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Abstract
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new ways to define adjacency matrices associated with this kind of networks. We
propose that dynamic networks be modeled with the aid of block upper triangu-
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Several applications to real dynamic networks are presented and illustrate the ad-
vantages of the proposed method when compared with an available approach.
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1. Introduction

A dynamic network, also called a temporal network or evolving network, is a
graph in which connections are formed both within and between well-determined
time intervals. We can model the evolution of such a network by considering a
change in the set of edges over a fixed set of nodes. Let {Gk}N

k=1 =
(
V,{Ek}N

k=1

)
be a sequence of unweighted graphs without loops and multiple edges evolving in
discrete time, where V is the set of nodes of cardinality n, and Ek contains all the
edges connecting the nodes in the time interval τk = [tk−1, tk), k = 1, . . . ,N. We
assume the whole time period to be partitioned into N intervals, not necessarily of
equal lengths. Connections in the network starting at time interval τi and ending
at time interval τ j are represented by the n× n adjacency matrix Ai, j, j ≥ i. As
usual for unweighted graphs without loops and multiple edges, the (r, `)th entry
of Ai, j equals 1 if there is an edge from node r to node ` starting at τi and ending
at τ j, and 0 otherwise.

This kind of structure is useful when modeling both connections with a certain
duration in time and those whose duration is uncertain. The first ones include
phone calls, flights between airports, disease spreading, etc. The second kind
of connections may be text messages, online social network interactions (Twitter,
Facebook, Instagram, only to mention a few), e-mail messages, and so on; see [16]
for an overview. Allowing time steps τk = [tk−1, tk) to have finite duration gives
great generality to the model, as it allows a user to reduce the length of time
intervals when an accurate localization in time is needed, and enlarge the length
of the time interval for events that start and end over extended time periods.

Various recent papers discuss the definition of node centrality indices based on
the notion of dynamic walks [1, 13, 14]. In [8] the authors proposed a block matrix
representation in order to express centrality indices in terms of standard matrix
functions. In particular, they applied the resolvent to recover some previously
defined centrality indices.

The aim of this work is to present a block matrix representation for dynamic
networks, whose structure is able to represent different kinds of connections, and
allows one to define new centrality indices in order to identify the most important
nodes in evolving networks. This representation makes it possible to recompute
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centrality indices when a new time period is added at a reduced cost by a simple
matrix update. Both moving time, i.e., when there is a connection between two
nodes starting and ending at different time intervals, and waiting time, i.e., when a
fictitious connection is added between a node and itself at different time intervals
in order to simulate a stay at the same node for a certain time, can be modeled.

The plan of the paper is the following. Section 2 reports some background
material that subsequently will be needed. Our model is introduced in Section 3,
Section 4 discusses the issue of downweighting “old” walks, while the update
of the block structure is described in Section 5. A comparison with an existing
centrality measure is presented in Section 6, and Section 7 contains three real-life
examples. Finally, we draw some conclusions in Section 8.

2. Background and notation

Let |X | denote the cardinality of the set X . A static network, or graph, consists
of two sets G = (V,E), where V , with |V |= n, is the set of the nodes (or vertices)
and E, with |E| = m, is the set of the edges (or links) between nodes. Each edge
ei = (rki, ` ji), i= 1, . . . ,m, connecting node rki and node ` ji , is said to be directed if
it can be traversed in only one direction; it is said to be undirected otherwise [5, 7].

A walk of length w from node rk1 to rkw+1 is a sequence of w edges (not
necessarily distinct) (rk1,rk2),(rk2 ,rk3), . . . ,(rkw ,rkw+1). A network is said to be
(strongly) connected if any two nodes are connected by a (directed) walk; see [7].

A static graph with n nodes can be represented by a square matrix A = [ar,`] ∈
Rn×n, which is referred to as the adjacency matrix associated with the graph. Its
entry ar,` is nonzero if there is an edge from node r to node `. In this work we
will, unless explicitly stated otherwise, focus on unweighted graphs without self-
loops and multiple edges, i.e., we consider all edges to have the same importance.
Moreover, entries ar,` are either zero or one. If the graph is undirected, then also
a`,r = ar,`.

An application that has gained considerable attention in graph theory in recent
years is the determination of the most important node(s) of a network according
to a given ranking rule. In the case of directed networks, as well as in dynamic
networks, a node can be important either as a broadcaster or as a receiver of infor-
mation. The following lemma is a well known result from graph theory [6].

Lemma 2.1. Let Aw denote the wth power of the adjacency matrix A of an un-
weighted graph. The quantity (Aw)r,` counts the number of walks of length w
starting at node r and ending at node `. If r = `, then (Aw)r,r counts the number
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of cycles based on node r, that is, the number of closed walks starting and ending
at node r.

A dynamic network is a sequence of unweighted graphs evolving in discrete
time

Gk = (V,Ek) , k = 1, . . . ,N.

Here, the set of nodes V , with |V | = n, is fixed and the evolution in time is given
by the changes in the sets of edges Ek. In the case of dynamic networks, given
an ordered sequence of time points {tk}N

k=1, authors of [14] consider the network
at time tk to be represented by its n× n adjacency matrix A[k]. As usual for un-
weighted networks, the (r, `)th entry of A[k] equals 1 if there is an edge from node
r to node ` at time tk, and 0 otherwise. In the same work, the authors introduce
the concept of a dynamic walk as follows.

Definition 2.1. A dynamic walk of length w from node rk1 to node rkw+1 consists
of a sequence of edges (rk1,rk2), (rk2,rk3), . . . , (rkw ,rkw+1) and a nondecreasing
sequence of times tk1 ≤ tk2 ≤ ·· · ≤ tkw such that (A[ks])rks ,rks+1

6= 0, s = 1, . . . ,w.

This definition was used in [14] to introduce the dynamic communicability
matrix

Q[ j] =
(

I−aA[1]
)−1(

I−aA[2]
)−1
· · ·
(

I−aA[ j]
)−1

=
j

∏
s=1

(
I−aA[s]

)−1
. (2.1)

The factor (I− aA[s])−1, known as a resolvent of A[s], exists for 1 ≤ s ≤ j, if the
parameter a satisfies 0 ≤ a < 1/maxs ρ(A[s]), where ρ(A[s]) denotes the spectral
radius of the matrix A[s]. We assume this to be the case. Then the resolvent of A[s]

may be expanded as (
I−aA[s]

)−1
=

∞

∑
w=0

aw
(

A[s]
)w

.

In other words,
(
Q[ j])

r,` may be considered a weighted sum of the number of
dynamic walks from node r to node ` by taking into account the ordered sequence
{A[k]}N

k=1. Walks of length w are scaled by aw. Finally, the overall ability of the
nodes to broadcast or receive information in this sense is given by the row and
column sums

Cbroadcast = Q[ j]1 and Creceive = Q[ j]T 1, (2.2)
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respectively, where 1 is the vector of all ones; see [14] for a more detailed expla-
nation, including a discussion on the choice of the parameter a.

In many applications, recently started walks may be considered more impor-
tant than those started a long time ago. For this reason, the authors in [13] in-
troduced the running dynamic communicability matrix S [ j], obtained recursively,
starting from S [0] = 0, as

S [ j] =
(

I + e−b∆t jS [ j−1]
)(

I−aA[ j]
)−1
− I, j = 1, . . . ,N, (2.3)

where ∆t j = t j−t j−1. In this recurrence, the parameter 0< a<min1≤ j≤N 1/ρ(A[ j])
is used to penalize long walks and the parameter b ≥ 0 to filter out old activities.
Overall, S [ j] maintains walk counts that are scaled by aw, in terms of length w,
and by e−bt , in term of chronological age t. Running versions of the broadcast and
receive communicabilities are then given by the row/column sums of the matrix
S [ j], that is

S [ j]1 and S [ j]T 1. (2.4)

In [8], given a sequence of adjacency matrices {A[k]}N
k=1, the authors proposed

the application of the block bidiagonal matrix

B :=


αA[1] β2I

αA[2] β3I
. . . . . .

αA[N−1] βNI
αA[N]

 . (2.5)

By using this structure, they were able to express the quantities in (2.2) and (2.4)
as actions of standard matrix functions on a vector. This approach allowed them to
apply efficient computational techniques for their computation; see [8] for details.

We remark that the ideas presented here are different from the models available
in the literature [1, 8, 12, 13, 14]. In particular, we provide a block model for
networks that the authors of [16] refer to as interval graphs, i.e., networks whose
evolution has a certain duration in time, in order to distinguish between short and
long edges. We note, however, that this terminology is not appropriate in the
present paper, since interval graphs are graphs in which the nodes are intervals of
the real line; see, for example, [11].
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3. Block models

We consider dynamic networks discretized into a finite number of time peri-
ods. As already mentioned, we assume the time period that we are interested in to
be partitioned into N time intervals, not necessarily of equal lengths, τk = [tk−1, tk),
k = 1, . . . ,N. The n× n adjacency matrices Ai, j, defined in the Introduction and
representing connections starting at interval τi and ending at interval τ j, may be,
and in many applications are, nonsymmetric. Indeed, if a connection (r, `) is ac-
tive in the time interval [ti−1, t j), then this is not true, in general, for the reverse
connection (`,r).

In the following, we will present two block models that represent a dynamic
network in the whole time period that we are considering. Each block matrix is
specific for a given kind of connection, depending on the position of the blocks
Ai, j. We will use superscripts to indicate the position of the block within the block
matrix and subscripts to indicate the element within each block. In particular, if
we denote the block matrix that models a dynamic network during a time period
partitioned into N time intervals by BN , then (BN)

i, j
r,` stands for element (r, `) of

the block (i, j).
By summing over all the powers w and downweighting walks of length w by

1/w!, we obtain the exponential eBN . The (r, `)th element of each block (eBN )i, j

is the weighted sum of all the walks from node r to node ` starting at time τi
and ending at time τ j, where the walks of length w are weighted by 1/w!. Each
block-row (eBN )i,· accounts for all the connections starting at time τi, while each
block-column (eBN )·, j contains information about the connections ending at time
τ j.

Similarly to [13, 14], we use the row and column sums of the block matrix eBN

to quantify the importance of the nodes as broadcasters or receivers of informa-
tion, respectively. In particular, the broadcast and receive indices of node i at time
k are given by

broadi,k = (eBN 1)(k−1)N+i and reci,k = (eBT
N 1)(k−1)N+i,

k = 1, . . . ,N,
i = 1, . . . ,n,

(3.1)
respectively. The sum

Bi
r =

N

∑
j=i

n

∑
`=1

(eBN )
i, j
r,` =

[
(eBN )i,· 1

]
r ,

r = 1, . . . ,n,
i = 1, . . . ,N,

can be seen as a measure of the importance of the node r as a source, starting
from time τi, in which walks of length w have been weighted by a factor 1/w!.
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Similarly, the sum

R j
` =

j

∑
i=1

n

∑
r=1

(eBN )
i, j
r,` =

[
(eBT

N ) j,· 1
]
`
,

`= 1, . . . ,n,
j = 1, . . . ,N,

may be considered a measure of the importance of node ` as a sink up to time τ j,
in which walks of length w have been weighted by a factor 1/w!. It is worth noting
that (3.1) is a temporal extension of the total (node) communicability introduced
in [2].

Other kinds of node centralities also may be interesting. For example, one
might look at the information that is sent from node r up to time τ j, or, conversely,
that is received by node ` starting at time τi. The computation of these quantities
can be carried out by using the techniques from [9]. The challenging case is
when the explicit computation is difficult, that is, when Nn� 1. This happens
when either the number of nodes or of time intervals is large. We distinguish two
significant cases, that is, when either N or n is small enough:

• If n is small and N is large, then we study a small network over many time
intervals τi. In this case, it may be interesting to investigate the behavior
of all the nodes in a given time interval. This leads to the analysis of the
ith block-row or of the jth block-column of a matrix function f (BN). This
situation is illustrated in Subsection 7.3, where the function f is chosen to
be the matrix exponential.

• If N is small and n is large, then we observe a large network over a few
time intervals. In this case, we may be interested in identifying the “most
important nodes” according to their ability to broadcast or receive informa-
tion during the period [t1, tN ], that is, in solving a node ranking problem.
In some situations, one may want to subdivide the time interval [t1, tN ] into
subintervals and solve the node ranking problem in each subinterval. This
is illustrated in Subsection 7.2.

3.1. General block model
The block upper triangular matrix

BN :=


A1,1 A1,2 · · · · · · A1,N

0 A2,2
. . . . . . ...

0 AN−1,N−1 AN−1,N
0 AN,N

 ∈ RNn×Nn (3.2)
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is a more general representation of the entire dynamic network than in previous
work. The blocks in row i have edges starting at the interval τi and ending at any
interval τ j, j = i, . . . ,N. The main difference between the two representations (2.5)
and (3.2) is that the first one does not take into account the duration in time of
each edge, but only considers whether edges are present at a certain time ti.

Both the type of connections and the discretization of the time period deter-
mine the nature of the blocks. For example, if the network represents phone calls
during a whole day and each time interval concerns the phone calls that occurred
in each of the 24 hours, we may have connections both within the same time inter-
val as well as between two different time intervals. If we change the discretization,
for example, by considering a month as the whole time period and each day as a
time interval, then it is unlikely to find a phone call that starts during one day
and ends the day after. Moreover, it is almost impossible to consider phone calls
starting at time step τi and ending at time step τi+ j, with j > 1.

Figure 1 and Figure 2 represent the same synthetic dynamic network modeling
15 phone calls within a group of five people during one hour; see Table 1. In
Figure 1 each time step lasts for 15 minutes, while in Figure 2 it lasts for 10
minutes. In this case, the nature of the connections yields undirected networks.
Indeed, if node r is involved in a phone call with node s, then node s is involved
with node r. This is not true in general, for example, in networks that model
flight connections. It is worth noting that a connection between nodes r and s
starting and ending at the same time step τi, is treated, as usual, by placing two
entries equal to 1 in the corresponding positions, that is, (Ai,i)r,s = (Ai,i)s,r = 1.
If the same connection starts at τi and ends at a different time step τ j, then we
set (Ai, j)r,s = (Ai, j)s,r = 1, and this leads to the presence of two distinct edges in
Figures 1 and 2.

The (i, j)th block of the wth power of the matrix BN contains the number of
dynamic walks of length w starting at time interval τi and ending at time interval
τ j. For example, here is the form of some of the blocks of the 3rd power of the
matrix B3:

(B3
3)

i,i = A3
i,i, i = 1, . . . ,N,

(B3
3)

1,2 = A2
1,1A1,2 +A1,1A1,2A2,2 +A1,2A2

2,2,

(B3
3)

1,3 = A2
1,1A1,3 +A1,1A1,2A2,3 +A1,2A2,2A2,3 +A1,1A1,3A3,3

+A1,2A2,3A3,3 +A1,3A2
3,3,

(B3
3)

2,3 = A2
2,2A2,3 +A2,2A2,3A3,3 +A2,3A2

3,3.
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Figure 1: Phone calls between 5 people during a time period of one hour. Each time step lasts 15
minutes.
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Figure 2: Phone calls between 5 people during a time period of one hour. Each time step lasts 10
minutes.
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Table 1: Phone calls represented by the network in Figure 1.

9:00 - 9:14 9:15 - 9:29 9:30 - 9:44 9:45 - 10:00
3 – 5 (9:03 - 9:04) 3 – 5 (9:20 - 9:21) 2 – 3 (9:33 - 9:36) 2 – 3 (9:49 - 9:51)
1 – 2 (9:05 - 9:07) 2 – 4 (9:23 - 9:25) 1 – 5 (9:33 - 9:38) 4 – 5 (9:53 - 9:55)
1 – 4 (9:08 - 9:11) 1 – 5 (9:28 - 9:32)

1 – 2 (9:11 - 9:20) 1 – 3 (9:44 - 9:48)
3 – 4 (9:14 - 9:17) 4 – 5 (9:44 - 9:46)

2 – 4 (9:28 - 9:31)

In the special case when no connections start and end during the same time
period, the adjacency matrix for the whole time interval has the form

BN :=


0 A1,2 . . . A1,N

. . . . . . ...
0 AN−1,N

0

 ∈ RNn×Nn. (3.3)

In this case, the blocks of the second and third powers of B4 have the form

(B2
4)

i, j = 0, i = max( j−1,1), . . . ,4, j = 1, . . . ,4,

(B2
4)

1,3 = A1,2A2,3,

(B2
4)

1,4 = A1,2A2,4 +A1,3A3,4,

(B2
4)

2,4 = A2,3A3,4,

(B3
4)

i, j = 0, i = max( j−2,1), . . . ,4, j = 1, . . . ,4,

(B3
4)

1,4 = A1,2A2,3A3,4.

An illustration is provided by Figure 3, which represents a dynamic network that
models flight connections between airports.

3.2. Connections with an uncertain duration in time
Online social network interactions, such as emails and text messages, can be

represented as dynamic networks characterized by connections exclusively of an
uncertain duration in time. In fact, in this case, it is not meaningful to consider
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Figure 3: Flight connections between 5 airports during a time period of four hours. Each time step
lasts one hour.

starting and ending times since these kind of connections do not always require a
reply from the receiver, unless there is an interest in detecting when the message
will actually be read, or when the receiver will take an action in response to it. In
this case, any discretization of the time period is irrelevant since the information
can reach any connected node in any moment and remains available indefinitely.
For this reason, we consider each edge between two nodes r and ` at time τi as a
link starting at time period τi and ending at time period τi+1.

Let t1 < t2 < · · · < tN be a suitable “discretization” of time and let us denote,
for notational simplicity, the adjacency matrices Ai,i+1 by Ai for i = 1, . . . ,N−1.
Then, the adjacency matrix for this kind of dynamic network is of block super-
diagonal form

B̂N :=



0 A1 0 · · · 0 0
0 0 A2 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · AN−2 0
0 0 0 · · · 0 AN−1
0 0 0 · · · 0 0


. (3.4)

In particular, (B̂N)
i,i+1 = Ai ∈ Rn×n and (B̂N)

i, j = 0 for every j 6= i+ 1. Then
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(B̂N)
i,i+1
r,` = 1 if and only if there is an edge between node r and node ` at time τi.

Consider the powers of the matrix B̂N . Each block in the matrix

B̂2
N =



0 0 A1A2 0 · · · 0
0 0 0 A2A3 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · AN−2AN−1
0 0 0 0 · · · 0
0 0 0 0 · · · 0


is such that

(B̂2
N)

i, j = δi, j−2AiAi+1, i = 1, . . . ,N−1, j = 1, . . . ,N,

and 0 otherwise, where δk,` denotes the Kronecker delta, and (B̂2
N)

i,i+2
r,` is the num-

ber of dynamic walks of length 2 from node r to node ` starting at time τi. For a
generic positive integer power w of B̂N , we have

(B̂w
N)

i, j = δi, j−w

i+w−1

∏
p=i

Ap, w = 1, . . . ,N,

and (B̂w
N)

i,i+w
r,` is the number of dynamic walks of length w from node r to node `

starting at time τi.
Since B̂w

N = 0 for every w ≥ N, the exponential function becomes the finite
sum

eB̂N =
N−1

∑
w=0

B̂w
N/w!, (3.5)

where 1/w! is used to downweigh longer (that is, older) walks. In particular,

eB̂N =


I A1 A1A2/2! · · · ∏

N−1
p=1 Ap/(N−1)!

0 I A2 · · · ∏
N−1
p=2 Ap/(N−2)!

...
...

... . . . ...
0 0 0 · · · AN−1
0 0 0 · · · I

 .

We note that the data structures presented in this paper do not require much
computer memory. When each network is large and only has fairly few edges
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(which is a common situation), the matrix BN can be stored as a sparse matrix. If
the networks are small and dense, all the matrices Ai, j can be stacked in a column,
and the product of BN times a vector can be evaluated by a suitably designed
function. The latter situation happens, for example, in electroencephalography,
where measurements are taken on a small number of channels, but are repeated
over a quite large time interval.

3.3. Waiting edges
By using the block models (3.2) and (3.4), we take into account only dynamic

walks for which each edge is present in a given interval, that is we only consider
“moving” edges. If we want to allow edges to stay at the same node “waiting”
for several time periods before moving to another node, then we can add a link
between a node and itself across successive time intervals. In other words, we
replace Ai,i+1 by Ai,i+1 + I in (3.2) and Ai by Ai + I in (3.4), that is, we add self-
loops to each superdiagonal block. We will talk about “waiting” edges by referring
to this kind of self-loops. Adding an identity to each superdiagonal block implies
that all nodes that determine this block are equipped with self-loops.

4. Downweighting old walks and short time intervals

By applying the matrix exponential function to the block matrix (3.2), each
walk of length w is downweighed by a factor 1/w!, regardless of the beginning
time period τi or the ending time period τ j. Walks that started at an earlier time
period have the same weight as walks that start later. The same happens with the
ending time periods. Let us consider the matrix B3 discussed above. All walks
in B3

3 are of length 3 and are downweighed by 1/3!, but they have three different
beginning time periods: τ1, τ2, and τ3.

One way of downweighting older walks (walks that start during an earlier time
period) is by scaling the block rows of eBN . Define the block diagonal matrix

DL = diag(a1In,a2In, . . . ,aNIn), (4.1)

where the ai can be chosen at will, and consider DLeBN . Then, the ith block-row
of eBN is multiplied by ai and walks of the same length starting at different times
(say, τ1 and τ3) get different weights (a1 and a3).

If we are interested in the ending time period, rather than in the beginning time
period, then we define

DR = diag(b1In,b2In, . . . ,bNIn), (4.2)

13



and work with the matrix eBNDR.
A similar approach may be used to weigh time intervals of distinct length

differently. To act on the starting intervals, the scaling factors in (4.1) may be
chosen as

ai = α(ti− ti−1)
β , i = 1, . . . ,N,

where α is a chosen scaling factor and β = 1 or −1, depending on the desire to
give lesser or larger weights to smaller time intervals. The same definition can be
applied to (4.2) to weigh the end intervals.

The model introduced allows one also to penalize walks with respect to the
duration of the single edge. For example, if we are interested in giving more
importance to connections which last longer, we define the matrix

Dk = diag(ckIn,k), k = 0, . . . ,N−1,

where diag(Mn,k) denotes the Nn×Nn matrix whose kth upper block-diagonal
contains the block Mn repeated N − k times. Then, we work with the matrix
T 2eBN , where

T = D0 +D1 + · · ·+DN−1, (4.3)

and 2 denotes the block Hadamard product between matrices defined in [17].
Thus, let the block matrices M = [Mi, j]

k
i, j=1 ∈Rkn×kn and M̂ = [M̂i, j]

k
i, j=1 ∈Rkn×kn

have the blocks Mi, j,M̂i, j ∈ Rn×n. Then M2M̂ = [Mi, jM̂i, j]
k
i, j=1 ∈ Rkn×kn.

The following example illustrates the application of the proposed approaches.
Let N = 4, DL = diag(ρ3In,ρ

2In,ρIn, In), with 0 < ρ < 1, and

eB4 =


C1,1 C1,2 C1,3 C1,4

0 C2,2 C2,3 C2,4
0 0 C3,3 C3,4
0 0 0 C4,4

 .
Then

DLeB4 =


ρ3C1,1 ρ3C1,2 ρ3C1,3 ρ3C1,4

0 ρ2C2,2 ρ2C2,3 ρ2C2,4
0 0 ρC3,3 ρC3,4
0 0 0 C4,4

 .
Now let instead DR = diag(ρ3In,ρ

2In,ρIn, In). Then

eB4DR =


ρ3C1,1 ρ2C1,2 ρC1,3 C1,4

0 ρ2C2,2 ρC2,3 C2,4
0 0 ρC3,3 C3,4
0 0 0 C4,4

 .
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Eventually, let T = diag(ω3In,0)+diag(ω2In,1)+diag(ωIn,2)+diag(In,3). Then,

T 2eB4 =


ω3C1,1 ω2C1,2 ωC1,3 C1,4

0 ω3C2,2 ω2C2,3 ωC2,4
0 0 ω3C3,3 ω2C3,4
0 0 0 ω3C4,4

 .
We see that considering DLeBN and eBNDR allows one to separate downweight-

ing with respect to walk length (1/w!) from downweighting with respect to age
(ρ j). Instead, by considering T 2eBN we can distinguish between penalization
with respect to walk length (1/w!) and edge length (ω j).

5. Computation and updating

One of the main computational issues when dealing with dynamic networks
is updating of the quantities (3.1), when an extra time period is available, without
recomputing them.

The new adjacency matrix BN+1 can be obtained by appending a new block-
column to BN and adjusting the size. Let

BN+1 :=
[

BN VN+1
0 AN+1,N+1

]
∈ R(N+1)n×(N+1)n, (5.1)

where VN+1 = [AT
1,N+1,A

T
2,N+1, . . . ,A

T
N,N+1]

T ∈ RNn×n. The powers of BN+1 can
be written as

Bw
N+1 :=

[
Bw

N ∑
w−1
j=0 B j

NVN+1Aw− j−1
N+1,N+1

0 Aw
N+1,N+1

]
=

[
Bw

N SN,w
0 Aw

N+1,N+1

]
. (5.2)

We use the relation SN,w = BNSN,w−1+VN+1Aw−1
N+1,N+1 to determine the last block

column of Bw
N+1 (for w = 2,3, . . . ) with SN,1 =VN+1 [18]. Then, the matrix expo-

nential of BN+1 can be updated as follows

eBN+1 :=
[

eBN XN
0 eAN+1,N+1

]
∈ R(N+1)n×(N+1)n, (5.3)

with XN = ∑
∞
w=1 SN,w/w!.

It is also possible to update the broadcast centrality eBN 1 when a new time step
is added. In this case, we have

eBN+11 =

[
eBN 1+XN1
eAN+1,N+11

]
,
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where 1 is the vector of all ones of appropriate size.
The algorithm for the computation of the new block-column XN in matrix

eBN+1 is described in [18], where the authors present a scaling and squaring method
for the update of the exponential of a block triangular matrix. An alternative
algorithm based on an iterative method is reported in Algorithm 1, which can be
applied recursively starting from B1 = A1,1.

Algorithm 1 Recursive computation of the broadcast centrality.
Require: Starting block A1,1 of size n, successive updates (Vk,Ak,k), k = 2,3, . . .
Require: tolerance τ , maximum number of iterations imax
Ensure: block matrix BN (3.2), broadcast centrality vector y = eBN 1

1: B = A1,1, y = eB1
2: k = 1
3: while a new update (Vk+1,Ak+1,k+1) is available do
4: k = k+1
5: S =Vk, X =Vk, P = In
6: flag = 1, i = 1, fact = 1
7: while flag and i < imax do
8: i = i+1, fact = i · fact
9: P = Ak,k ·P

10: S = B ·S+Vk ·P
11: X = X +S/fact
12: flag = ‖S‖∞ > τ · fact · ‖X‖∞

13: end while
14: y =

[
y+X1
eAk,k1

]
, B =

[
B Vk
O Ak,k

]
15: end while

Recomputing centrality indices is particularly useful in a real-time monitoring
setting. In this situation, when information about the time interval τN+1 becomes
available, the matrix BN is augmented by a block-row and a block-column as in
(5.1). To follow the network evolution, we proceed as follows. Let us assume a
connection exists between node r and node `, started at time τi, i≤ N, which does
not end at time step τN . To keep track of this, we introduce a temporary block-
column ṼN = [ÃT

1,N , Ã
T
2,N , . . . , Ã

T
N,N ]

T ∈ RNn×n and set (Ãi,N)r,` = 1. Then, if the
connection is still active at the end of time interval τN+1, we set (Ãi,N+1)r,` = 1 in
ṼN+1. If, on the contrary, the connections ends at step τN+1, we set (Ãi,N+1)r,` = 0
and (Ai,N+1)r,` = 1 to update the network dynamically. The temporary array ṼN

16



0 5 10 15 20

nz = 30

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

nz = 49

0

2

4

6

8

10

12

14

16

18

20

Figure 4: Spy plots of the adjacency matrix associated to the network represented in Figure 1 by
using the block model (3.2) (left) and by using the block model defined in [8] (right).

can be discarded when time step τN+1 ends.

6. Comparison with existing centrality measures

To validate the introduction of the new block model, we compare it with exist-
ing centrality measures. In particular, we compute the broadcast index for all the
nodes in the phone call network in Figure 1 by using both the exponential defined
in this paper and the resolvent defined in [13, 14]. We recall that centrality indices
defined in [13, 14] do not take into account the duration of the connections, but
only consider whether a connection is present or not at a certain time step.

Figure 4 reports the spy plot associated to the network represented in Figure 1.
In this kind of graph each nonzero entry of the adjacency matrix is represented
by a blue dot, and the quantity “nz” on the x-axis denotes the number of nonzero
entries. The plot on the left-hand side is drawn by using the block model (3.2)
and the plot on the right-hand side by using the block model defined in [8]. We
remark that, while the new block model contains a number of nonzero elements
equal to the number of connections in the network (in this case doubled since the
network is undirected), the block model in [8] does not have this feature, that is,
the number of nonzero elements in the matrix is independent of the number of
connections. This happens because each connection in the network has its own
position in the matrix depending on the starting and ending time.

Figure 5 shows the spy plot of the exponential of the network defined by Fig-
ure 1. The exponential of a matrix of the form (3.2) generally is a fairly dense
upper block triangular matrix.
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Figure 5: Spy plots of the exponential of the adjacency matrix associated to the network repre-
sented in Figure 1 by using the block model (3.2) (left) and by using the block model defined in [8]
(right).

Figure 6 reports the spy plot associated to the network represented in Figure 2.
The plot on the left-hand side is drawn by using the block model (3.2) and the plot
on the right-hand side by using the block model defined in [8]. Again, the number
of nonzero entries of the new block model equals the number of connections in
the network (in fact, the number of connections is independent of the discretiza-
tion), while in the block model [8] the number of nonzero entries is unrelated to
the number of connections in the network and this number changes with the dis-
cretization. This depends on that in the latter model, a connection that traverses a
time step is present in more than one block, while in our new block model, as al-
ready said, each edge corresponds to only one (or two if the network is undirected)
nonzero element(s) in the whole matrix.

Table 2 reports the ranking of the nodes of the network represented in Fig-
ure 1 obtained by using the two approaches: the resolvent-based centrality de-
fined in [14] and the exponential-based centrality introduced in this paper. It can
be seen that the centrality index based on the exponential of the adjacency matrix
identifies node v1 as the most important node, while the resolvent-based centrality
does not. The importance of node v1 is in agreement with intuition, since v1 is
involved in more minutes of conversation than the other nodes, but this measure
of importance does not necessarily coincide with the simple notion of degree in
larger examples, as it takes into consideration the downweighting of long walks in
the nodes ranking. We remark that, in this example, the resolvent-based centrality
is computed by setting a = 0.9/maxρ(A[s]) in (2.1), and that the ranking of the
nodes does not change using a different value of the parameter a in the interval
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Figure 6: Spy plots of the adjacency matrix associated to the network represented in Figure 2 by
using the block model (3.2) (left) and by using the block model defined in [8] (right).

[0.5/maxρ(A[s]),1/maxρ(A[s])).

Table 2: Comparison between the dynamic centrality indices of the network in Figure 1. The
resolvent-based centrality is computed by setting a = 0.9/maxρ(A[s]) in (2.1).

Resolvent-based centrality Exponential-based centrality
Ranking Value of centr. Ranking Value of centr.

4 1349.75 1 10.05
3 1220.49 4 7.20
1 1219.78 2 7.19
5 801.22 3 5.78
2 800.75 5 3.79

Table 3 reports the ranking of the nodes of the network represented in Figure 2
obtained by using the two approaches. It can be seen that, by decreasing the
length of each time step, both the centrality indices correctly identify node v1
as the most important one in terms of number of minutes of conversation. The
resolvent-based centrality is computed by setting a = 0.9/maxρ(A[s]) in (2.1).
Again, in this example, the ranking of the nodes by using the resolvent-based
centrality does not change using different values of the parameter a in the interval
[0.5/maxρ(A[s]),1/maxρ(A[s])). It is worth noting that, except for the first and
last nodes, the rankings obtained by the two methods do not coincide.
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Table 3: Comparison between the dynamic centrality indices of the network in Figure 2. The
resolvent-based centrality is computed by setting a = 0.9/maxρ(A[s]) in (2.1).

Resolvent-based centrality Exponential-based centrality
Ranking Value of centr. Ranking Value of centr.

1 2103.36 1 4.90
4 1672.69 2 3.54
2 1405.66 3 2.72
3 954.57 4 2.72
5 826.43 5 2.72

7. Computed examples

To illustrate the performance of the models, Algorithm 1 has been imple-
mented in the Matlab programming language and applied to three real-world data
sets obtained from airport logistics, telecommunication, and bioinformatics. The
numerical experiments were performed on an Intel Xeon Gold 6136 computer (16
cores, 32 threads) equipped with 128 Gbyte RAM, running Matlab R2019a. The
Matlab code and some of the data sets can be downloaded from the web page [4].

7.1. Airports
The first example concerns a data set that describes the flights through 305

US airports during one day (June 1st, 2008) [3]. Only flights that take off and
arrive at the same day are considered. Airports are represented by nodes and
flights by edges. In some cases, the arrival time is earlier than the departure time
because of different time zones. For instance, there is a flight from South Bend
International Airport (SBN) to Chicago O’Hare International Airport (ORD) that
takes off at 11:51 am Eastern Standard Time (EST) and arrives at 11:36 am Central
Standard Time (CST). To avoid this difficulty, all departure and arrival times were
transferred into EST. We discretized the day into 24 one-hour intervals.

Then, we represent these flights by edges in the adjacency matrices Ai, j ∈
R305×305, where the (r, `)th entry of Ai, j is 1 if there is a flight that takes off
during the time period τi and arrives during the time period τ j from airport r to
airport `. The block matrix BN ∈R7320×7320 in (3.2), which is composed by these
adjacency matrices, is formed and Algorithm 1 is applied to obtain the vector
y = eBN 1, whose entries measure the capacity of each airport as a source. To be
more specific, the first 305 entries of the vector y show the broadcasting ability of

20



the 305 airports starting from the first hour of the day, the second 305 entries show
the broadcasting ability of the airports starting form the second hour of the day,
and so on. Figure 7 displays the broadcasting centrality of these airports during
24 hours.
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Figure 7: Broadcasting centrality for all airports (top) and for the four main broadcasters (bottom).

At the beginning of the day, between 1:00 am and 3:00 am, western airports,
such as the Los Angeles Airport (LAX) and the Las Vegas Airport (LAS), are
particularly active, because these times correspond to 11:00 pm and 1:00 am in
the Pacific Standard Time (PST) zone. We can see that from 6:00 am most airports
start to be active and hit a peak at 7:00 am. These are the airports in the EST zone.
Chicago (ORD) Airport hits its peak at 8:00 am because it is in the CST zone.
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Although Atlanta (ATL) is in the EST zone, it hits its peak at 9:00 am. Hence,
when starting to fly from Atlanta at 9:00 am, one has many options to reach other
destinations during the same day.

In this example, Algorithm 1 is faster than the built-in Matlab function expm.
It takes 2.3 seconds, compared to 8.8 seconds for expm, but the advantage is not
only a matter of speed. Indeed, the sparse data matrix BN ∈ R7320×7320 requires
32 Kbytes of the computer memory, while its exponential is a full matrix which
demands 429 Mbytes. Furthermore, the model allows us to track the sending
ability for each airport over time during the computations.

We remark that, while the exponential-based centrality identifies the Los An-
geles Airport as the most important broadcaster in the whole time period, the node
with the highest value of the resolvent-based centrality is the McCarran Interna-
tional Airport in Las Vegas. This shows that the two centralities produce different
rankings of the nodes.

7.2. Cell phone calls
In this subsection, we apply our models to a data set that describes a dynamic

network of cell phone calls. It was used in the IEEE VAST Challenge in 2008 [15].
The data set consist of 400 cell phone IDs that are connected by 9834 pairwise
calls over 10 days. For each call, the sender, the receiver, the starting time, and
the call duration are given.

Call durations range between 7 seconds and 36 minutes 11 seconds. In our
experiment, we discretize the ten days into 1 hour intervals, to obtain 240 inter-
vals. The calls are represented by symmetric adjacency matrices Ai, j ∈ R400×400,
where the (r, `) and (`,r) entries of Ai, j are 1 if there is a call from node r to `, or
from node ` to r, starting at the time interval τi and ending at the time interval τ j.

We applied Algorithm 1 to the block matrix BN to compute y = eBN 1. The
size of the block matrix BN is in this case 96000 and the execution time was 332
seconds. The size of the problem is too large to compute the vector y by the expm
function of Matlab. We run a test processing half of the data set, that is, for a time
period of 5 days. In this case, the size of the matrix BN was 48000, and expm

completed the computation in 389 seconds, using almost all the available 128 GB
of memory, while Algorithm 1 took 86 seconds. To have an idea of the memory
storage required, when n = 48000 the sparse matrix BN occupies 500 Kbytes,
while eBN requires 18 Gbyte. When the full data set is processed (n = 96000), the
two sizes are 1 Mbyte and 74 Gbyte, respectively.

The first 400 entries of y show the broadcasting ability for the 400 nodes start-
ing from the first hour, the second 400 entries show the broadcasting ability for
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the 400 nodes starting from the second hour, and so on. Figure 8 displays the
broadcasting ability for all the callers during ten days.
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Figure 8: Broadcasting centrality for all the 400 telephone calls.

The broadcasting activity of node 200 was intense and concentrated in the
first 7 days. It was connected directly to nodes 1, 2, 3, and 5, that had the highest
broadcasting connectivity. In the last 3 days, the above five nodes were substituted
by the nodes 300, 306, 309, 360, and 397, for what concerns broadcast capacity
[8, 12, 19, 28]. Our model shows that the same nodes were quite inactive in the
first week. Figure 9 displays the broadcasting ability of the two groups of nodes.

7.3. Brain networks
Associating a graph to brain activity can be done by associating nodes to brain

regions and links to anatomical or functional connections [23]. Modern diagnos-
tic devices, such as electroencephalography (EEG), magnetic resonance imaging
(MRI), and magnetoencephalography (MEG), are able to produce large data sets
across variable time intervals. Taking into account the variability in time is es-
sential in analyzing the brain response to external stimulation, and in detecting
particular diseases, such as Alzheimer’s disease and epilepsy [10, 21, 22, 23, 24].

To construct a test brain graph, we considered the data set “Psychophysics
(4Mb)”, available at [26], which lists EEG data collections available for public
download. This particular data set is reported to belong to the EEGLAB library
[25]. It contains data from a 32-channel EEG, measured at 128 Hz over 238
seconds, on a subject committed to a visual attention task.
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Figure 9: Broadcasting centrality for calls 1, 2, 3, 5, and 200 (top), and calls 300, 306, 309, 360,
and 397 (bottom).

We divide the 32 signals corresponding to the nodes (EEG channels) into N =
238 data chunks, each reporting 1 second of activity, i.e., 128 measurements. To
each nodes pair (r, `), for each time duration (τi,τ j), we associate the correlation
(BN)

i, j
r,` between the corresponding time series over the chosen time duration. The

resulting adjacency matrix is weighted, but we binarize it by applying a threshold
of 0.9 to the values of the correlation. It is quite sparse, as its density, that is, the
ratio between the number of nonzero elements of the matrix and the square of its
size, is 0.2. We display a spy plot of two sections of it in Figure 10, including 4
and 16 diagonals blocks, respectively.

We remark that correlation is only one of the possible measures that can be
used to construct a brain network. Another possibility is to resort to coherence,
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which allows one to investigate specific physiologically relevant frequency bands
in the signal [27, 20].
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Figure 10: Model (3.2) for the brain time-network: Sections including 4 (left) and 16 (right)
diagonal blocks.

We used Algorithm 1 to compute the broadcast centrality y = eBN 1 for all
the nodes in the network. This experiment does not pretend to have any clini-
cal significance; it is only a mean to illustrate the capability of model (3.2). The
computation, for the sparse matrix BN of size 7616, whose storage space is 22
Mbytes, took 87 seconds. Performing the same computation with the expm func-
tion of Matlab required 274 seconds of computing time and 464 Mbytes to store
the matrix exponential.

The centralities are displayed in Figure 11, in semi-logarithmic scale. The
graph shows clearly that the broadcasting activity decays faster than exponentially
over time. It appears that different nodes have different behavior; we illustrate this
in detail in Figure 12, where we selected some nodes exhibiting such features. As
it can be seen, the centrality of some nodes behaves smoothly, while other nodes
exhibit an intermittent activity; see the graph on the left-hand side. The graph on
the right-hand side of the same figure shows that some nodes are mostly inactive,
and activate just for very short time periods, while some other nodes are active
almost continually, and interrupt their broadcasting only during very short time
intervals.
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Figure 11: Broadcasting centrality for all the nodes in the brain time-network.

8. Conclusion

This paper introduces a new block structure for representing dynamic net-
works. The structure allows the modeling of edges with a limited duration in
time. Often long walks are less important than short walks, and old walks are
less important than recent walks. Our model model allows downweighting walks
that are long and old to account for their reduced importance. The model allows
entities to move through the network as quickly as possible, as well as to include
waiting times.

The importance of the nodes is measured with the aid of the exponential func-
tion of the adjacency matrix for the dynamic network. This matrix may be quite
large in applications. We therefore discuss its efficient computation. In particular,
we exploit that the adjacency matrix is an upper triangular block matrix. This
makes it possible to evaluate the matrix exponential by an iterative method based
on the approach described in [18]. This method is faster than using the expm func-
tion of Matlab, and allows updating the broadcast centrality when an additional
time slice is added.

Some aspects of the model proposed would appear to be applicable to the
analysis of higher-order dynamic networks, that display higher-order features and
higher organization. Higher-order networks often are modeled by nonnegative
tensors. We plan to extend the technique developed in the resent paper to higher-
order dynamic networks, but hasten to add that this extension is not straightfor-
ward.
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Figure 12: Broadcasting centrality for nodes 1, 3 (left) and nodes 2, 5, 6 (right) in the brain time-
network.
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