − xtrue‖22

)
.

The constant 255 in the numerator stems from that each image is represented by n 8-
bit pixels, which take on interger values in the interval [0, 255]. The range limitation
is not imposed during the solution of the minimization problem described in the
previous sections. Moreover, the PSF should not create or damp light. We determine
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a reconstruction that approximately satisfies this requirement, as well as the range
restriction as follows: We first set negative entries of the restoration computed as
described in the previous sections to zero, then scale the vector so obtained so that its
1-norm agrees with ‖bδ‖1, and finally set entries larger than 255 of the latter vector
to 255. This gives the reconstruction xrecon, which approximates xtrue.

In the following experiments, the initial approximation is always chosen to be the
zero vector, i.e., an empty black image. The initial operator approximation is the
given operator A0.

Fig. 5.1: For eigenvalue perturbations of the Gaussian blurring matrix, we plot
the relative quality of the reconstructed operator (as measured by (5.1)) at different
distances from b. Each histogram shows the results for 1000 experiments.

5.1. Applications to a Gaussian blur matrix. We first show some experi-
ments that involve simple perturbations of a Gaussian blurring matrix. Let A denote
the (true) Gaussian blurring matrix and A0 a modified blurring matrix that is ob-
tained by perturbing the eigenvalues of A. Each eigenvalue is perturbed by numbers
generated by the Matlab function rand() (so uniformly distributed on the interval
[0, 1]) scaled by 10−2. Thus, A0 has the same eigenvectors as A.

We cannot expect the computed blurring matrix Ã to be an accurate approxima-
tion of the true blurring matrix A for all initial vectors bδ for the symmetric Lanczos
process. With the proposed method, one builds Ã using a Krylov subspace deter-
mined by the matrix A0 and the particular initial vector bδ. We therefore can expect
Ã to be most accurate in a neighborhood of the initial vector bδ. As an analogy, one
can consider the accuracy of the Fréchet derivative developed around a point as one
moves away from that point. This idea motivates the following experiment.
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Fig. 5.2: For eigenvalue perturbations of the Gaussian blurring matrix, we plot the
relative quality of the reconstructed matrix at for different distances from the right-
hand side b. Each data point displays the average over 1000 experiments.

For a given right-hand side b and initial matrix A0, the proposed method generates
a low-rank matrix Ã. The goal now is to test the accuracy of this operator in various
neighborhoods of b. We define accuracy in terms how well the action of Ã† applied to
a noise-polluted vector in that neighborhood approximates the action of A† applied
to the nonpolluted vector. This is judged relative to the accuracy of the optimal
Tikhonov regularized solution produced using A0 (denoted by Rα(A0)). Thus, for r
in a neighborhood of b and rδ a noisy perturbation thereof, we compute

err(Ã, r) =
‖A†r − Ã†rδ‖2

‖A†r −Rα(A0)rδ‖2
. (5.1)

We must, however, be careful when generating vectors r in the neighborhood. The
vector is an unperturbed vector in the range of the blurring matrix A. We would
like to consider perturbations r of b that also are in the range of A. We therefore set
r = b + Ar, where r is a vector with normally distributed random entries with zero
mean scaled so that r is in the desired neighborhood of b. In other words, we choose
r from the desired neighborhood of b such that ‖A†r‖ does not blow up.1

Figures 5.1 and 5.2 illustrate the quality of the operator Ã as measured according
to the tests we just described. The figures demonstrate that when measuring the
quality of the reconstructed operator, the distance ‖r − b‖2 may play a role. Figure
5.1 shows histograms of the relative norms (5.1) for several distances of r from b.
Each histogram is for 1000 runs with different random vectors r. Figure 5.2 displays
the mean relative norm for each distance.

5.2. Grain problem. Here we tested with the Grain image from [1, 25] and the
same exact and perturbed PSFs used in the experiments from [2, Figures 8–9]. The
method proposed in [2] produces a higher quality solution, but requires a O(10) more
time to run to completion on the same computer. Neither code has been optimized;
thus we only report general performance comparisons to illustrate the strength of

1In an infinite-dimensional setting, we could simply say that we assure that r is in the range of
A.
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Fig. 5.3: Application of the Lanczos blind deconvolution algorithm applied to the
grain problem with A0 induced by a perturbed PSF from [2].

Fig. 5.4: Application of the Lanczos blind deconvolution algorithm applied to the
Flourmill problem with A0 induced by perturbed PSF from [2].

what we propose rather than precise timings. We also tested how well the Arnoldi–
Tikhonov method [23] performs when generating a reconstruction using A0. For the
present example, this method was not able to deliver a reconstruction.

5.3. Flourmill problem. In the Flourmill example, displayed by Figure 5.4, we
used the same perturbed PSF as was used for [2, Figures 5]. We observe that only the
coarse details of the Flourmill were recovered by this method, and this required little
time to execute. For such images, we would recommend our method as a fast way to
construct a better initial approximation for another slower, more costly method, that
may be able to determine a more accurate approximation of xtrue. This is meaningful
because methods that produce accurate restorations, such as [2], are nonlinear. They
can be sped up by providing an initial approximation of the restored image that is of
higher quality than the image represented by bδ.

5.4. Adaptive optics problem. The experiments of this section come from an
astronomical imaging application with a large ground-based telescope, such as the
planned European Extremely Large Telescope (E-ELT). One would like to view a
part of the night sky in order to detect astronomical phenomena. A major cause of
image distortion is that light from these phenomena must pass through the turbulent
atmosphere of the earth to reach the telescope. To overcome this problem, adaptive
optics (AO) systems have been developed. The purpose of these systems is to com-
pensate for atmospheric distortions in real time; see, e.g., [9, 26] for discussions. An
AO system uses indirect measurements from wavefront sensors (WFS) to adjust a de-
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formable mirror (DM) so that it compensates for atmospheric turbulence. However,
since the atmosphere above the telescope changes within 2 ms, the AO system does
not perfectly correct for the turbulence as it suffers from time delay. As the acquisi-
tion time for a single image ranges from several seconds to a few minutes (depending
on the brightness of the observed object), the image degradation due to the rapidly
changing atmosphere depends on the average of noncompensated residual aberrations.
This makes phenomena that are close difficult to identify and differentiate. This is
illustrated by Figure 5.5 for the star cluster image from the Restore Tools software
package [1, 25].

Fig. 5.5: The true star cluster image (left) and the star cluster image convolved
with a simulated true PSF. The images are shown in log-scale to exaggerate the star
brightness.

In this application we have a PSF that describes how a single point source of
light is smeared out when light passes through the distorting medium (atmosphere)
before arriving at the sensor. Here we have two unknown objects, the true image and
the blurring operator. During an actual star observation with the telescope, the PSF
is unknown. However, the PSF of the telescope exhibits the well-understood Airy
pattern as the aperture of the telescope is of annular shape. This PSF is commonly
referred to as the diffraction limited PSF and is of the form

PSF (x) = |F(P (x))|2, (5.2)

where F is the Fourier transform and P (x) is the telescope pupil function. Thus,
P (x) = 1, if x is inside the aperture, and P (x) = 0 else.

A PSF associated with an observation through turbulent atmosphere with a tele-
scope equipped with an AO system also has to take into account residual phase
aberrations φ. This defines an instantaneous PSF, which is of the form

PSFφ(t) = |F(P (x)eiφ(x,t))|2.

An image I formed through telescope observation can mathematically be de-
scribed as a convolution of the true object Itrue and the PSF of the observing system,
resulting in

I(t) = Itrue ∗ PSFφ(·, t).

The acquisition of a single image takes longer than the PSF remains constant. We
therefore have to consider a time average. Using the fact that the true observed object
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does not change during the observation time, we obtain the equation

〈I〉 = Itrue ∗ 〈PSFφ(·, t)〉,

where 〈·〉 denotes the time average. In the following, we seek to estimate PSFobs :=
〈PSFφ(·, t)〉.

The convolution of an image with the PSF induces a matrix of the same size as
the image. From the measurements of the WFS, one can determine both how the
DM should be adjusted, as well as the residual turbulent wavefront resulting from the
time lag. The formulas above can be used to derive an estimate for PSFobs from the
residual wavefront turbulence. In the following, we will refer to the PSF determined
from the WFS measurements as the reconstructed PSF. The first known successful
attempt to determine a reconstructed PSF is described in [30] for a simple AO system.
In recent years several methods for reconstructing the PSF have been developed; see
[11, 13, 14, 19, 24].

In addition to the time lag, reconstructed PSFs also suffer from imperfections
due to approximations in the modeling process and numerical errors. The latter stem
both from discretization errors caused by the use of a fairly coarse grid for the WFS
and from propagated round-off errors introduced, e.g., when computing the discrete
Fourier transform.

Of course, we do not know the true PSF. However, using the official simulation
tool of the European Southern Observatory, Octopus [22], we can obtain a high-quality
approximation of the true PSF. We consider the latter PSF as the true PSF.

The use of an available approximate PSF makes experiments with our algorithm a
bit more difficult to carry out than when an approximate blurring matrix is available.
Since we do not know the blurring matrix associated with the available PSF, we
cannot study its spectral factorization to understand how our algorithm behaves.

To gain some insight into the performance of our blind deconvolution method, we
take advantage of the fact that the PSF can be convolved with images of different sizes.
Thus, we can convolve the PSF with all canonical basis vectors from R1024, which span
the space of 32 × 32 images. This can be performed in a reasonable amount of time
and induces a blurring matrix that can be quickly decomposed and studied to help us
understand the performance of our blind deconvolution method. Indeed, we noticed
immediately that the PSFs from the AO application do not induce symmetric blurring
matrices. This is due to the presence of small perturbations caused by noise in the
measured PSF.

One can apply radial averaging to symmetrize the PSF. This is quite natural, as
it is common to only consider the radial average of a PSF in real applications; see
[24]. A justification of averaging is that in the AO system, all wavefront distortions
are small and have expected value zero. This suggests that a PSF associated with
a run of the AO system should be fairly close to the PSF of the telescope, which is
symmetric.

The acquisition of an image takes a long time compared to measuring the wave-
front distortions. Therefore, speckles occurring due to distortions in a short time
frame and measurement errors tend to average out. The reconstructed PSF is in the
direction of the telescope. Therefore, no hardware dependent asymmetric behavior of
the system will show up at the center of our image. Figure 5.6 shows symmetrized ver-
sions of the PSFs. The distortion created by the action of each radially symmetrized
PSF can be seen in the central image of Figure 5.10.

Our true and reconstructed radially symmetric PSFs allow us to determine asso-
ciated blurring matrices of size 1024× 1024 and study their properties. Plots of their



16 L. Dykes, R. Ramlau, L. Reichel, K. M. Soodhalter, and R. Wagner

Fig. 5.6: Log plot of the absolute values of the true (left) and of the reconstructed
radially symmetrized PSF (right).

entries, displayed in Figure 5.7, show the blurring matrices to be highly structured.
Indeed, a cursory look at the entries suggests that the blurring matrices are close
to block matrices in which each block is a Toeplitz matrix. It is well-known that
block-Toeplitz-Toeplitz-block matrices are discrete convolution operators; see, e.g.,
[6, 18].
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Fig. 5.7: Log plot of the absolute values of the matrices determined by radially
symmetrized true and reconstructed PSFs.

Figure 5.8 displays the log-plot of the positive eigenvalues in descending order
of the matrices displayed in Figure 5.7, and Figure 5.9 shows four unit eigenvectors
associated with the largest eigenvalues of both matrices. One can appreciate that the
dominant eigenvectors look fairly similar qualitatively and that the eigenvalues decay
rapidly. We deduce that already a few iterations with the Lanczos process applied
to this blurring matrix have the potential of giving accurate approximations of the
dominant eigenvectors of the matrix induced by the true PSF. The method proposed
in this paper can be used to determine suitable eigenvalues.

Judging the quality of the low-rank operator reconstruction is a bit more difficult.
There is no explicitly available true operator with which to compare, and for an image
of this size, the induced matrix representation of the PSF is prohibitively expensive
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Fig. 5.8: Log plot of the positive eigenvalues of the matrices induced by applications
of the true and false PSFs.
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Fig. 5.9: Comparison of first four unit eigenvectors of matrices induced by the two
PSFs. On close inspection, each pair differs in amplitude, but qualitatively has the
same frequency.

to compute.

Fig. 5.10: Reconstruction of the symmetrized PSF from the AO application using
the rougher approximate PSF.

For the same PSF, we carry out the same experiments for a less sparse image,
namely the satellite image, also from Restore Tools [1, 25]. In Figure 5.11, we show an
experiment with a different choice of t than is recommended in (4.1), as this yielded
a better result.

6. Discussion and conclusion. We have developed a new blind deconvolution
method which generates a Krylov subspace using a given, incorrect operator A0 and a



18 L. Dykes, R. Ramlau, L. Reichel, K. M. Soodhalter, and R. Wagner

Fig. 5.11: Here we chose t = 1, as it yielded better performance than the default
choice.

noise-contaminated vector bδ. Using this subspace, we determine eigenvalue approx-
imations, an approximation of the desired image, and a low-rank approximation of
the true blurring matrix. This is accomplished through the minimization of a scalar
functional that yields, for each approximate eigenvector, an eigenvalue of the low-rank
matrix approximation.

We have shown that the method is able to deliver image and blurring matrix re-
constructions. Differently from some other available blind deconvolution methods, the
method presented requires no information about the blurring matrix and boundary
conditions specific for the problem. The main computational burden is the evalua-
tion of a few matrix-vector products with an available approximation of the actual
symmetric blurring matrix. The method therefore is inexpensive to apply. Its per-
formance depends on the relationship between the spectral information of the false
available blurring matrix and the true unknown one. The difference between their
eigenspaces is especially important since we use the approximate eigenvectors gener-
ated by the Lanczos process when applied to the false blurring matrix to construct
an approximation of the true blurring matrix.

As the results for symmetric operator induced by radially symmetric PSFs are
promising, the next step is to develop an extension of this method appropriate for
non-symmetric problems. Furthermore, it is often the case that astronomers have
specific information about a small part of the of the sky, such as where one should
definitely see a star or where there should be no astronomical phenomena. It would
be advantageous to use this information in the reconstruction of the image and the
blurring matrix.
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