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Abstract

One of the properties of interest in the analysis of networks is global communicability, i.e., how easy

or difficult it is, generally, to reach nodes from other nodes by following edges. Different global communi-

cability measures provide quantitative assessments of this property, emphasizing different aspects of the

problem.

This paper investigates the sensitivity of global measures of communicability to local changes. In

particular, for directed, weighted networks, we study how different global measures of communicability

change when the weight of a single edge is changed; or, in the unweighted case, when an edge is added

or removed. The measures we study include the total network communicability, based on the matrix

exponential of the adjacency matrix, and the Perron network communicability, defined in terms of the

Perron root of the adjacency matrix and the associated left and right eigenvectors.

Finding what local changes lead to the largest changes in global communicability has many potential

applications, including assessing the resilience of a system to failure or attack, guidance for incremental

system improvements, and studying the sensitivity of global communicability measures to errors in the

network connection data.

1 Introduction

Many complex phenomena can be usefully modeled by networks. Mathematically, a network is represented

by a graph, which consists of a set of vertices or nodes, and a set of edges that connect pairs of vertices.

Network models often simplify the representation of a complex system by disregarding some minutiae of

reality, to make it feasible to use mathematical and computational methods of analysis; see, e.g., [10, 21] for

many examples.

Sometimes, additional information about the vertices and/or edges is indispensable for a fuller and more

realistic understanding of a complex system. Examples include the use of weighted networks [4, 9, 20], in

which edges between vertices are assigned different numerical values, so-called “weights.” In our setting, a

higher weight for a given edge corresponds to a higher communication capacity between the nodes it connects.

An important characteristic of a network is how well communication can flow in it, i.e., how easy or

difficult it is to reach one part of the network from another part by following edges. Several measures have

been considered for quantifying communicability on a global scale. They include the diameter of the graph

that represents the network, the average distance between nodes of this graph, and the communicability

betweenness of nodes; see Estrada et al. [14]. Information transfer between nodes also is studied with the
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aid of the thermal Green’s function; here the network is considered submerged in a thermal bath of some

temperature T ; see Estrada et al. [11, 13]. In this paper we concentrate on two communicability measures:

the total network communicability, which was introduced by Benzi and Klymko [6], and the Perron network

communicability, which we describe below.

This article explores the sensitivity of the communicability measures mentioned to small, local, changes

of a network. Knowledge of the sensitivity can help answer several important questions about a network such

as:

• How robust is a network to disturbances or attacks, and how can the network be modified to be more

robust?

• Which edges of a network are very vulnerable, in the sense that the communicability decreases (rela-

tively) significantly if these edges are removed?

• Can an addition of a new edge increase the communicability (relatively) significantly?

• Can a network be simplified by removing a few edges and retain essentially the same communicability?

• How sensitive is the measured communicability of a network to incomplete information about the

existing edges?

The graphs we consider may be unweighted or weighted. In an unweighted graph all edges have the

same weight, which we will choose to be one; in a weighted graph each edge has a positive weight. We are

interested in which edge-weights to increase in order to increase the communicability of a graph the most,

or which edges to add to or remove from a graph to achieve a significant increase or decrease, respectively,

of the communicability. Our choice of which edge-weights to change, or which edges to add or remove, is

based on the sensitivity of the communicability to changes in the edge-weight. We therefore investigate this

sensitivity. Our approach is compared to some available approaches. Both undirected and directed graphs

are considered.

We remark that graphs that have more than one connected component are deficient in their communica-

bility, because not every node can communicate with every other node of the graph. Unless otherwise stated,

we will assume the graphs under consideration to be connected. (For networks with more than one connected

component, the results here can be applied separately to each component.)

This paper is organized as follows: Section 2 defines basic concepts about graphs. Notions of commu-

nicability are reviewed and a new one is introduced in Section 3. Computed illustrations for some small

graphs are presented in Section 3.3. Section 4 describes numerical methods for estimating the sensitivity of

the total network communicability, and the sensitivity of the Perron network communicability to changes

in the weights, for large-scale networks. Section 5 presents a few computed results for large-scale networks.

Concluding remarks are provided in Section 6.

2 Basic Definitions

Networks are represented mathematically by graphs. The basic theory of graphs can be found in many

textbooks; see, e.g., [10, 21] for introductions focused on applications to the study of networks, and [7] for a

deeper discussion of the matrices associated to a graph. Below we will briefly state the definitions we need

in order to fix the notation.

A weighted graph G = 〈V, E ,W〉 consists of a set of vertices or nodes V = {v1, v2, . . . , vn}, a set of edges

E = {e1, e2, . . . , em} that connect the nodes, and a map W that assigns to each edge a weight, which for the
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purposes of this article always will be a positive real number. An edge ek is said to be directed if it starts

at a vertex vi and ends at a vertex vj . This edge is denoted by e(vi → vj) and has the associated weight

wij > 0. If there also is an edge e(vj → vi) with the same weight wji = wij , then we may identify the

directed edges e(vi → vj) and e(vj → vi) with an undirected edge with weight wij ; we denote undirected

edges by e(vi ↔ vj). A graph with only undirected edges is said to be undirected ; otherwise the graph is

directed. In this work, we will consider only graphs without multiple edges or self-loops. The adjacency

matrix for a graph G is the matrix A = [wij ]
n
i,j=1 ∈ Rn×n, whose entries are the edge-weights; if there is no

edge e(vi → vj) in G, then wij = 0. For an unweighted graph, all positive entries wij of A equal one. When

G is undirected, then A is symmetric.

A sequence of edges (not necessarily distinct) such that {e(v1 → v2), e(v2 → v3), . . . , e(vk → vk+1)} form

a walk of length k. If vk+1 = v1, then the walk is said to be closed. For further discussions on networks and

graphs; see [10, 21].

3 Notions of Communicability

There are many measures of communicability of a network. For instance, the diameter of the graph that

represents a network provides a measure of how easy it is for the nodes of the graph to communicate. We

recall that for an unweighted graph, its diameter is the maximal length of the shortest path between any

pair of distinct nodes of the graph. The definition has to be adjusted for weighted graphs. We will not use

the diameter in this paper, because as a “worst case” measure it is fairly crude. For instance, let G be an

unweighted complete graph with n ≥ 4 nodes from which one edge is removed. Then the diameter of G is 2.

More edges can be removed so that the diameter remains 2. In fact, one can remove any 1 or 2 edges from a

complete graph with 4 nodes and then obtains a graph with diameter 2.

This paper focuses on the total network communicability, which is defined with the aid of the exponential

of the adjacency matrix, and on the Perron network communicability, which is defined with the Perron root

and the right and left Perron vectors of the adjacency matrix. This section discusses these communicability

measures and their sensitivity to changes in the weights that define the adjacency matrix. Small examples

that illustrate the performance of these measures are presented.

3.1 The modified matrix exponential and network communicability

Consider an unweighted graph G with adjacency matrix A ∈ Rn×n. Then the (ij)th entry of the matrix Ak

counts the number of walks of length k between the vertices vi and vj . For weighted graphs, the interpretation

of the (ij)th entry of the matrix Ak has to be modified. A matrix function that is analytic at the origin and

vanishes there can be defined by a formal Maclaurin series

f(A) =

∞∑
k=1

ckA
k. (1)

For the moment we ignore the convergence properties of this series. Long walks are usually considered less

important than short walks, because information flows more easily through short walks than through long

ones. Therefore, matrix functions applied in network analysis generally have the property that 0 ≤ ck+1 ≤ ck
for all sufficiently large k. The possibly most common matrix function used in network analysis is the matrix

exponential; see [10, 15] for discussions and illustrations. We prefer to use the modified matrix exponential

exp0(A) := exp(A)− I, (2)
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where I denotes the identity matrix, because the first term in the Maclaurin series of exp(A) has no natural

interpretation in the context of network modeling. For the modified matrix exponential, we have ck = 1/k!

for k ≥ 1, and the series (1) converges for any adjacency matrix A. The quantity [exp0(A)]ii is commonly

referred to as the subgraph centrality of the vertex vi; it measures the ease of leaving node vi and returning to

this node by following the edges of the graph; see [10, 15], though we remark that these references apply the

matrix exponential instead of (2). The subgraph centrality is an appropriate measure for undirected graphs;

a discussion about directed graphs is provided in [8].

The communicability between distinct vertices vi and vj , i 6= j, is defined by

[exp0(A)]ij =

∞∑
k=1

[Ak]ij
k!

;

see [10, 12] for the analogous definition based on exp(A). It accounts for all the possible routes of com-

munication between the vertices vi and vj in the network defined by the adjacency matrix A, and assigns

more weight to shorter routes than to longer ones. The larger the value of [exp0(A)]ij , the better is the

communicability between the vertices vi and vj .

We measure how effectively information can be transmitted across the whole network by the total network

communicability,

CTN(A) = 1T exp0(A)1, (3)

where 1 = [1, 1, . . . , 1]T ∈ Rn. Benzi and Klymko [6] defined the total network communicability with exp(A);

this yields values that are n larger than the values obtained with (3).

We are interested in determining the sensitivity of the total network communicability to changes in the

weight wij of the edge e(vi → vj). Therefore, we compute the partial derivative of CTN(A) with respect

to wij . For that, we introduce the Fréchet derivative L(A,Eij) of the modified matrix exponential exp0(A)

with respect to the direction Eij = eie
T
j , where ek = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn denotes the kth axis vector,

given by

L(A,Eij) = lim
t→0

exp0(A+ tEij)− exp0(A)

t
; (4)

see, e.g., [16, 22]. Then

∂CTN(A)

∂wij
= lim

t→0

CTN(A+ tEij)− CTN(A)

t
= 1T · L(A,Eij) · 1

shows the rate of change of the total network communicability between the vertices vi and vj in direction

Eij due to a change in the edge-weight wij .

DEFINITION 1. Let G = {V, E ,W} be a graph with adjacency matrix A = [wij ] ∈ Rn×n, where wij > 0 if

there is an edge e(vi → vj) in G, and wij = 0 otherwise. We define the total network sensitivity with respect

to the weight wij as

STN
ij (A) = 1T · L(A,Eij) · 1, (5)

as well as the total network sensitivity as

STN(A) =

n∑
i,j=1

STN
ij (A).

The total network sensitivity with respect to the weight wij shows the rate of change of CTN(A) with

respect to a change in the edge-weight wij . The following result follows from Higham [16, Theorem 3.6].
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PROPOSITION 1. Let f be 2n − 1 times continuously differentiable in a connected open set Ω in the

complex plane containing the origin, and assume that the spectrum of the matrix A ∈ Rn×n is in Ω. Then

the Fréchet derivative L(A,Eij) exists and satisfies

f

([
A Eij

0 A

])
=

[
f(A) L(A,Eij)

0 f(A)

]
. (6)

We are interested in the special case of Proposition 1 when f(t) = exp(t)−1. Then the Fréchet derivative

L(A,Eij) in (6) is defined by (4). One has

exp0(A+ tEij)− exp0(A)− tL(A,Eij) = O(t2) as t→ 0. (7)

3.2 Perron network communicability

Let A = [wij ] ∈ Rn×n be a nonnegative irreducible adjacency matrix for a graph and let ρ be its Perron

root (see, e.g., [17] for a full treatment of the Perron–Frobenius Theorem). Then there are unique right

and left real eigenvectors x = [x1, x2, . . . , xn]T ∈ Rn and y = [y1, y2, . . . , yn]T ∈ Rn, respectively, of unit

Euclidean norm with positive entries associated with ρ, i.e.,

Ax = ρx, yTA = ρyT . (8)

We recall that a node vi is referred to as a sink if there are no edges pointing from this node to any other node,

and a node vi is said to be a source when there are no edges from other nodes pointing to vi. Undirected

edges should be considered as “two-way streets” in this context. A directed graph is said to be strongly

connected if every vertex vi can be reached from any other vertex vj , j 6= i, by following edges in their

direction. It is well known that an adjacency matrix is irreducible if and only if the associated graph is

strongly connected; see, e.g., [17]. In particular, a graph with a sink or source is not strongly connected, and

the adjacency matrix A for such a graph is reducible. A common approach to obtain a nearby irreducible

adjacency matrix is to make a small positive perturbation of every entry of A. For instance, we may replace

A by the irreducible adjacency matrix Â = A+ δA ∈ Rn×n, where δA is a small multiple of the matrix 11T

and 1 = [1, 1, . . . , 1]T ∈ Rn. This makes the matrix Â = A + δA irreducible with ‖Â‖2 ≈ ‖A‖2. Here and

throughout this paper, ‖ · ‖2 denotes the spectral matrix norm or the Euclidean vector norm. In this section

we will assume that, in case the given adjacency matrix A is reducible, it is modified in this manner. We

may therefore assume that the right and left Perron vectors are unique up to scaling.

Let C ∈ Rn×n be a nonnegative matrix such that ‖C‖2 = 1, and let ε > 0 be small. Denote the Perron

root of A+ εC by ρ+ δρ. Then

δρ = ε
yTCx

yTx
+O(ε2);

see [19]. Moreover,
yTCx

yTx
=
|yTCx|
yTx

≤ ‖y‖2‖C‖2‖x‖2
yTx

=
1

cos θ
, (9)

where θ is the angle between x and y. The quantity 1/ cos θ is referred to as the condition number of ρ and

denoted by κ(ρ); see Wilkinson [28, Chapter 2]. Equality is attained in (9) for C = yxT .

Consider increasing the entry wij , i 6= j, of A slightly by ε > 0. This corresponds to increasing the

weight wij of an existing edge e(vi → vj) by ε, or to introducing a new edge e(vi → vj) with weight ε. The

corresponding matrix C is given by

C = Eij = eie
T
j . (10)
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The impact on the Perron root of the change εC of A is

δρ = ε
yixj
yTx

+O(ε2).

We are interested in choosing a perturbation εC of A with C of the form (10), so that ρ is increased as

much as possible. The above relation shows that we should choose i and j so that

xj = max
1≤k≤n

xk, yi = max
1≤k≤n

yk.

Recall that x and y are unit vectors. Therefore, xj = 1 and yi = 1 implies that xk = 0 for all k 6= j and

yk = 0 for all k 6= i. Then C = Eij = yxT and the maximum perturbation of the Perron root is δρ = εκ(ρ).

We define the Perron root sensitivity with respect to the direction Eij = eie
T
j as

SPR
ij (A) =

yixj
yTx

,

as well as the Perron root sensitivity matrix

SPR(A) =

[
SPR
ij (A)

]n
i,j=1

=
yxT

yTx
∈ Rn×n.

Finally, we introduce the Perron network communicability,

CPN(A) = exp0(ρ)1TxyT1 = exp0(ρ)

 n∑
j=1

xj

 n∑
j=1

yj

 , (11)

which is analogous to the total network communicability (3), but is easier to compute for a large adjacency

matrix A. Let ‖ · ‖1 denote the vector 1-norm. Since

n∑
j=1

xj = ‖x‖1 ≤ n1/2‖x‖2 = n1/2,

n∑
j=1

yj = ‖y‖1 ≤ n1/2‖y‖2 = n1/2,

we have the bound

CPN(A) ≤ n exp0(ρ).

In general, we expect the Perron network communicability to increase the most when increasing the edge-

weight that makes the Perron root change the most.

An alternative way to study the sensitivity of the Perron network communicability is to determine the

first-order partial derivative of CPN(A) with respect to wij . Introduce the Fréchet derivative LPN(A,Eij) of

the matrix function exp0(ρ)xyT with respect to the direction Eij = eie
T
j , i.e.,

LPN(A,Eij) = lim
t→0

exp0(ρ̂(t))x̂(t)ŷ(t)T − exp0(ρ)xyT

t
,

where ρ, x, and y are the Perron root, and the right and left Perron vectors of A, respectively, and ρ̂(t), x̂(t),

and ŷ(t) are the Perron root, and the right and left Perron vectors of A+ tEij . Then

∂CPN(A)

∂wij
= lim

t→0

CPN(A+ tEij)− CPN(A)

t
= 1T · LPN(A,Eij) · 1

is the rate of change of the Perron network communicability between the vertices vi and vj in the direction

Eij due to a change in wij . For the examples shown in the following sections, we choose t = 2 · 10−5 when

computing LPN(A,Eij) unless explicitly stated otherwise.
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DEFINITION 2. Let G = {V, E ,W} be a graph with adjacency matrix A = [wij ] ∈ Rn×n, where wij > 0

if there is an edge e(vi → vj) in G, and wij = 0 otherwise. We define the Perron network sensitivity with

respect to the weight wij as

SPN
ij (A) = 1T · LPN(A,Eij) · 1, (12)

as well as the Perron network sensitivity as

SPN(A) =

n∑
i,j=1

SPN
ij (A).

The Perron network sensitivity with respect to the weight wij shows the rate of change of CPN(A) with

respect to a change in the edge-weight wij . We are interested in investigating how CPN(A) relates to CTN(A).

Assume first that the spectral factorizations

A = XΛX−1, AT = Ỹ ΛỸ −1 (13)

exist, where Λ = diag[ρ, λ2, . . . , λn] and the columns of the eigenvector matrix X = [x,x2, . . . ,xn] are scaled

to be of unit Euclidean norm. We remark that matrices with a spectral factorization are dense among all

matrices in Rn×n. We may choose Ỹ = [ỹ, ỹ2, . . . , ỹn] = X−T . Then A = XΛỸ T . The vector ỹ is a rescaling

of the left Perron vector y in (8). This normalization of the columns of Ỹ yields ỹTx = 1 and ỹT
j xj = 1 for

j = 2, 3, . . . , n. In particular, this implies

1 = ỹTx = ‖x‖‖ỹ‖ cos θ, i.e., ‖ỹ‖ =
1

cos θ
= κ(ρ).

Assume that ρ is significantly larger than |λj | for j = 2, 3, . . . , n. Then

CTN(A) = 1TX exp0(Λ)Ỹ T1

= exp0(ρ)1TxỹT1 +

n∑
j=2

exp0(λj)1
Txjỹ

T
j 1

= κ(ρ)CPN(A) +

n∑
j=2

exp0(λj)1
Txjỹ

T
j 1 (14)

≈ κ(ρ)CPN(A).

Thus, the total network communicability depends on the conditioning of the Perron root. For a general

matrix A, we can use the bounds |1Txj | ≤ n1/2 and |ỹT
j 1| ≤ ‖ỹj‖1 in (14). When the graph that defines A is

undirected, the matrix A is symmetric, and we can let Ỹ = X be orthogonal. In this case, we have κ(ρ) = 1

and can use

|1Txjỹ
T
j 1| ≤ n, j = 2, 3, . . . , n,

in (14).

If the matrix A does not have the factorizations (13), then an analogous argument can be made using the

Jordan canonical form, where we use the fact that the right and left Perron vectors exist and are unique up

to scaling also in this situation.

We finally remark that both the computation of the total network sensitivity STN(A) and of the Perron

network sensitivity SPN(A) for a graph with n nodes requires the evaluation of n2 Fréchet derivatives. This

makes the evaluation of these quantities expensive for networks with many nodes. The evaluation of the

Perron root sensitivity matrix SPR(A) typically is much cheaper for large networks. We will return to this

issue below.
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3.3 Examples with small networks

This section describes a few small examples that illustrate the use of Fréchet derivatives and the Perron

root sensitivity. The computational effort required to compute all Fréchet derivatives for large-scale networks

can be significant. How to reduce the computational effort for large-scale networks is discussed in Section 4.

In the first example, which is a small weighted graph, we compute the total network sensitivity and the

Perron network sensitivity with respect to the weights wij for i 6= j to decide which edge-weight should be

increased to enhance the total network communicability or the Perron network communicability as much as

possible. We study the Perron root sensitivity by computing the left and right Perron vectors of A. The

latter computations suggest which weight should be increased. Our second example differs from the first one

in that the graph is unweighted and directed.

1 2

34

2

5
4

5

23 14

4

1

3

5

Figure 1: Graph of Example 3.1. The edge-weights are marked next to the edges.

EXAMPLE 3.1. Consider the weighted graph of Figure 1 with associated adjacency matrix

A =


0 2 4 2

5 0 1 1

5 4 0 5

3 4 3 0

 . (15)

The corresponding Perron root sensitivity matrix of A is

SPR(A) =


0.2956 0.2339 0.4241 0.3250

0.2336 0.1848 0.3352 0.2568

0.2109 0.1669 0.3026 0.2319

0.1973 0.1562 0.2832 0.2170

 , (16)

which shows that the Perron root sensitivity SPR
ij is maximized for {i, j} = {1, 3}. This indicates that

the Perron root is increased the most when increasing the weight w13 of the edge e(v1 → v3). We expect

the Perron network communicability to increase the most when increasing the edge-weight that makes the

Perron root change the most. Table 1 confirms this. The table displays the total network sensitivity and the

Perron network sensitivity with respect to changes in the weights wij for i 6= j, as well as the total network

communicability and the Perron network communicability of the graph obtained when increasing each weight

wij , i 6= j, by one. The table shows the total network communicability to increase the most by increasing

the weight of the edge with the largest total network sensitivity STN
ij , i.e., weight w13. Increasing this weight,

which also is associated with the largest Perron network sensitivity SPN
13 , gives the largest Perron network

communicability, CPN(A+E13). Thus, if the edges represent roads, the weights represent the width of each
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road, and we would like to increase the communicability the most by widening one road, then we should

widen the road represented by the edge e(v1 → v3).

{i, j} STN
ij CTN(A+ Eij) {i, j} SPN

ij CPN(A+ Eij)

{1, 3} 22615 82269 {1, 3} 22781 79872

{2, 3} 18221 76339 {2, 3} 18247 73711

{1, 4} 17662 75511 {1, 4} 17577 72722

{4, 3} 15611 73124 {4, 3} 15009 69720

{2, 4} 14225 71324 {2, 4} 14078 68481

{1, 2} 13151 70097 {1, 2} 12411 66543

{2, 1} 12957 69606 {2, 1} 12394 66250

{3, 4} 12883 69588 {3, 4} 12134 66022

{3, 1} 11734 68303 {3, 1} 10666 64389

{4, 1} 11098 67434 {4, 1} 10188 63702

{3, 2} 9585 65627 {3, 2} 8562 61789

{4, 2} 9063 65011 {4, 2} 8176 61329

Table 1: Example 3.1: The total network sensitivity STN
ij and the Perron network sensitivity SPN

ij with respect

to changes in the weight wij , for i 6= j, along with the total network communicability and the Perron network

communicability when the weight wij of the edge e(vi → vj) is increased by one.

The total network sensitivities STN
ij and the Perron network sensitivities SPN

ij with respect to changes in

the weights wij of Table 1 also can be used to assess which weight(s) to decrease to reduce the total network

communicability or the Perron network communicability of the network of Figure 1 the most. The fact that

STN
13 and SPN

13 are the largest sensitivities suggests that we should reduce the weight w13 to reduce the total

network communicability and the Perron network communicability the most. Furthermore, the Perron root

sensitivity matrix (16) suggests that both the Perron network communicability (11) and the Perron root will

decrease the most when decreasing the weight w13. Indeed, tabulating CTN(A−Eij) and CPN(A−Eij) for

1 ≤ i, j ≤ 4, i 6= j, shows CTN(A− E13) and CPN(A− E13) to be minimal. �

In the adjacency matrix (15) all off-diagonal entries are positive. This is not important for the approach

described. We can compute the total network sensitivity (5) and the Perron network sensitivity (12) inde-

pendently of the values of the weights wij . If STN
ij or SPN

ij is the largest sensitivity and wij = 0, then this

indicates that the total network communicability or the Perron network communicability may be increased

the most by adding the edge e(vi → vj) to the graph.
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1 2 3

4

567

8

Figure 2: Graph of Example 3.2. All edges have unit weight.

EXAMPLE 3.2. Let A ∈ R8×8 be the adjacency matrix for the unweighted directed graph of Figure 2.

All its entries are either one of zero. The graph is not strongly connected, and therefore the matrix A is

reducible. To obtain an irreducible matrix Â, we add the perturbation matrix δA = δ · 11T to A for some

δ > 0; thus, Â = A+ δA. We choose the value of δ as follows: Compute the Perron vectors for δ = 10−4 and

then reduce δ by a factor 10 and determine new Perron vectors until the edge determined for two consecutive

δ-values is the same. For the present example, this gives δ = 10−5. The matrix Â = A + 10−5 · 11T so

determined is irreducible and the right and left Perron vectors are unique up to scaling. We find the three

largest entries of the Perron root sensitivity matrix SPR(Â) of Â to be

SPR(Â)5,1 = 0.477305, SPR(Â)5,2 = 0.477298, SPR(Â)5,8 = 0.400601.

This suggests that the Perron root may be increased the most by inserting the edge e(v5 → v1) into the graph.

Typically, the Perron network communicability is increased the most by increasing the weight for an edge (or

inserting an edge) that results in the largest increase of the Perron root. However, as is illustrated by Table 2,

this might not be the case when the largest Perron root sensitivities SPR(Â)i,j are very close in size as in the

present example, where SPR
5,1 and SPR

5,2 are very close. The table shows the Perron network communicability

to increase the most by adding the edge e(v5 → v2). Table 2 shows the top five total network sensitivities

and Perron network sensitivities with respect to perturbations in wij for i 6= j, along with the total network

communicabilities and Perron network communicabilities of the graph obtained when increasing each edge-

weight wij by one. The table shows the total network communicability to increase the most when adding

the edge associated with the largest total network sensitivity STN
ij . The Perron network communicability

increases the most by inserting the edge associated with the largest Perron network sensitivity SPN
ij . �
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{i, j} STN
ij CTN(A+ Eij) {i, j} SPN

ij CPN(Â+ Eij)

{5, 1} 16.8311 68.1499 {5, 2} 28.5369 58.3264

{5, 8} 16.0552 67.3050 {5, 1} 23.0099 56.9987

{5, 2} 14.9415 65.2404 {5, 3} 19.9219 51.2350

{5, 3} 14.1656 64.4248 {5, 8} 19.5778 53.8728

{7, 1} 13.2831 64.1815 {7, 2} 18.2576 50.5741

Table 2: Example 3.2: The five largest total network sensitivities STN
ij and Perron network sensitivities SPN

ij

with respect to perturbations in the weights wij , for i 6= j, along with the corresponding total network

communicabilities and Perron network communicabilities when the edge-weight wij is increased by one.

For some graphs one can prove where to add an additional edge to maximize the total network sensitivity.

The following result provides an illustration.

v1 v2 v3 v4 v5 v6 v7 v8

Figure 3: Graph of Theorem 1 (for n = 8).

THEOREM 1. Let A = [wij ] ∈ Rn×n be an adjacency matrix with all superdiagonal entries equal to one and

all other entries equal to zero. Figure 3 displays the associated graph for n = 8. Let STN
ij (A) = 1TL(A,Eij)1

be the total network sensitivity with respect to the weight wij, where L(A,Eij) is the Fréchet derivative of A

in the direction Eij. Consider the addition of one edge to the graph defined by A. Then the total network

sensitivity is maximized by inserting the edge e(vn → v1). Thus,

max
i,j

STN
ij (A) = STN

n1 (A).

Proof. Let r, s be integers with 1 ≤ r, s ≤ n, and let ek = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn denotes the kth axis

vector and define Ers = ere
T
s . Expanding L(A,Ers) in terms of powers of A yields

STN
rs (A) = 1TL(A,Ers)1 = 1T

(
Ers +

AErs + ErsA

2!
+
A2Ers +AErsA+ ErsA

2

3!
+ . . .

)
1. (17)

For notational convenience, denote the sum of the terms in the numerators that contain a total of k powers

of A by H
(k)
rs , i.e., H

(0)
rs = Ers, H

(1)
rs = AErs +ErsA, etc. Then the right-hand side of (17) can be written as

STN
rs (A) = 1TL(A,Ers)1 =

∞∑
k=0

1TH
(k)
rs 1

(k + 1)!
. (18)

We will first show that all terms in the sum in (18) except for the 2n − 1 first ones vanish, and then

conclude that STN
rs (A) is maximized for r = n and s = 1. First, note that 1TH

(0)
rs 1 = 1, for all 1 ≤ r, s ≤ n.

We turn to the expression 1TH
(1)
rs 1 and use the representation A =

∑n−1
i=1 eie

T
i+1, which yields

H(1)
rs = AErs + ErsA =

n−1∑
i=1

eie
T
i+1ere

T
s + ere

T
s

n−1∑
i=1

eie
T
i+1.

11



Noting that

n−1∑
i=1

eie
T
i+1ere

T
s =

er−1e
T
s , if r ≥ 2,

0, if r = 1,

ere
T
s

n−1∑
i=1

eie
T
i+1 =

ere
T
s+1, if s ≤ n− 1,

0, if s = n,

it follows that maxr,s 1
TH

(1)
rs 1 = 2 is achieved for all 2 ≤ r ≤ n and 1 ≤ s ≤ n− 1.

We turn to the expressionH
(2)
rs = A2Ers+AErsA+ErsA

2 and obtain similarly as above that maxr,s 1
TH

(2)
rs 1 =

3 is achieved for all 3 ≤ r ≤ n and 1 ≤ s ≤ n− 2. Similarly,

H(n−1)
rs = An−1Ers +An−2ErsA+An−3ErsA

2 + · · ·+ ErsA
n−1

and maxr,s 1
TH

(n−1)
rs 1 = n for r = n and s = 1. Our findings yield that

∑n−1
k=0 1

TH
(k)
rs 1 is maximized for

r = n and s = 1. Moreover, maxr,s 1
TH

(k)
rs 1 = k + 1, for 1 ≤ k ≤ n− 1, i.e., the maximum is the number of

terms in the expression for H
(k)
rs .

Now consider matrices H
(k)
rs for k ≥ n. Letting k = n yields

H(n)
rs = AnErs +An−1ErsA+An−2ErsA

2 + · · ·+ ErsA
n,

where we observe that

Aj = 0, j ≥ n. (19)

Thus, the expression for H
(n)
rs has n − 1 nonvanishing terms and maxr,s 1

THn+1
rs 1 = n − 1 is achieved for

r = n and s = 1. For the superscript 2n− 2, we have

H(2n−2)
rs = A2n−2Ers +A2n−3ErsA+ · · ·+An−1ErsA

n−1 + · · ·+ ErsA
2n−2.

Due to (19), the only nonvanishing term in the right-hand side is An−1ErsA
n−1, and we obtain

max
r,s

1TH(2n−2)
rs 1 = 1.

The maximum is achieved for r = n and s = 1. We conclude that
∑2n−2

k=0 1TH
(k)
rs 1 is maximized for r = n and

s = 1. Finally, we note that (19) implies that H
(k)
rs = 0 for k ≥ 2n−1. It follows that

∑∞
k=2n−1 1

TH
(k)
rs 1 = 0.

The above observations show that

max
r,s

STN
rs (A) = max

r,s

∞∑
k=0

1TH
(k)
rs 1

(k + 1)!
= max

r,s

2n−2∑
k=0

1TH
(k)
rs 1

(k + 1)!
=

2n−2∑
k=0

1TH
(k)
n1 1

(k + 1)!
= STN

n1 (A),

and the theorem follows.

EXAMPLE 3.3. Let the graph G be defined as in Theorem 1 with n = 8; see Figure 3. Its total communica-

bility is 11.03. Consider the graph G′ obtained by inserting the edge e(v8 → v1). It has total communicability

13.75. If we instead insert the edge e(v1 → v3) in the graph G, we obtain the graph G′′ with total communi-

cability 12.75. The difference in total communicability of the graphs G′ and G′′ illustrates that the choice of

edge to insert is important when we aim to increase the total communicability as much as possible. �

EXAMPLE 3.4. Consider the undirected unweighted graph obtained by replacing every directed edge in

Figure 3 by an undirected edge and connecting the vertices v1 and v8 by the undirected edge e(v1 ↔ v8).

We would like to add an undirected edge so that the network communicability is increased the most. For
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notational convenience, we identify the node v8 with v0. Due to the circular symmetry of the graph, the

total network sensitivities are the same in all directions for which wij = 0 and i 6= j. Also, the left and

right Perron vectors of the adjacency matrix A are the same. Therefore, we cannot determine which edge to

add to increase the network communicability the most based on these two approaches. However, the Perron

network sensitivities SPN
i,i+4 for the most distant nodes (for i = 0, 1, . . . , 4) are the same, and larger than the

sensitivities SPN
ij for the nodes vi and vj with j 6= i + 4. This suggests that to increase the Perron network

communicability the most, one should add edges between the most distant nodes. �

3.4 Two other methods to increase or decrease network communicability

Arrigo and Benzi [2] introduced several methods for the selection of edges to be added to (or removed

from) a given directed or undirected graph defined by the adjacency matrix A so as to increase or decrease the

network communicability. They define the edge total communicability centrality of an existing edge e(vi → vj)

or of a virtual edge e(vi 99K vj) as
eTC(i, j) = (eA1)i(1

T eA)j .

They also define another edge total communicability centrality of an existing edge e(vi → vj) or of a virtual

edge e(vi 99K vj) as
egTC(i, j) = Ch(i)Ca(j),

where the total hub communicability of vertex vi and the total authority communicability of vertex vj are

given by

Ch(i) = [U sinh(Σ)V T1]i and Ca(j) = [V sinh(Σ)UT1]j ,

respectively. Here the matrices U , Σ, and V are the factors of the singular value decomposition A = UΣV T .

1 2

34

5

6

7

Figure 4: Graph of Example 3.5.

The following example compares the above approaches to the ones of the present paper.

EXAMPLE 3.5. Regard the directed unweighted graph shown in Figure 4. To obtain an irreducible matrix,

we use the same procedure as we did in Example 3.2, which gives us δ = 10−5 for this example. We would

like to add a directed edge so that the network communicability is increased as much as possible. To achieve

this, the methods by Arrigo and Benzi [2] described above suggest that an edge e(vi → vj) be inserted into

the graph so that the index pair {i, j} maximizes eTC(i, j) or egTC(i, j). For the graph of this example,

both methods indicate that the edge e(v5 → v3) be added to the graph. Table 3 shows the total network

communicability and the Perron network communicability after insertion of this edge into the graph. We

also evaluate the Perron root sensitivity (SPR
ij ), the total network sensitivity (STN

ij ), and the Perron network
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sensitivity (SPN
ij ). The total network sensitivity is seen to be maximal and the Perron root is increased the

most for {i, j} = {7, 5}, and the Perron network sensitivity is maximized for {i, j} = {4, 5}. Table 3 shows

the addition of the edges e(v7 → v5) or e(v4 → v5) to the graph of Figure 4 to increase the total network

communicability and Perron network communicability more than when inserting the edge e(v5 → v3). We

remark that the selection criteria used in the methods [2] perform well for many graphs, but not for all. �

Methods {i, j} CTN(A+ Eij) CPN(Â+ Eij)

eTC(i, j) {5, 3} 117.3601 92.4046

egTC(i, j) {5, 3} 117.3601 92.4046

STN
ij {7, 5} 127.1123 92.4049

SPN
ij {4, 5} 124.1918 92.4050

SPR
ij {7, 5} 127.1123 92.4049

Table 3: Example 3.5: The second column lists the edge to be added, and the third and fourth columns

show the total network communicability and the Perron network communicability, respectively, when wij is

increased from 0 to 1.

4 Efficient methods for large-scale networks

This section discusses some numerical methods for estimating the total network sensitivity, the Perron

network sensitivity, and the Perron root sensitivity for large-scale networks. Subsections 4.1, 4.2, and 4.3

describe five iterative Krylov subspace methods to estimate the total network sensitivity. Algorithms for

estimating the Perron network sensitivity and the Perron root sensitivity are considered in Subsection 4.4.

4.1 Applications of the Arnoldi process to large-scale network problems

The evaluation of the total network sensitivity involves the computation of Fréchet derivatives, which can

be done, e.g., by using (6). However, this approach is quite expensive when the adjacency matrix A is large.

This section, therefore, describes several iterative Krylov subspace methods to estimate the total network

sensitivity. These methods are much cheaper than straightforward evaluation of (6) when the adjacency

matrix is large and sparse. Application of 1 ≤ m� 2n steps of the Arnoldi process to the matrix

M =

[
A Eij

0 A

]
∈ R2n×2n (20)

with initial unit vector v1 = n−1/2[0T 1T ]T ∈ R2n gives the Arnoldi decomposition

MVm = VmHm + geTm, (21)

under the assumption that no breakdown occurs. Here, 0 = [0, . . . , 0]T ∈ Rn, 1 = [1, . . . , 1]T ∈ Rn, and

Eij = eie
T
j ∈ Rn×n. The matrix Hm ∈ Rm×m is of upper Hessenberg form with nonvanishing subdiagonal

entries. The columns of the matrix Vm = [v1,v2, . . . ,vm] ∈ R2n×m form an orthonormal basis for the Krylov

subspace

Km(M,v1) := span{v1,Mv1, . . . ,M
m−1v1},
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and g ∈ R2n is orthogonal to Km(M,v1); see, e.g., Saad [26] for details on the Arnoldi process. Breakdown

of the Arnoldi process occurs when a subdiagonal entry of Hm vanishes. We will not dwell on this rare

situation. It is well known that

p(M)v1 = Vmp(Hm)e1, (22)

for all polynomials p of degree at most m− 1; see, e.g., [25].

We apply the decomposition (21) to compute an approximation of 1TL(A,Eij)1 using (6) as follows:

Define the unit vector w = n−1/2[1T 0T ]T ∈ R2n. Then

1TL(A,Eij)1 = nwT exp0(M)v1 ≈ nwTVm exp0(Hm)e1. (23)

Bounds for the discrepancy exp0(M)v1−Vm exp0(Hm)e1 can be found in, e.g., [5]. The columns of Vm should

be reorthogonalized when computed by the Arnoldi process to secure that the vector wTVm can be evaluated

accurately; see [26] for a discussion and implementation of the Arnoldi process with reorthogonalization.

Formula (7) provides an alternative approach to computing an approximation of 1TL(A,Eij)1 by the

Arnoldi process. It follows from (7) that

lim
t→0

exp0(A+ tEij)− exp0(A)

t
= L(A,Eij),

which suggests that we apply the Arnoldi process to the matrices A and A + tEij for some small t > 0

separately with initial unit vector v̂1 = n−1/21 ∈ Rn. Thus, application of m steps of the Arnoldi process to

A and A+ tEij with initial vector v̂1 yields the Arnoldi decompositions

AV̂m = V̂mĤm + ĝeTm, (A+ tEij)Ṽm = ṼmH̃m + g̃eTm, (24)

where the columns of V̂m and Ṽm form orthonormal bases for the Krylov subspaces Km(A, v̂1) and Km(A+

tEij , v̂1), respectively, the matrices Ĥm, H̃m ∈ Rm×m are of upper Hessenberg form, and the n-vectors ĝ

and g̃ are orthogonal to the Krylov subspaces Km(A, v̂1) and Km(A+ tEij , v̂1), respectively. For some small

t > 0, we use the approximations

L(A,Eij)1 ≈
exp0(A+ tEij)− exp0(A)

t
1 ≈ n1/2 Ṽm exp0(H̃m)e1 − V̂m exp0(Ĥm)e1

t
,

which yield

1TL(A,Eij)1 ≈ n
eT1 exp0(H̃m)e1 − eT1 exp0(Ĥm)e1

t
. (25)

We will illustrate the use of the right-hand sides (23) and (25) in computed examples in Section 5.

4.2 Applications of the Lanczos biorthogonalization algorithm to large-scale net-

work problems

We describe how the expression (6) can be approximated by carrying out a few steps of the Lanczos

biorthogonalization algorithm [26]. This approach is an alternative to the application of the Arnoldi algorithm

described above. Let the vector v1 and matrix Eij be the same as in Subsection 4.1 and define w1 = v1.

Application of 1 ≤ m� 2n steps of the Lanczos biorthogonalization algorithm to the matrix (20) with unit

starting vectors v1 and w1 gives, in the absence of breakdown of the recursion formulas, the decompositions

MVm = VmTm + g1e
T
m,

MTWm = WmT
T
m + g2e

T
m,
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where the matrix Tm ∈ Rm×m is tridiagonal and the columns of the matrices Vm = [v1,v2, . . . ,vm] ∈ R2n×m

and Wm = [w1,w2, . . . ,wm] ∈ R2n×m form a pair of biorthogonal bases for the Krylov subspaces

Km(M,v1) := span{v1,Mv1, . . . ,M
m−1v1},

Km(MT ,w1) := span{w1,M
Tw1, . . . , (M

T )m−1w1},

respectively. The vectors g1,g2 ∈ R2n satisfy certain orthogonality relations; see, e.g., Saad [26] for details.

Moreover, we have analogously to (22) that

p(M)v1 = Vmp(Tm)e1

for all polynomials p of degree at most m− 1.

Let w = n−1/2[1T 0T ]T ∈ R2n. Then an approximation of 1TL(A,Eij)1 analogous to the one determined

by application of m steps of the Arnoldi process is given by

1TL(A,Eij)1 = nwT exp0(M)v1 ≈ nwTVm exp0(Tm)e1. (26)

To assure that the vector wTVm can be calculated accurately, the columns of the matrices Vm and Wm should

be rebiorthogonalized when computed by the Lanczos biorthogonalization algorithm; see Parlett et al. [23]

for a discussion.

We also will illustrate the following alternative way of using the Lanczos biorthogonalization algorithm to

approximate 1TL(A,Eij)1. Application of m steps of this algorithm to the matrices A and A+ tEij for some

small t > 0 separately with initial unit vectors v̂1 = ŵ1 = n−1/21 ∈ Rn yields, assuming that no breakdown

occurs, the decompositionsAV̂m = V̂mT̂m + ĝ1e
T
m,

AT Ŵm = ŴmT̂
T
m + ĝ2e

T
m,

and

(A+ tEij)Ṽm = ṼmT̃m + g̃1e
T
m,

(A+ tEij)
T W̃m = W̃mT̃

T
m + g̃2e

T
m,

(27)

where the columns of the matrices V̂m and Ŵm form a pair of biorthogonal bases for the Krylov subspaces

Km(A, v̂1) := span{v̂1, Av̂1, . . . , A
m−1v̂1},

Km(AT , ŵ1) := span{ŵ1, A
T ŵ1, . . . , (A

T )m−1ŵ1},

respectively, the columns of the matrices Ṽm and W̃m form a pair of biorthogonal bases for the Krylov

subspaces

Km(A+ tEij , v̂1) := span{v̂1, (A+ tEij)v̂1, . . . , (A+ tEij)
m−1v̂1},

Km((A+ tEij)
T , ŵ1) := span{ŵ1, (A+ tEij)

T ŵ1, . . . , ((A+ tEij)
T )m−1ŵ1},

respectively, the matrices T̂m, T̃m ∈ Rm×m are tridiagonal, and the vectors ĝ1, ĝ2 ∈ Rn satisfy certain

orthogonality conditions.

We apply the decompositions (27) similarly as we used the decompositions (24). Thus, for some small

t > 0, we use the approximations

L(A,Eij)1 ≈
exp0(A+ tEij)− exp0(A)

t
1 ≈ n1/2 Ṽm exp0(T̃m)e1 − V̂m exp0(T̂m)e1

t
,

which yield

1TL(A,Eij)1 ≈ n
eT1 exp0(T̃m)e1 − eT1 exp0(T̂m)e1

t
. (28)

We will illustrate the use of the right-hand sides (26) and (28) in computed examples in Section 5.
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4.3 Another Arnoldi-based method for approximating the Fréchet derivative

Kandolf et al. [18] introduced several Krylov subspace methods for approximating the Fréchet derivative.

They are defined with the aid of Cauchy integrals and are based on the Lanczos, Arnoldi, and two-sided

Arnoldi processes. We outline the Arnoldi-based method; its performance will be illustrated in Section 5.

Consider a directed graph with n nodes and define the associated non-symmetric adjacency matrix A ∈
Rn×n and the direction matrix E = ηyzT ∈ Rn×n of rank one. Here η ∈ R and y, z ∈ Rn are unit vectors.

Kandolf et al. [18] described the following approach to approximate the Fréchet derivative of exp0(A) with

respect to the direction E.

Application of 1 ≤ m � n steps of the Arnoldi process to the matrices A and AT with initial vectors y

and z, respectively, gives, in the absence of breakdown of the recursion formulas, the Arnoldi decompositions

AVm = VmGm + g1e
T
m,

ATWm = WmHm + g2e
T
m,

where the matrices Gm, Hm ∈ Rm×m are of upper Hessenberg form with nonvanishing subdiagonal entries.

The columns of the matrices Vm = [v1,v2, . . . ,vm] ∈ Rn×m and Wm = [w1,w2, . . . ,wm] ∈ Rn×m form

orthonormal bases for the Krylov subspaces

Km(A,y) := span{y, Ay, . . . , Am−1y},

Km(AT , z) := span{z, AT z, . . . , (AT )m−1z},

respectively, with v1 = y and w1 = z. The vectors g1,g2 ∈ Rn are orthogonal to Km(A,y) and Km(AT , z),

respectively. Let

B =

[
Gm η e1e

T
1

0 HT
m

]
.

Then the mth Arnoldi approximation of the Fréchet derivative is given by

LArn
m := ηVmXmW

T
m,

where Xm can be computed using the equation

exp0(B) =

[
exp0(Gm) Xm

0 exp0(HT
m)

]
,

and the mth Arnoldi approximation for the total network sensitivity is

1TLArn
m 1 = η1TVmXmW

T
m1; (29)

see, e.g., Kandolf et al. [18] for details. We refer to this method as the KKRS Arnoldi method in Section 5.

4.4 Applications of the two-sided Arnoldi and restarted Lanczos methods to

large-scale network problems

The dominant computational burden when studying the Perron root sensitivity and evaluating the quan-

tities CPN(A + Eij) and SPN
ij is the calculation of the Perron root and the left and right Perron vectors.

For small networks, these quantities easily can be evaluated by using MATLAB functions eig or eigs. For

large-scale networks, when the graph G that determines A is directed, and A therefore is nonsymmetric,

these quantities typically can be computed fairly inexpensively by the two-sided Arnoldi method, which was

introduced by Ruhe [24], and recently has been investigated and improved by Zwaan and Hochstenbach [29].

In the situation when A is symmetric, a restarted Lanczos method, such as [3], can be applied.
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5 Examples with Large-Scale Networks

This section presents examples with large-scale networks to illustrate the performance of the numerical

methods described in Section 4. The computations are carried out using MATLAB R2018b on an Intel Xeon

Silver 4116 CPU @ 2.10 GHz (48 cores, 96 threads) equipped with 256 Gbyte RAM. The USAir97 data set

used in Example 5.1 can be downloaded from the website [27], the Air500 data set used in Example 5.2 can

be downloaded from [1], and the usroads-48 data set used in Example 5.3 can be downloaded from [27].

Define for notational convenience the relative difference

rij := |(new approximation)− (previous approximation)|/|(previous approximation)|, (30)

where “previous approximation” and “new approximation” denote approximations of the total network sen-

sitivity STN
ij with respect to the direction Eij = eie

T
j determined by carrying out m and m + 1 steps,

respectively, of an iterative method.

When applying the methods of Section 4 to estimate the total network sensitivity, we terminate the

iterations as soon as rij < 10−4 for each STN
ij . We refer to the exact total network sensitivities as the

“exact solution”, and denote the approximate solutions obtained by using the right-hand sides of eqs. (23),

(25), and (29) by the “Arnoldi solution (23)”, the “Arnoldi solution (25)”, or the “KKRS Arnoldi solution”,

respectively. Similarly, the approximate solutions determined by the approximations (26) and (28) are referred

to as the “Lanczos solution (26)” and the “Lanczos solution (28)”, respectively. We let η = 1 in the

KKRS Arnoldi method, and t = 2 · 10−5 in the methods (25) and (28), as well as in the computation of

SPN
ij = 1TLPN(A,Eij)1. We use the two-sided Arnoldi method to compute the Perron root, and left and

right Perron vectors.

EXAMPLE 5.1. We consider the network USAir97, which is represented by an undirected weighted graph.

The graph has 332 nodes, which correspond to American airports in 1997. Undirected edges represent flights

from one airport to another and the weight of each undirected edge indicates the frequency of flights between

airports. The adjacency matrix A for the graph is irreducible. Our aim is to determine an edge e(vi ↔ vj)

(or e(vi vj) /∈ E) for i 6= j such that the network communicability is increased the most when increasing

the edge-weight wij and wji slightly. Thus, to preserve symmetry our perturbations are multiples of Eij +Eji

for different i and j.

Since the adjacency matrix A is symmetric, we only compute the Perron root sensitivities SPR
ij , and

explore the total network sensitivity and the Perron network sensitivity to changes in the weights wij and

wji of edges e(vi ↔ vj) (or e(vi vj) /∈ E) with j > i for i, j ∈ {1, 2, . . . , n}. Each edge-weight is increased

in turn and the quantities STN
ij and SPN

ij are recorded to find the edge, whose associated weight should be

increased. We also evaluate the total network communicability and the Perron network communicability

of the graphs obtained when increasing each pair of weights wij and wji by one. Table 4 displays the five

largest Perron root sensitivities SPR
ij and shows that the Perron root is increased the most when increasing

the weight of edge e(v248 ↔ v201) slightly. The five largest total network sensitivities STN
ij and Perron

network sensitivities SPN
ij with respect to the weight of edge e(vi ↔ vj), together with the total network

communicability and Perron network communicability attained as the weight of edge e(vi ↔ vj) is increased

by one are reported in Table 5. The table shows both the total network communicability and the Perron

network communicability to increase the most when the weight of the edge e(v118 ↔ v248) is increased by

one. Since w118,248 = w248,118 = 0.1733 this means one should increase the frequency of flights between

airport 118 and airport 248 to increase the network communicability with respect to any one edge-weight the

most. In this example, since the largest Perron root sensitivities SPR(A)i,j are very close in size, the edge

selection furnished by the Perron root sensitivity does not give the largest increase in the Perron network
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communicability, or the total network communicability.

Table 6 shows the CPU time required for computing the Perron root sensitivity, the Perron network

sensitivity, and the total network sensitivity. For the latter, the CPU time for the exact solution and five

approximate solutions determined by the Arnoldi and Lanczos biorthogonalization methods is reported.

The table also displays the average number of steps needed by the Arnoldi and Lanczos biorthogonalization

methods to satisfy the stopping criterion. Both the Perron network sensitivity and the Perron root sensitivity

suggest that the same edge-weight be increased, but the computation of the Perron root sensitivity is much

cheaper than evaluating the Perron network sensitivity for large networks, as shown in Table 6. Indeed, the

Perron root sensitivity may be the only practical indicator of which edge-weight to modify for very large

networks. The “exact solution” in the table is evaluated by computing L(A,Eij) using (6) with f the matrix

exponential.

We implemented the Arnoldi method (23) with reorthogonalization to avoid that the computed results are

influenced by loss of orthogonality of the Krylov subspace basis. Similarly, rebiorthogonalization is performed

for the Lanczos biorthogonalization method (26).

Reducing the tolerance for rij in (30) to 10−5 to decide when to terminate the iterations did not change

the edges selected when using the Arnoldi-based or Lanczos-based methods.

Figure 5 shows the exact total network sensitivities and approximate total network sensitivities deter-

mined by the five iterative Krylov subspace methods described in Section 4. Specifically, assume that we

are interested in evaluating the total network sensitivity STN
ij for i 6= j and j > i in ` different direc-

tions. We consider increasing one edge-weight of A at each step, then calculate its associated exact (or

approximate) total network sensitivity STN
ij , denote it by sexact1 (or sapprox1 ), and store it in the vectors

sexact = [sexact1 ] (or sapprox = [sapprox1 ]). Repeating this procedure for the ` directions, we get the vectors

sexact = [sexact1 , sexact2 , . . . , sexact` ]T ∈ R` and sapprox = [sapprox1 , sapprox2 , . . . , sapprox` ]T ∈ R`. Each subfigure

of Figure 5 displays the vectors sexact on the vertical axis and sapprox for one of the Krylov methods on the

horizontal axis. Each pair of vector entries {sapproxi , sexacti } gives one dot on the graph; if the approxima-

tions are accurate, then sapproxi is close to sexacti and the resulting graph is on a straight line. We conclude

that the Arnoldi method (25) is the fastest but the KKRS Arnoldi method is most reliable. The Arnoldi

methods demand m = 9.4774, m = 4.9942, or m = 6.7381 average number of steps to satisfy the stopping

criterion, while the Lanczos biorthogonalization methods require 10.9233 or 4.9941 average number of steps.

The number of matrix-vector product evaluations needed by the Arnoldi methods (23) and (25) are smaller,

since each step only requires one matrix-vector product evaluation, while each step of the KKRS Arnoldi

and Lanczos biorthogonalization methods requires two matrix-vector product evaluations, one with A (or

M), and one with AT (or MT ). Each matrix-vector product evaluation with M requires two matrix-vector

product evaluations with A. We conclude from Figure 5 that the application of the Arnoldi method based

on (25) requires the fewest matrix-vector product evaluations followed by the Lanczos biorthogonalization

method based on (28). �
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{i, j} SPR
ij

{248, 201} 0.0471

{248, 47} 0.0470

{201, 47} 0.0464

{248, 118} 0.0452

{118, 201} 0.0446

Table 4: Example 5.1: The five largest Perron root sensitivities along directions for which i 6= j.

{i, j} STN
ij CTN(A+ Eij + Eji) {i, j} SPN

ij CPN(A+ Eij + Eji)

{118, 248} 408.5090 5605.03 {118, 248} 412.30 5600.87

{47, 118} 402.6977 5597.83 {47, 118} 406.85 5594.19

{118, 201} 401.8136 5596.48 {118, 201} 405.79 5592.67

{118, 261} 396.2688 5590.28 {118, 261} 401.14 5590.54

{67, 118} 386.3636 5576.64 {67, 118} 390.32 5573.10

Table 5: Example 5.1: The five largest total network sensitivities STN
ij and Perron network sensitivities SPN

ij

with respect to changes in the weights of the edge e(vi ↔ vj) with i 6= j and j > i, as well as the corresponding

total network communicability and Perron network communicability when the weight of the edge e(vi ↔ vj)

is increased by one.

Communicability Method Average steps Elapsed time (in seconds)

Perron network communicability Perron root sensitivity N/A 0.1

Perron network sensitivity N/A 3180 (53 mins)

Exact solution N/A 56697 (15.7 hrs)

Arnoldi solution (23) 9.4774 253

Total network communicability Arnoldi solution (25) 4.9942 105

Lanczos solution (26) 10.9233 1032

Lanczos solution (28) 4.9941 113

KKRS Arnoldi solution 6.7381 226

Table 6: CPU time required for evaluating the Perron root sensitivity, the Perron network sensitivity, the

exact solution, and the five approximate solutions, as well as the average number of steps m demanded by

each iterative method to satisfy the stopping criterion.
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Figure 5: USAir97: Comparison of the exact and approximate solutions using the five iterative Krylov

subspace methods described in Section 4. The heading of each subplot shows the average number of steps m

required by each iterative method to satisfy the stopping criterion.

EXAMPLE 5.2. The network Air500 is represented by an unweighted directed graph with 500 nodes, which

model the top 500 airports worldwide based on total passenger volume. Flights are represented by edges;

the graph is based on flights within one year from July 1, 2007, to June 30, 2008. The graph is strongly

connected. The adjacency matrix associated with the graph therefore is irreducible.

In this example, we want to insert an edge e(vi 99K vj) /∈ E that enhances the network communicability

the most. We study the Perron root sensitivity by computing the Perron root sensitivity matrix of the

adjacency matrix A, and investigate the total network sensitivity and the Perron network sensitivity with

respect to weights wij , where wij = 0 and i 6= j. Each edge is added in turn, and the quantities STN
ij and SPN

ij

are recorded to find the optimal edge. We also evaluate the total network communicability and the Perron

network communicability of the graph attained when wij is changed from 0 to 1.

We recall that the Perron root is increased the most when the Perron root sensitivity SPR
ij is maximized.

In this example, we are only interested in adding an edge when wij = 0 and i 6= j. The five largest

Perron root sensitivities SPR
ij of interest are listed in Table 7. The table indicates that the Perron root is

increased the most by inserting the edge e(v224 → v257) into the graph. The network communicability also is

increased the most by adding this edge as is seen in Table 8. This table displays the five largest total network
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sensitivities and Perron network sensitivities with respect to changes in wij , where wij = 0 and i 6= j, as well

as the total network communicability and the Perron network communicability of the graph obtained when

changing wij from 0 to 1. The table shows both the total network communicability and the Perron network

communicability to increase the most by adding an edge with either the largest total network sensitivity

STN
ij or the largest Perron network sensitivity SPN

ij . The table suggests that the two busiest airports (224,

JFK airport in NY, and 257, LGA airport in NY), be connected. This can be done by adding a shuttle bus

between them.

The CPU time required for computing the Perron root sensitivity, the Perron network sensitivity, the

exact solution, and the five approximated solutions, together with the average number of steps that each

iterative method carried out, are reported in Table 9. Both the Perron network sensitivity and the Perron

root sensitivity suggest the insertion of the same edge to maximize the Perron network communicability, but

computing the Perron root sensitivity of A is much cheaper than computing the Perron network sensitivity

for large networks, as shown in Table 9. While computing the total network sensitivity, reorthogonalization

is carried out for the Arnoldi method (23) and rebiorthogonalization is performed for the Lanczos biorthog-

onalization method (26).

For this example, the approximations in the stopping criterion (30) are large. Therefore, the Lanczos

biorthogonalization method (26) requires many steps to satisfy this criterion when rij < 10−4. This makes

application of the method expensive. We therefore replaced the matrix M by M/3. Then the Lanczos

biorthogonalization method (26) requires fewer steps to satisfy the analogue of (30) with rij < 10−4. This

modification showed the correct edge to insert. Making the tolerance for rij smaller than 10−4 to determine

when to terminate the iterative methods did not change the edge selected.

Figure 6 is analogous to Figure 5 and shows that the approximate solution obtained using KKRS Arnoldi

method to be accurate, followed by the one obtained by Lanczos biorthogonalization method (28), but the

latter is faster and requires a smaller average number of steps. The solutions obtained by the Arnoldi method

(25) can be seen to be less accurate than those obtained with the KKRS Arnoldi method, and the Lanczos

biorthogonalization method (28) (the dots are not as close to a straight line). The solution obtained by

the Arnoldi (23) and the Lanczos biorthogonalization methods (26) are the least accurate ones compared to

those obtained by the other three iterative methods. On the other hand, each step of the Arnoldi method

(23) requires one matrix-vector product evaluation with M (two matrix-vector product evaluations with

A), and each step of the KKRS Arnoldi method demands two matrix-vector product evaluations, one with

A, and one with AT , while each step of the Arnoldi method (25) only requires one matrix-vector product

evaluation with A. The Lanczos biorthogonalization method (28) is competitive, each step of which requires

one matrix-vector product evaluation with A and one with AT .

Figure 7 displays the exact solution and approximate solutions determined by the Arnoldi method (25)

by choosing different stopping criteria. The method needs 11.8587 average number of steps (25.66 mins) to

satisfy the stopping criterion rij < 10−5. The figure shows that the approximation error is smaller when

choosing rij < 10−5 and the number of matrix-vector product evaluations is still the smallest one. Table 10

displays the airport labels corresponding to the airports of Table 8. �
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{i, j} SPR
ij

{224, 257} 0.01341

{257, 224} 0.01335

{287, 224} 0.01240

{261, 24} 0.01230

{224, 287} 0.01228

Table 7: Example 5.1: The five largest Perron root sensitivities along directions for which wij = 0 and i 6= j.

{i, j} STN
ij CTN(A+ Eij) {i, j} SPN

ij CPN(A+ Eij)

{224, 257} 2.5260× 1036 1.9418× 1038 {224, 257} 2.5237× 1036 1.9386× 1038

{257, 224} 2.5161× 1036 1.9417× 1038 {257, 224} 2.5103× 1036 1.9385× 1038

{261, 24} 2.3817× 1036 1.9404× 1038 {261, 24} 2.3810× 1036 1.9372× 1038

{19, 124} 2.3576× 1036 1.9401× 1038 {19, 124} 2.3587× 1036 1.9369× 1038

{24, 261} 2.3529× 1036 1.9401× 1038 {24, 261} 2.3457× 1036 1.9368× 1038

Table 8: Example 5.2: The five largest total network sensitivities and Perron network sensitivities to changes

in wij , where wij = 0 and i 6= j, together with the corresponding total network communicability and Perron

network communicability when wij is increased from 0 to 1.

Communicability Method Average steps Elapsed time (in seconds)

Perron network communicability Perron root sensitivity N/A 0.65

Perron network sensitivity N/A 9228 (2.56 hrs)

Exact solution N/A 500172 (139hrs)

Arnoldi solution (23) 16.9994 2070(34.5 mins)

Total network communicability Arnoldi solution (25) 10.2312 1102 (18.4 mins)

Lanczos solution (26) 40.1211 26381 (7.3 hrs)

Lanczos solution (28) 8.0560 934 ( 15.6 mins)

KKRS Arnoldi solution 9.9561 1521 (25.4 mins)

Table 9: CPU time for the evaluation of the Perron root sensitivity, the Perron network sensitivity, the exact

solution, and the five approximated solutions, as well as the average number of steps m that each iterative

method needed to satisfy the stopping criterion.
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Label Airport

19 AMS airport in NL

24 ATL airport in GA, USA

124 DFW airport in TX, USA

224 JFK airport in NY, USA

257 LGA airport in NY, USA

261 LHR airport in UK

Table 10: Airports for airport labels shown in Table 8.

Figure 6: Air500: Comparison of the exact and approximate solutions using the five iterative Krylov subspace

methods described in Section 4. The heading of each subplot is the average number of steps m that each

iterative method demands to satisfy the stopping criterion.
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Figure 7: Air500: Comparison of the exact and approximate solutions using the Arnoldi method (25) by

choosing different stopping criterions. The heading of each subplot is the chosen stopping criterion and the

average number of steps m that the method demands to satisfy the corresponding stopping criterion.

EXAMPLE 5.3. We consider the network usroads-48, which corresponds to the continental US road net-

work, and is represented by an unweighted undirected graph. The graph has 126146 nodes, which correspond

to intersections and road endpoints. Undirected edges represent roads which connect the intersections and

endpoints. Our aim is to insert an edge e(vi vj) /∈ E such that the network communicability is increased

the most. Results of Examples 5.1 and 5.2 show that computing the Perron root sensitivity of the modified

adjacency matrix Â or adjacency matrix A is much cheaper than computing the Perron network sensitivity

and total network sensitivity for large networks. Also note that it is not straightforward to determine whether

a large network is irreducible. We therefore add a perturbation matrix δA = δ · 11T of small norm to the

adjacency matrix A. This guarantees that the matrix considered is irreducible. To determine the value of δ,

we use the same procedure as in Example 3.2. While decreasing the value of δ, we use the available computed

Perron vectors for the previous δ-value as initial approximations to compute new Perron vectors associated

with the new smaller value of δ. We obtain in this manner the irreducible matrix Â = A+ δA with δ = 10−7.

Note that the matrix Â is not explicitly formed; we evaluate matrix-vector products with Â and ÂT without

explicitly storing these matrices. This keeps both the storage and computing time low.

Table 11 displays the five largest Perron root sensitivities SPR
ij and shows that the Perron root is increased
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the most by inserting the edge e(v44182 ↔ v44035), that is, building a new road between endpoints 44182 and

44035. The network of the present example is too large to make the evaluation of total network sensitivities

and the exact solution practical. �

{i, j} SPR
ij

{44182, 44035} 0.0898

{44067, 44323} 0.0846

{44154, 44087} 0.0845

{44182, 44133} 0.0797

{44182, 44294} 0.0795

Table 11: Example 5.3: The five largest Perron root sensitivities along directions for which wij = 0 and i 6= j.

The examples of this section, as well as numerous other numerical experiments, indicate that the Arnoldi-

based method (25), the KKRS Arnoldi method, and the Lanczos biorthogonalization method (28) to perform

better than the Arnoldi-based method (23) and the Lanczos biorthogonalization method (26). The Arnoldi

method (25) typically requires fewer matrix-vector product evaluations and less computer storage than the

KKRS Arnoldi and Lanczos biorthogonalization methods (28). This suggests that the former method may

be attractive to use to compute the total network sensitivities STN
ij when the evaluation of matrix-vector

products is very expensive or computer storage is scarce, otherwise the KKRS Arnoldi method should be

applied. For large networks, one can compute the Perron root sensitivity. Its computation is much cheaper

than the evaluation of the Perron network sensitivity and total network sensitivity. The latter measures

therefore are less attractive to use for large networks.

6 Conclusion

This paper explores the sensitivity of global communicability measures to small local changes in a network.

In particular, we investigate the sensitivity of the network communicability by increasing or decreasing

edge-weights, or adding or removing edges such that the total network communicability or Perron network

communicability significantly increases or decreases. The latter communicability measure is new and has

the advantage of being easy to apply to very large networks. Efficient Krylov subspace-type methods for

estimating the total network sensitivity, the Perron root sensitivity, and the Perron network sensitivity are

introduced and compared. Computed examples illustrate the feasibility of the methods described.
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