
Applied Network Science manuscript No.
(will be inserted by the editor)

Chained graphs and some applications

Anna Concas* · Lothar Reichel ·
Giuseppe Rodriguez · Yunzi Zhang

Received: date / Accepted: date

Abstract This paper introduces the notions of chained and semi-chained
graphs. The chain of a graph, when existent, refines the notion of bipartiv-
ity and conveys important structural information. Also the notion of a center
vertex vc is introduced. It is a vertex, whose sum of p powers of distances to
all other vertices in the graph is minimal, where the distance between a pair
of vertices {vc, v} is measured by the minimal number of edges that have to
be traversed to go from vc to v. This concept extends the definition of close-
ness centrality. Applications in which the center node is important include
information transmission and city planning. Algorithms for the identification
of approximate central nodes are provided and computed examples are pre-
sented.

Keywords Network analysis · Multipartition · Chained graph · Central node

1 Introduction

Complex systems are made up of a collection of objects, that are connected
to each other in some manner, and can be modeled as networks. The objects
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often are referred to as nodes or vertices, and the connections as edges. The
nature of the vertices and edges may vary depending on the system being
modeled. While networks ignore many properties of the system they model,
they nevertheless capture some of its complexity in a way that facilitates the
analysis of its properties. Networks can be applied to model systems that arise
in social science, telecommunication, transportation, as well as in many other
areas; see, e.g., [11,15,25] for discussions on networks and for many examples
of their applications.

A network is represented by a graph G = {V, E}, where V = {vi}ni=1 de-
notes a set of vertices or nodes, and E = {ei}mi=1 is a set of edges between the
vertices. Two vertices vi and vj , with i 6= j, are said to be adjacent if there is
an edge between them. We consider unweighted connected simple graphs, i.e.,
connected undirected unweighted graphs without multiple edges and self-loops.
Networks are studied by algebraic and computational methods applied to the
graphs that represent them. Questions of interest include the determination of
the most important vertices and edges of a network, as well as the identification
of structural properties. Fundamental topological properties, which will be de-
fined and used in Section 2, are bipartivity and, more generally, multipartivity.
An m-partite network involves objects that can be split into m disjoint groups
Vi, i = 1, 2, . . . ,m, called partite sets, with connections occurring only across,
but not within, the groups. A survey of mathematical properties and appli-
cations of bipartite graphs in the areas of algebra, combinatorics, chemistry,
communication networks, and computer science are provided by Asratian et
al. [1].

The notion of multipartite graphs is required in the definition of chained
graphs introduced in this paper. The chained structure characterizes multi-
partite networks such that edges can occur only between nodes belonging to
“subsequent” partite sets Vi and Vi+1, i = 1, 2, . . . ,m − 1, and vice versa, as
illustrated in Figure 1. The definition of chained graphs can be relaxed allow-
ing connections between nodes belonging to the same node subset, as it will
be subsequently explained.

1 2 3 4

Fig. 1: A chained graph with 4 enumerated node sets.

The above concepts will be described in detail in Section 2, where it will
be shown that bipartite graphs are `-chained for some ` ≥ 2. This shows that
the chained structure is a refinement of bipartivity, since it reveals additional
structure of a bipartite graph. The chains provide insight into how the vertices
are connected; this structure is not uncovered by bipartivity only.

We also will use chained graphs to identify “central nodes”. These are nodes
determined by their location in the chain structure, incorporating a different
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idea of centrality than other centrality measures, such as the degree or the
subgraph centrality. A nice introduction to the latter measure is provided by
Estrada and Higham [13]; see also [7,11,15] for an overview of other important
quantities that describe global properties of a given graph, such as the impor-
tance of a particular node within the network, or the ease of traveling from
one node to another. With the aim of determining a new centrality measure,
called “position centrality”, we will first examine the spanning trees associated
with a given underlying graph [2,6]. The position centrality of a node will be
defined by taking into account the lengths of the paths from it to all the other
vertices and it can be computed by using the chained structure determined
by the tree rooted at the node. By using this measure, which depends upon
a parameter p, one may identify a most “centrally located” node, referred to
as a “center vertex”, as a vertex with the smallest position centrality. There
may be more than one center vertex. For p = 1, a center vertex coincides with
a vertex with the largest closeness centrality [25].

Another application of interest to us is the detection of anti-communities,
i.e., subsets {Si}pi=1 of vertices of a graph G with no or few edges between
vertices in each set Si, but many connections between the node sets Si and
V\Si, i = 1, 2, . . . , p. Once a semi-chained structure has been identified in a
graph, the presence of anti-communities can be determined by ascertaining
the number of edges among nodes belonging to the same set; see, e.g., the au-
tobahn data set and Figure 16 in Section 6. Community and anti-community
detection in networks is an important problem with applications in various
fields, including physics, computer science, as well as in the natural and so-
cial sciences. Several methods have been developed to identify this kind of
structures in networks; see, e.g., [8,27]. In [17] a spectral method was used
to simultaneously detect communities and anti-communities, while in [9] an-
other approach to identifying anti-communities has been described. We will
illustrate the benefit of using the chained structure for this purpose in Section
6.

This paper is organized as follows: Section 2 introduces notation that will
be used in the remainder of the paper and discusses `-chained bipartite graphs.
Section 3 describes the structure of the adjacency matrices that are associated
to `-chained graphs. The relation between the chain structure and spanning
trees is investigated in Section 4. Section 5 introduces the notion of position
centrality and discusses some applications. Numerical illustrations of `-chained
graphs and the identification of approximations of central nodes are described
in Section 6 and Section 7 contains concluding remarks.

2 Some definitions

This section introduces notation and definitions to be used in the sequel. Most
of our definitions and terminology follow those in [11,25]. The adjacency ma-
trix M = [mij ]

n
i,j=1 ∈ Rn×n associated with an unweighted undirected simple
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graph G with n vertices is symmetric and has the entry mij = 1 if there is an
edge between the vertices vi and vj , otherwise mij = 0.

Bipartivity, and more generally multipartivity, are interesting structural
properties of a graph that provide important information about the network
being modeled. There are various characterizations of multipartite graphs [14,
24]. They can be defined as follows.

Definition 1 A graph G is said to be `-partite if the set of vertices V that
make up the graph can be partitioned into ` disjoint non-empty subsets V =
V1 ∪ V2 ∪ · · · ∪ V` such that every vertex in Vi, for any 1 ≤ i ≤ `, is adjacent
only to vertices in Vj for some j 6= i, and the number of subsets, `, is as small
as possible. A graph is said to be bipartite when ` = 2, and multipartite when
` ≥ 3.

Equivalently, the vertices of an `-partite graph can be colored with ` colors,
so that the vertices at the endpoints of every edge have different colors, and `
is the minimal number of colors required [21].

Example 1 The graph on the right-hand side of Figure 2 is bipartite, and the
graph in Figure 3 is tripartite.

Usually, vertices in distinct subsets Vi of an `-partite graph model different
entities. For instance, users of social bookmarking services, such as Delicious
[10], put tags on web pages. Users, tags, and web pages can be represented
by a tripartite network V = V1 ∪ V2 ∪ V3, in which users define the vertex
subset V1, tags define the subset V2, and web pages define the subset V3. This
example of tripartite graphs is discussed by Ikematsu and Murata [20].

There are various methods for partitioning the vertex set V of a bipartite
graph G into unique disjoint non-empty subsets V1 and V2, such that every
vertex in V1 is adjacent to a vertex in V2; see [6,9] for discussions of methods
and further references. Assume for the moment that the n vertices in the set V
are enumerated so that the first n1 of them make up the vertex set V1 and the
remaining n2 = n−n1 vertices make up the vertex set V2. Then the adjacency
matrix for G is of the form

M =

[
O B
BT O

]
, (2.1)

where B ∈ Rn1×n2 , O denotes a zero-matrix of suitable order, and the super-
script T denotes transposition. A bipartite graph with partition sets V1 and V2
is said to be complete if every vertex of V1 is adjacent to all vertices of V2. For
complete bipartite graphs, every entry of the submatrix B of the adjacency
matrix (2.1) is one. The notion of a complete bipartite graph can be extended
to multipartite graphs.

Definition 2 An `-partite graph G = {V, E} with the vertex set V = V1∪V2∪
· · · ∪ V` partitioned into non-empty disjoint subsets Vi is said to be complete
if, for each 1 ≤ i ≤ `, every vertex in the vertex subset Vi is adjacent to every
vertex in the set V\Vi.
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Complete `-partite graphs are commonly denoted by Kn1,n2,...,n`
, where

ni is the cardinality of the node subset Vi. The adjacency matrix M for
Kn1,n2,...,n`

is of order n =
∑`

j=1 nj with all entries mij equal to one, except
for the entries of ` disjoint diagonal blocks of zeros of orders n1, n2, . . . , n`.

The following definitions introduce the notions of particular multipartite
structures, which will be used in the remainder of the paper.

Definition 3 An undirected graph G = {V, E} is said to be `i-chained with
initial vertex vi if the set of vertices can be subdivided into `i disjoint non-
empty subsets

V = V1 ∪ V2 ∪ · · · ∪ V`i (2.2)

such that vi ∈ V1, and all vertices in the set Vj are adjacent only to vertices in
the sets Vj−1 or Vj+1 for j = 2, 3, . . . , `i − 1, where the chain length `i is the
largest number of vertex subsets Vj with this property. Moreover, the vertices
in V1 and V`i are adjacent only to vertices in V2 and V`i−1, respectively. Vertex
sets Vj with consecutive indices are said to be adjacent.

In the Delicious bookmarking service application mentioned above, vertices
in V1 and V3 are adjacent only to vertices in V2. Thus, this vertex partitioning
shows that the graph is 3-chained.

Definition 4 The graph G = {V, E} is said to be `i-semi-chained with initial
vertex vi if the set of vertices can be subdivided into `i disjoint non-empty
subsets (2.2) such that vi ∈ V1, and all vertices in the set Vj are adjacent
only to vertices in the sets Vj−1, Vj , or Vj+1 for j = 2, 3, . . . , `i− 1, where the
chain length `i is the largest number of vertex subsets Vj with this property.
Moreover, the vertices in V1 and V`i are adjacent only to vertices in V1 ∪ V2
and V`i−1 ∪ V`i , respectively.

1 2 3

(a)

2

1

3

(b)

Fig. 2: Example 2: chained graph with vertices v1, v2, and v3. The initial vertex
set in (a) is V1 = {v1}, while the initial vertex set in (b) is V1 = {v2}.
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Example 2 Figure 2 displays two chained graphs with three vertices and dif-
ferent initial vertices. In the chained graph displayed in subfigure (a), each
vertex set Vi, i = 1, 2, 3, contains one node, and the initial vertex is v1. This
gives the chain length `1 = 3. The same chain length can be obtained if the
initial node is chosen to be v3. The chained graph in (b) has initial vertex v2,
with V1 = {v2} and V2 = {v1, v3}, which gives the chain length `2 = 2. This
example illustrates that the chain length depends on the initial vertex chosen.

1

2 3

Fig. 3: Example 3: a semi-chained graph.

Example 3 Figure 3 displays a 1-semi-chained graph, that is not chained in
the sense of Definition 3. The semi-chained structure in this example is inde-
pendent of the choice of the initial vertex.

While chained structure is not so common for graphs, every non-trivial
graph is semi-chained. Nevertheless, representing a graph in (semi-)chained
form is useful, because this structure is closely linked to anti-communities,
which are subsets of vertices, such that there are only few edges between ver-
tices in the same subset, but many edges between vertices in different subsets.
Recent discussions on anti-communities and their detection can be found in
[9,14,15,17]. We will introduce a density measure for anti-communities, which
is similar to the intra-cluster density that allows one to identify clusters or
communities; see [12,15,18].

Definition 5 The anti-community score 0 ≤ ρ ≤ 1 is the ratio between the
number of edges connecting the nodes in the subset and the maximum admis-
sible number of edges between them.

To highlight the role of the anti-community score, we will in the following
consider ρ-anti-communities. The sets Vi, i = 1, . . . , `, in an `-chained graph
are 0-anti-communities, as they have no internal edges, while each set Vi in
a semi-chained graph is a ρi-anti-community. When ρi is small, Vi may be
considered an anti-community.
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Definition 6 The maximal chain length, `, of a graph is defined as

` = max
i
`i,

where the maximum is over all the initial nodes vi in the vertex set V. When
the maximal chain length is considered, the graph is said to be `-chained.

Example 4 The graph G of Example 2 has maximal chain length ` = 3.

The following notion will be useful in the sequel. It is stronger than (stan-
dard) multipartivity, but weaker than complete multipartivity.

Definition 7 An `-partite graph G = {V, E} with the vertex set partitioning
V = V1 ∪V2 ∪ · · · ∪ V` into non-empty disjoint subsets Vi is said to be strongly
`-partite if, for every i, every vertex in the subset Vi is adjacent to at least one
vertex in every subset Vj , j 6= i.

The special case of strongly tripartite graphs is applied to community de-
tection by Ikematsu and Murata [20], who refer to these graphs as 3-partite 3-
uniform hypernetworks. We also define the notion of strongly `-chained graphs.

Definition 8 An `-chained graph G = {V, E} with the vertex set partitioning
V = V1 ∪V2 ∪ · · · ∪ V` into non-empty disjoint subsets Vi is said to be strongly
`-chained if, for every i, every vertex in the subset Vi is adjacent to at least
one vertex in the subsets Vi−1 (for 1 < i ≤ `) and Vi+1 (for 1 ≤ i < `).

We are interested in strongly chained graphs, because their structure can
be identified from the knowledge of the vertex and edge sets of a graph. We
note that “standard” chained graphs G = {V, E} cannot be uniquely identified
from the knowledge of V and E . Indeed, let the vertex v of a chained graph
be connected only to vertices in the vertex set Vi for some 1 < i < `. Then v
may belong to either the vertex sets Vi−1 or Vi+1.

It is remarkable that an `-chained graph is always bipartite, and vice versa.
This property will help us study anti-communities.

Theorem 1 Let G be a bipartite graph. Then the graph is `-chained for some
` ≥ 2. The partitioning of the node set V into chained sets is not unique, but
the maximal number of chained sets, `max, is uniquely determined. Conversely,
if a graph is `-chained, then it is bipartite.

Proof Let the graph G = {V, E} be bipartite and let V = V1 ∪ V2 be the asso-
ciated partitioning. It follows that the graph is at least 2-chained. Conversely,
let the graph G = {V, E} be `-chained, i.e., there is a partitioning of the vertex
set V = V1 ∪ V2 ∪ · · · ∪ V` that satisfies the properties of Definition 3. Then
letting

Ṽ1 =
⋃

j odd

Vj and Ṽ2 =
⋃

j even

Vj , (2.3)
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shows that the graph G is bipartite with associated vertex set partitioning
V = Ṽ1 ∪ Ṽ2. The unicity of `max follows by recursive subdivision of the sets
Ṽ1 and Ṽ2, and by a suitable choice of the initial set V1 in (2.2).

The property of bipartite graphs shown by Theorem 1 will be further dis-
cussed in Section 3, where we consider the structure of adjacency matrices for
`-chained graphs for ` ≥ 3.

We remark that the `-chained structure with ` > 2 gives a finer representa-
tion of a bipartite graph, as it provides information on hierarchical connections
between nodes that is not contained in the basic notion of bipartivity.

2.1 Closed chained graphs

This subsection considers chained graphs that may be cyclic. This kind of
graphs are important, e.g., for their connection to n-cubes.

Definition 9 A graph G = {V, E} is said to be closed `i-chained with initial
vertex vi if the set of vertices can be subdivided into `i disjoint non-empty
subsets

V = V1 ∪ V2 ∪ · · · ∪ V`i
such that vi ∈ V1 and all vertices in the set Vj are adjacent only to vertices in
the sets Vj−1 or V((j+1) mod `i) for j = 1, 2, . . . , `i, with V0 ≡ V`i , where the
chain length, `i, is the largest number of vertex subsets Vj with this property.
Closed `i-semi-chained graphs can be defined analogously.

We remark that a closed `-chained graph G = {V, E} is not `-chained, but
may be k-chained for some k < `. The following example illustrates this.

Example 5 Consider the graph G = {V, E} in Figure 4(a) and define the vertex
subsets Vi = {vi} for i = 1, 2, . . . , 6. This graph is closed 6-chained with initial
vertex v1.

Define the vertex subsets Ṽ1 = {v1}, Ṽ2 = {v2, v6}, Ṽ3 = {v3, v5}, and

Ṽ4 = {v4}. The chain of vertex sets

V = Ṽ1 ∪ Ṽ2 ∪ Ṽ3 ∪ Ṽ4

shows that G is a 4-chained graph with initial vertex v1. The graph also is
bipartite. The latter property is illustrated by Figure 4(b).

Theorem 2 A closed `-chained graph G is (`/2 + 1)-chained if and only if `
is even. A closed `-chained graph is ((` + 1)/2)-semi-chained if and only if `
is odd.
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3

4

6

5

(a)

1 2

4

6

3

5

(b)

Fig. 4: Figure (a): a closed chained graph with 6 enumerated node sets (each

set contains one node). Figure (b): the bipartite structure Ṽ1 = V1 ∪ V3 ∪ V5
and Ṽ2 = V2 ∪ V4 ∪ V6.

Proof Let ` be even. Then we may partition the closed `-chained graph G with
vertices v1, v2, . . . , v` as

V1 = {v1}, Vj = {vj , v`−j+2}, j = 2, 3, . . . , `/2, V `
2+1 =

{
v `

2+1

}
.

This shows that G is (`/2 + 1)-chained with initial vertex v1.
If, instead, ` is odd, then we define the vertex sets

V1 = {v1}, Vj = {vj , v`−j+2}, j = 2, 3, . . . , (`− 1)/2.

The remaining vertices, v `+1
2

and v `+3
2

, are adjacent and make up the vertex

set V `+1
2

. This makes the graph G ((`+ 1)/2)-semi-chained with initial vertex
v1.

7

1 5 3

6 2 4

Fig. 5: A closed 7-chained graph is tripartite. A tripartization of the node set
is given by Ṽ1 = V1 ∪ V3 ∪ V5, Ṽ2 = V2 ∪ V4 ∪ V6, Ṽ3 = V7.
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Example 6 Consider the graph G = {V, E} shown in Figure 5. Let V = V1 ∪
V2 ∪ · · · ∪ V7 with Vi = {vi} for i = 1, 2, . . . , 7. This partitioning shows that
the graph is closed 7-chained with initial vertex v1. The graph also is 4-semi-
chained. Moreover, the graph is tripartite with tripartization V = Ṽ1∪Ṽ2∪Ṽ3,
where Ṽ1 = {v1, v3, v5}, Ṽ2 = {v2, v4, v6}, and Ṽ3 = {v7}.

The following result shows that the facts that the graphs in Figures 4 and
5 are bipartite and tripartite are not coincidences.

Theorem 3 Consider a closed `-chained graph G = {V, E} with vertex set
partitioning V = V1 ∪ V2 ∪ · · · ∪ V` and initial vertex v1. Then the graph G is
bipartite if ` is even. It is tripartite if ` is odd.

Proof If ` is even, then the partition (2.3) produces a bipartite graph; see an
example with ` = 6 in Figure 4. If ` is odd, then the partitioning

Ṽ1 =
⋃

j odd
j 6=`

Vj , Ṽ2 =
⋃

j even

Vj , and Ṽ3 = V`

shows that the graph is tripartite. An example with ` = 7 is illustrated in
Figure 5.

1 2

34

(a)

1 2

34

6 7

5 8

(b)

Fig. 6: (a): The 2-cube graph with an enumeration of the nodes. (b): The
3-cube graph with an enumeration of the nodes vi.
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Example 7 Regard the 2-cube graph G = {V, E} with four vertices V =
{vj}4j=1 displayed in Figure 6(a). The vertices are enumerated so that odd
vertices are adjacent to even vertices, and vice versa. The graph G is bipartite
with the partitioning V = V1 ∪ V2, where the set V1 contains all vertices with
odd index, and V2 contains all vertices with even index. Moreover, the graph
is closed 4-chained with initial vertex v1, as well as 3-chained with initial ver-
tex v1. The latter is seen from the chain structure V = V1 ∪ V2 ∪ V3, where
V1 = {v1}, V2 = {v2, v4}, and V3 = {v3}.

Example 8 Consider the 3-cube graph G = {V, E} displayed in Figure 6(b).
The vertices v1, v2, . . . , v8 are enumerated so that odd vertices are adjacent to
even vertices, and vice versa. Hence, the graph G is bipartite with V = V1∪V2,
where the set V1 contains all vertices with odd index, and the set V2 contains all
vertices with even index. The bipartite structure is illustrated in Figure 7(b).

To determine the closed chain structure with initial vertex v1, we regard
the vertex partitioning {v1} ∪ {v2, v4} ∪ {v3, v5, v7} ∪ {v6, v8}, which shows
that G has a closed 4-chained structure with initial vertex v1. We note that
the graph is not strongly chained, as v8 is not connected to v1.

The chain structure of the 3-cube gives rise to a different partitioning
of the node set V. Define the node subsets V1 = {v1}, V2 = {v2, v4, v6},
V3 = {v3, v5, v7}, and V4 = {v8}. The vertices in Vi+1 are adjacent to the
vertices in Vi for i = 1, 2, 3. Thus, the graph G is strongly 4-chained with initial
vertex v1. The chain structure is illustrated by the graph in Figure 7(a).

The above observations can be extended to n-cubes.

Definition 10 A 0-cube is made of just one vertex. An n-cube is composed
by 2n vertices. It is obtained recursively by taking two (n− 1)-cubes, the first
one with vertices vi, i = 1, 2, . . . , 2n−1, and the second one with vertices vi,
i = 2n−1 + 1, 2n−1 + 2, . . . , 2n, and connecting the vertex vi in the first cube
to the vertex with index (i mod 2n−1) + 2n−1 + 1 in the second cube.

The graph of an n-cube, with n > 3 is bipartite with V = V1∪V2, where the
set V1 contains all vertices with odd index, and the set V2 contains all vertices
with even index. To determine the chain structure with starting vertex v1, we
regard the vertex partitioning V = V1∪V2∪V3∪V4, where V1 = {v1}, V2 = {all
vertices adjacent to v1 with even index} , V3 = {all vertices with odd index
except v1}, and V4 = {all vertices not adjacent to v1 with even index}. Thus,
the graph is strongly 4-chained with initial vertex v1. Given the symmetry of
an n-cube with respect its nodes, changing the starting node does not modify
the number and cardinality of the node sets. An n-cube with n > 3 is also
closed 4-chained. This structure is not strongly chained. Moreover, it is not
unique. It can be determined by considering the above chained node sets and
move nodes from V2 to V4, without making the set V2 empty. This discussion
leads to the following result.

Theorem 4 An n-cube with n = 0, 1, 2, is strongly (n + 1)-chained. It is
strongly 4-chained when n ≥ 3. An n-cube with n ≥ 2 is closed 4-chained.
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1

2 4 6
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(a)

1

3
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2

4

6

8

(b)

Fig. 7: Figure (a): the chained structure of the 3-cube graph G. Figure (b): the
bipartite structure of G.

3 Adjacency matrices for chained graphs

Consider an `-chained graph G = {V, E} with initial vertex v1 and vertex set
partitioning V = V1 ∪ V2 ∪ · · · ∪ V`. Let ni be the cardinality of the vertex
set Vi for i = 1, 2, . . . , `. Define the matrix Ai ∈ Rni×ni+1 that describes the
connections between the vertices in the set Vi and the vertices in the set Vi+1

for i = 1, 2, . . . , `− 1. Hence, the entries of Ai satisfy [Ai]jk = 1 if there is an
edge between vertex vj in Vi and vertex vk in Vi+1, and [Ai]jk = 0 otherwise.
The adjacency matrix M associated with G is symmetric block tridiagonal
with off-diagonal blocks Ai and AT

i , and has vanishing diagonal blocks

M =



O A1

AT
1 O A2

AT
2 O A3

AT
3

. . .
. . .

. . . O A`−1
AT

`−1 O


. (3.1)

It is known from Theorem 1 that every `-chained graph is bipartite. This
also can be seen by applying a suitable permutation matrix P and its transpose
to the adjacency matrix M from the left and right, respectively, to obtain

PMPT =

[
O B

BT O

]
, (3.2)
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with B ∈ Rno×ne , where

no =

b(`+1)/2c∑
i=1

n2i−1, ne =

b`/2c∑
i=1

n2i.

Here bαc denotes the integer part of α ≥ 0.

Example 9 We illustrate the permutation (3.2) for ` = 5. In this case

P =


In1

O O O O
O O In2

O O
O O O O In3

O In4 O O O
O O O In5

O

 ,
where Ik is an identity matrix of order k, and

PMPT =


A1

O AT
2 A3

AT
4

AT
1 A2

AT
3 A4 O

 =

[
O B

BT O

]
. (3.3)

This shows that the graph G associated to the adjacency matrix M is bipartite.

The submatrix B in (3.3) exhibits a particular pattern of zero entries.
This suggests the possibility of identifying the strongly chained structure of a
graph, whose vertices are in a random order, by first identifying its bipartite
structure, e.g., by methods described in [9,19], and then reordering the vertices
to obtain a suitable zero pattern in the submatrix B.

The considered permutation also illustrates that it is not possible to iden-
tify a 3-chained graph. Indeed, considering the adjacency and permutation
matrices

M =

 O A1 O
AT

1 O A2

O AT
2 O

 , P =

In1
O O

O O In3

O In2
O

 ,
one obtains

PMPT =

 O O A1

O O AT
2

AT
1 A2 O

 =

[
O B

BT O

]
.

This shows that the matrix B does not have a zero pattern that would allow
one to identify the node partitioning of a 3-chained graph.

If G is an `-semi-chained graph, then the diagonal blocks of the matrices
(3.1) and (3.2) may have some nonzero entries. If there are fewer nonvanishing
entries in the diagonal blocks of the matrix (3.2) than in the off-diagonal
blocks, then this indicates the existence of an anti-community.



14 Anna Concas* et al.

4 Chained graphs and spanning trees

Many graphs G are not chained, but their spanning trees are. This section
explores the possibility of using the chained structure of a spanning tree to
gain insight into properties of the underlying graph.

A spanning tree for G is a subgraph T = {V, E ′} that is a tree and contains
all the vertices of G; see, e.g., [11,25] for further details. In general, E ′ $ E ;
if E ′ = E , then G is a tree itself. A spanning tree T for G is not uniquely
determined by G. In particular, T depends on the initial vertex, the so-called
root, of the tree. A spanning tree for a graph G with n vertices can be computed
in time proportional to n.

Each spanning tree has an `-chained structure: let V1 contain the root, v1,
of the tree, V2 the children of the root, and, in general, Vi+1 the children of the
vertices in Vi for i = 1, 2, . . . , `− 1. The set V` contains the leaves of the tree
at the lowest level. This shows, in particular, that spanning trees are bipartite;
cf. Theorem 1. We will use the chained structure of a spanning tree T for G to
determine an approximated chained structure for G, also in situations when G
is not chained.

Definition 11 Let T be a spanning tree for the graph G. An `-chained vertex
set decomposition for T is said to be an `-chained vertex set decomposition
for G. We will refer to leaves of T as leaves of G.

Let D = E \E ′ be the set of the edges in G that are not in T , and let C(T )
denote the graph obtained by adding the edges in D to the spanning tree T .
The graph C(T ) coincides with G and inherits the chain structure of T .

If all the edges in D are compatible with the chain structure of the spanning
tree T , that is, if for each edge ek ∈ D, there is an index 2 ≤ i ≤ ` − 1 such
that ek connects a vertex in Vi to a vertex in Vi−1 or Vi+1, then the graph
G = C(T ) is chained. If an edge in D connects two vertices that belong to the
same node set Vi, the graph is semi-chained. Finally, if an edge in D connects
a vertex in Vi to a vertex in Vi+j , |j| ≥ 2, then the graph C(T ) is not chained.
This observation leads to the following result.

Theorem 5 A graph is `-chained (semi-chained) if at least one of its spanning
trees T generates a graph C(T ) whose edges are compatible with the (semi-
)chain structure of T .

Let the vertex set decomposition V = V1 ∪ V2 ∪ · · · ∪ V` be determined by
the chain structure of G = C(T ). Recall that a graph is strongly chained if
every vertex in Vi is connected to at least one vertex in Vi+1 and to one vertex
in Vi−1 for = 2, 3, . . . , `−1. Moreover, every vertex in V1 (resp. V`) is required
to be connected to one vertex in V2 (resp. V`−1). Whether a graph is strongly
chained depends on the leaves of the graph.
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Theorem 6 Let T be a spanning tree of the graph G = {V, E}, and let T
determine the chain structure V = V1∪V2∪ · · ·∪V`. If T has leaves connected
only to vertices in V`−1, then G is strongly chained. This also holds if T has
leaves connected to vertices in V1 or in V2, but not if there are leaves connected
to vertices in both V1 and V2.

Proof The vertices in V` are leaves. If, in addition to the leaves in V`, there
are leaves connected to the root, v1, but no other leaves, then the graph is
strongly chained. This can be seen by moving the leaves connected to v1 to
a new vertex set V0 that precedes V1. This shows that the graph is strongly
(`+ 1)-chained with chain structure V = V0 ∪ V1 ∪ · · · ∪ V`.

We turn to the situation when, in addition to the leaves in V`, there are
also leaves connected to the vertices in V2. The latter leaves can be moved to
V1, which shows that the graph is strongly `-chained.

We remark that it is easy to construct examples that illustrate that if T
has a leaf connected to a vertex in Vi for some 3 ≤ i ≤ `− 2, then C(T ) is not
guaranteed to be strongly chained.

The above discussion leads to Algorithm 1 for determining if a graph with
n vertices is (semi-)chained in O(n2) time steps. We note that the algorithm
can easily be parallelized, as each iteration is independent on the others.

Algorithm 1 Determine the (semi-)chain structure of a graph.

Require: Adjacency matrix A ∈ Rn×n for a graph G.
Ensure: Spanning tree T and node sets Vi, i = 1, 2, . . . , `, that identify the chain structure

of the graph. Returns ` = 0 if the graph is not (semi-)chained.
1: ` = 0
2: for k = 1, 2, . . . , n do
3: Construct the spanning tree T (k) starting at vertex vk.
4: Determine the chain structure Vi, i = 1, 2, . . . , `(k), of T (k).
5: if `(k) > ` and C(Tk) is compatible with the chain structure of Tk then
6: ` = `(k), T = T (k)

7: Store the sets Vi, i = 1, 2, . . . , `.
8: end if
9: end for

The following example illustrates that both the partitioning of the vertex
set V of a graph G = {V, E} and the number of partitions, `, depend on the
choice of the root of the spanning tree T as well as on the spanning tree itself.

Example 10 Consider the graph G with adjacency matrix

A =


0 1 0 0 0
1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
0 1 0 0 0

 .
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This graph G is not chained. The graphs defined by the adjacency matrices

A1 =


0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 0 0

 (4.1)

and

A2 =


0 1 0 0 0
1 0 1 1 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

 (4.2)

are spanning trees for G. Regard first the partitioning of the tree (4.1). Starting
with vertex v1, we obtain the vertex subsets V1 = {v1}, V2 = {v2}, V3 =
{v3, v5}, and V4 = {v4}. Thus, ` = 4. If we instead start with vertex v2, then
we get the sets V1 = {v2} and V2 = {v1, v3, v5}, V3 = {v4}, and ` = 3.

We now turn to the spanning tree (4.2). Letting V1 = {v1}, we obtain
V2 = {v2}, and V3 = {v3, v4, v5}. Hence, ` = 3. If we instead let V1 = {v2},
then V2 = {v1, v3, v4, v5} and ` = 2.

In what follows, we will need the notion of tree branches.

Definition 12 A branch for a tree T is a sequence of vertices starting at the
tree root and ending at a leaf. The length of a branch is the number of vertices
in the branch. A longest branch is a branch with maximal length.

A recursive procedure for determining all the longest branches of a tree is
presented by Algorithm 2.

It is natural to seek the root of a spanning tree with the deepest chain
structure on a long branch of any of the spanning trees of the graph. A heuristic
approach for doing this is described by Algorithm 3.

Example 11 We have already seen in Example 9 that the chain structure of
an undirected simple unweighted graph G = {V, E} cannot be uniquely de-
termined from the sets E and V. Here we provide another illustration using
spanning trees. The pictures in Figure 8 show the same graph. The graph in
Figure 8(b) is obtained by determining a spanning tree for the graph in Fig-
ure 8(a), starting from vertex v9, and then constructing C(T ) by adding the
missing arcs. Both graphs are strongly 4-chained.

The adjacency matrices for the graphs of Figure 8 are permutations of each
other. The blocks in matrix (3.1) for the two graphs are

A1 =

1 1
1 0
0 1

 , A2 =

[
1 0 1
0 1 1

]
, A3 =

1 0
1 1
0 1

 ,
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Algorithm 2 Determine all the longest branches of a tree.
Require: Tree T and starting vertex v. At the first call, the starting vertex is the tree root.
Ensure: Length λ of a longest branch and lists Li, i = 1, . . . ,m, of the vertices in each

longest branch.
1: L1 = ∅, m = 1, λ = 0
2: for c ∈ {children of vertex v} do
3: Call Algorithm 2 recursively, passing the same tree T and the vertex c, and receiving

the maximal length λ and the lists of vertices Li, i = 1, . . . ,m, between c and a leaf.
4: if λ > λ then
5: Li = Li, i = 1, 2, . . . ,m
6: λ = λ, m = m
7: else if λ = λ then
8: Lm+i = Li, i = 1, 2, . . . ,m
9: m = m+m

10: end if
11: end for
12: for i = 1, . . . ,m do
13: Add vertex v as first element of Li.
14: end for
15: λ = λ+ 1

Algorithm 3 Determine an approximation of the chain structure of a graph.

Require: Adjacency matrix A ∈ Rn×n for a graph G and starting vertex v.
Ensure: Spanning tree T and node sets Vi, i = 1, 2, . . . , `, that approximate the chain

structure of the graph.
1: Determine a spanning tree T for G starting at vertex v. Let the vertices of T have a

chain structure of length `.
2: repeat
3: Determine the longest branches for T (Algorithm 2).
4: ` = 0
5: for each longest branch do
6: Let c be the last vertex of the branch.
7: Determine a spanning tree T (1) for G starting at c, with chain structure of length

`1.
8: if `1 > ` then
9: ` = `1, T = T (1)

10: end if
11: end for
12: if ` > ` then
13: ` = `, T = T
14: end if
15: until ` < `
16: Determine the chain structure Vi, i = 1, 2, . . . , `, of the spanning tree T .

and

A1 =


1 1 0
1 0 0
0 1 0
1 1 1

 , A2 =

1 0
0 1
0 1

 , A3 =

[
1
1

]
,

respectively. We notice that the graph G is in fact 5-chained. This can be seen,
for example, by constructing the spanning tree starting from vertex v2.
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Fig. 8: Example 11: the two figures show the same graph. The layouts display
different chain structures.

1

2 3

4 5 6

Fig. 9: Example 12: a graph G without chain structure.

Example 12 Consider the graph G = {V, E} displayed in Figure 9. The adja-
cency matrix for G is given by

A =


0 1 1 0 0 0
1 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
0 1 1 1 0 1
0 0 1 0 1 0

 .

By removing edges denoted by dashed lines between the vertices v2 and v3, v4
and v5, as well as between the vertices v5 and v6, we obtain the graph G′ with
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the associated adjacency matrix

A′ =


0 1 1 0 0 0
1 0 0 0 1 0
1 0 0 1 1 1
0 0 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0

 .

This matrix is of the form (3.1). It follows that the graph G′ is chained. The
vertex set for G′ can be expressed as V = V1 ∪ V2 ∪ V3 with V1 = {v1},
V2 = {v2, v3}, and V3 = {v4, v5, v6}.

In Example 12, the graph G is approximated by a 3-chained graph. We con-
clude that G is a 3-semi-chained graph with ρ-anti-communities {v1}, {v2, v3},
and {v4, v5, v6}.

5 Position centrality and some applications

There are many ways to measure the importance of a vertex in a graph; see,
e.g., [11,13,25]. These measures often are referred to as centrality measures.
In this section, we are interested in determining a most “centrally located”
vertex in a graph. We call such a vertex a center vertex. For this purpose, we
introduce a new centrality measure, which belongs to the class of path-based
centrality measures. This class includes closeness and betweenness centrali-
ties. In fact, determining the most centrally located nodes is an extension of
closeness centrality.

Applications of the detection of a center vertex include:

– Information dissemination: we are interested in determining a vertex (the
center vertex) such that information from it can travel to all other vertices
in the least amount of time. Here we assume that the travel time is propor-
tional to the number of edges that have to be traversed from a center vertex
to the receiving vertices. In the context of social network theory, the im-
portance of a node for spreading information is often associated with the
betweenness centrality which assumes that the communication in a net-
work takes place through the shortest paths passing through this node.
However, it has been shown that in some circumstances the best spreaders
do not correspond to the most highly connected or central nodes. They
are often located within the core of the network, identified by using k-shell
decomposition analysis; see [23] and the references therein.

– City planning: let the edges of a graph represent the streets of a town. It
would be reasonable to allocate a fire station, police station, bus terminal,
or hospital at a center vertex of the graph.
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Definition 13 Let T be a spanning tree of the graph G, starting at a vertex
v, and let V1,V2, . . . ,V` the `-chained structure determined by the tree. The
position centrality Pp of v in the graph, where p ∈ R, is defined by

Pp(v) =

`−1∑
k=1

k(#Vk+1)p,

where (#Vi) denotes the cardinality of the set Vi. We refer to a vertex vc with
the smallest position centrality as a p-center vertex.

When p = 1, the position centrality is the sum of the lengths of the paths
from v to all the other vertices, so its minimization is equivalent to the maxi-
mization of the closeness centrality

C(vi) = n

∑
j 6=i

d(vi, vj)

−1 ,
where d(vi, vj) is the distance between vi and vj . For p = −1, position central-
ity is equivalent to harmonic mean distance; see [25, eq. (7.30)]. We emphasize
that position centrality depends on the chained structure, which contains im-
portant information about the network being analyzed.

Using positive p values different from 1 may help select central nodes with
different features. A value larger than 1 further penalizes the presence of a
large number of long walks, and selects a relatively long `-chained structure,
generally with maximal chain length, with sets Vk containing a small number of
vertices. This feature has the interesting side effect of reducing the bandwidth
of the adjacency matrix corresponding to the node ordering induced by the
chain structure.

On the contrary, p ∈ (0, 1) reduces the difference between the scores of
long and small walks, leading to a shorter chain structure, composed by large
node sets.

Example 13 Consider the graph G displayed in Figure 10. The position cen-
trality of a vertex in the graph can be computed by using the chained graph
starting from this vertex.

To compute the position centrality of vertex v2, we consider the span-
ning tree rooted at vertex v2. We obtain V1 = {v2}, V2 = {v3}, V3 = {v4},
V4 = {v1, v5, v8}, and V5 = {v6, v7, v9, v10}. Since the graph is unweighted, the
length between a vertex in Vi to a vertex in Vi+1 is one. It follows that the
1-position centrality of vertex v2 is

P1(v2) = 1 · 1 + 2 · 1 + 3 · 3 + 4 · 4 = 28,

while P5(v2) = 4828 and P1/5(v2) = 12.02.
We turn to the position centrality of vertex v4. Letting V1 = {v4}, we

obtain V2 = {v1, v3, v5, v8}, and V3 = {v2, v6, v7, v9, v10}. We have

P1(v4) = 1 · 4 + 2 · 5 = 14, P5(v4) = 7274, P1/5(v4) = 4.08.
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Similarly, we can compute the position centrality for all the other vertices of
the spanning tree. Vertex v4 has the smallest position centrality score for p = 1

5
and p = 1, while the center vertices for p = 5 are v7, v9, and v10.

12

3

4

5

6

7

8

9

10

Fig. 10: A spanning tree of G.

In Example 13, the center vertices lie on one of the longest branches of
the spanning tree. It is reasonable to assume that this is typical for many
trees. Hence, to approximate the center vertex, instead of evaluating the posi-
tion centrality for all the vertices, it is more efficient to compute the position
centrality for the vertices on the longest branches only. This suggests the it-
erative procedure described by Algorithm 4. The same approach can also be
used for determining the approximate top k p-center nodes, as described by
Algorithm 5.

It may be attractive to identify a tree with the shortest longest branch
and then determine a candidate for the central node on a longest branch. We
outline this approach, but hasten to add that it is only a heuristic, because a
center vertex is not guaranteed to lie on a longest branch.

The following example illustrates that the center vertex depends on the
spanning tree.

Example 14 Consider the undirected and unweighted graph G displayed in
Figure 11. Two shortest-path trees rooted at vertex v1 are shown in Figure 12.
The center vertices of the shortest-path tree in Figure 12(a) are the vertices
v2 and v3. Let v2 be the starting vertex. Then V1 = {v2}, V2 = {v1, v3, v4},
V3 = {v5}, and V4 = {v6}. The position centrality is P1(v2) = 8.
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Algorithm 4 Determine an approximate p-center node of a graph.

Require: Adjacency matrix A ∈ Rn×n for a graph G, exponent p ∈ R, starting vertex v,
set of nodes N to be discarded in the search.

Ensure: Approximate p-center node vc and minimal position centrality Pc = Pp(vc).
1: vc = v, Pc = ∞
2: repeat
3: done=TRUE
4: Determine a spanning tree T for G starting at vc.
5: Determine the longest branches for T (Algorithm 2).
6: for each longest branch do
7: for each node v in the branch do
8: Determine a spanning tree T for G starting at v.
9: Compute p-position centrality P = Pp(v).

10: if v /∈ N and P < Pc then
11: vc = v, Pc = P
12: done=FALSE
13: end if
14: end for
15: end for
16: until done

Algorithm 5 Approximate top k p-center nodes of a graph.

Require: Adjacency matrix A ∈ Rn×n for a graph G, exponent p ∈ R, starting vertex v,
integer k.

Ensure: Approximate top p-center nodes vi and minimal position
centralities Pi = Pp(vi), i = 1, . . . , k.

1: N = ∅
2: for i = 1, . . . , k do
3: call Algorithm 4 with input (A,p,v,N ) and output (vc,Pc)
4: vi = vc, Pi = Pc, N = N ∪ {vi}
5: v = vi
6: end for

Let, instead, v3 be the initial vertex. Then we obtain V1 = {v3}, V2 =
{v2, v5}, and V3 = {v1, v4, v6}. The position centrality is P1(v3) = 8. Both
vertices v2 and v3 have the smallest 1-position centrality of the vertices in the
graph.

Similarly, we find that the center vertex of the shortest-path tree in Fig-
ure 12(b) are the vertices v2 and v4. The position centrality of both these
vertices is 8, which is the smallest position centrality of all the vertices.

6 Numerical experiments

The algorithms discussed in the previous sections were implemented in the
MATLAB programming language. Large tests were executed on a Linux vir-
tual machine running on a Cisco UCSB-B480-M5 server based on Intel Xeon
Gold 6136 processors. The virtual machine is equipped with 32 cores and 128
Gbyte RAM.
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Fig. 11: An undirected and unweighted graph G
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Fig. 12: Two shortest-path trees of node v1; the center nodes of the (a) tree
are v2 and v3 and the center nodes of the (b) tree are v2 and v4

We first illustrate the use of the algorithms on a small graph, namely,
the one described in Example 11 and illustrated in Figure 8. The graphs in
Figure 13 display spanning trees starting at vertex v2 and at vertex v6 of the
graph G. The dashed lines denote edges that must be added to the tree T to
obtain the graph C(T ): it is seen that the added edges are compatible with
the chain structure of T , and the chain length is 5. Applying Algorithm 1
confirms that this length is maximal. Hence, G is 5-chained and all the sets Vi
determined by T are 0-anti-communities.

By computing the 1-position centrality of all nodes in G, one finds that the
corresponding central nodes are v4, v5, and v8. The nodes with the smallest 5-
position centrality are v2 and v3. Both of them are roots of a tree with maximal
chain length; Figure 13(a) illustrates this for v2. We applied Algorithm 3 for
approximating the chain structure length of the graph, and Algorithm 4 to
approximate its center vertex for p = 1. To investigate the global performance
of these methods, the algorithms were applied starting from each vertex of
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Fig. 13: Example 11: two spanning trees with maximal chain structure length.
The dashed edges are added to each tree T to obtain the graph C(T ).

the network; the results are displayed in Figure 14. It can be observed that
the chain structure length was not detected for each starting vertex, but the
computed approximations are accurate. On the contrary, Algorithm 4 always
determined one of the three correct center vertices.

0 2 4 6 8 10

4

5

detected chain length

exact

not exact

0 2 4 6 8 10

4

5

6

7

8

detected central vertex

exact

Fig. 14: Example 11: chain length (left) and central vertex (right) detected by
Algorithms 3 and 4, respectively, starting from node vk, k = 1, . . . , 10.

We now analyze the structure of three medium-sized networks, deriving
from well known data sets:

– autobahn (1168 nodes, 2486 edges) describes the German highway system
network, where the vertices are locations and the edges highways connect-
ing them. It is available at [4].
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– yeast (2361 nodes, 13828 edges) represents the protein interaction network
for yeast: the interacting proteins are connected by edges [22,28]. It is
available at [3].

– geom (7343 nodes, 23796 edges) was extracted from the computational
geometry database collaboration network geombib by B. Jones (version
2002). Nodes represent authors; the value of the entry (i, j) of the adjacency
matrix is the number of papers coauthored by authors i and j. The data
set is available at [3]. We will use the associated unweighted network.

The autobahn network is connected, but the networks yeast and geom are
not. We therefore considered the largest connected component, of 2224 and
3621 vertices, of the latter networks.

(a) (b)

Fig. 15: Maximal chain length spanning trees for the autobahn network (a)
and the geom network (b), starting at vertex 116 and 207, respectively. Each
tree T is completed by the additional edges that define C(T ).

As expected, Algorithm 1 reveals all three networks (autobahn, yeast, and
geom) to be semi-chained. The maximal chain length of a spanning tree for
each of the three graphs is ` = 63, 12, and 15, respectively. The structure of
a maximal chain length spanning tree for autobahn (starting at vertex 116)
and for geom (starting at vertex 207) are displayed in Figures 15 (a) and
(b). The additional edges which define C(T ), represented by dashed lines, are
compatible with the semi-chain structure of each tree T .

Figure 16 displays the adjacency matrix for the autobahn network after
applying two particular orderings of the nodes, deriving from the spanning
tree displayed in Figure 15(a). By listing the vertices in the same order as
they appear in the node sets Vi, i = 1, 2, . . . , 63, we obtain the spy plot in
Figure 16(a). In a spy plot, each nonzero entry of a matrix is represented as a
dot, and the quantity “nz” on the x-axis denotes the number of nonzeros. The
graph exhibits the form reported in (3.1), and shows that this ordering reduces
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Fig. 16: Spy plots (a) and (b) for the autobahn network (1168 vertices) after
applying two particular node orderings induced by a maximal chain length
spanning tree.

the bandwidth of the adjacency matrix, especially in the presence of a long
chain structure. By applying the vertex ordering proposed in Example 9, that
is, by listing first the nodes in the sets Vi with an odd index i and then those
with an even index, the adjacency matrix of G takes the sparsity structure
shown in the spy plot in Figure 16(b). It coincides with the form displayed in
equation (3.3), and shows that the graph is almost bipartite.

In view of the sparsity of the diagonal blocks, this spy plot signals the
presence of anti-communities in the network. Indeed, by computing the anti-
community score of the node sets Vi resulting from the application of Algo-
rithm 1 with starting vertex 116, represented in the graph if Figure 15(a), we
find that the autobahn network has 48 0-anti-communities (23 including just
one vertex) and 15 anti-communities, with maximal score ρ = 0.07.

The spy plots for the yeast and geom networks corresponding to the first
ordering are reported in Figure 17(a) and (b), respectively. They clearly show
that in both networks there are groups of vertices which do not interact, and
that there are no anti-communities.

Figures 18, 19, and 20 depict the results obtained by running Algorithm 3
to approximate the chain structure length, and Algorithm 4 to determine an
approximation of the center vertex for p = 1. The algorithms are initialized
using each node in the network as a starting vertex, in order to investigate
their best and worst performances. In real applications, the algorithms should
be initialized with a random starting vertex.

The graph in the left panel of each figure shows the maximal chain length
We see that for the autobahn network about half of the tests determine the
correct value 63, and the other runs obtain the close value 61. For the other
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(a) (b)

Fig. 17: Spy plots for the yeast (a) and geom (b) networks, after applying the
node ordering induced by the maximal length spanning trees starting at node
569 and 207, respectively.
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Fig. 18: autobahn network (1168 vertices): chain structure length detected by
Algorithm 3 (a), and relative error in the minimal position centrality detected
by Algorithm 4 (b), starting from each node in the network.

two networks, Algorithm 3 is very accurate, missing the correct chain length
by one unit in just a few cases.

The graphs (b) in Figures 18, 19, and 20, report the relative errors in the
approximations of the 1-position centrality by Algorithm 4 when compared
to the exact result. The (exact) minimal position centrality was computed by
Algorithm 1, which identified the following center vertices for the three test
networks:



28 Anna Concas* et al.

0 500 1000 1500 2000

11

12

exact

not exact

(a)

0 500 1000 1500 2000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b)

Fig. 19: yeast network (2224 vertices): chain structure length detected by Al-
gorithm 3 (a), and relative error in the minimal 1-position centrality detected
by Algorithm 4 (b), starting from each node in the network.
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Fig. 20: geom network (3621 vertices): chain structure length detected by Al-
gorithm 3 (a), and relative error in the minimal 1-position centrality detected
by Algorithm 4 (b), starting from each node in the network.

– vc = 698, with P1(vc) = 13954, for autobahn;
– vc = 518, with P1(vc) = 6914, for yeast;
– vc = 20, with P1(vc) = 11736, for geom.

We see that the position centrality was accurately estimated in most cases.
The relative error for autobahn exceeds 15% only for a small number of starting
vertices, while it is always below 16% for yeast, and 8% for geom.

To illustrate the differences between the center vertex individuated by the
position centrality, as defined in Definition 13, and other centrality measures,
we consider a real-world data set concerning air transport management.
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The network is determined by domestic airlines between 164 cities in the 48
contiguous states in the US in 2019. It is reported by the Bureau of Transporta-
tion Statistics of the US Department of Transportation [29]. By using cities
as nodes and airlines between cities as edges, we construct an undirected and
unweighted network with adjacency matrix A ∈ R164×164. We determine the
center vertex of this network by three different methods: subgraph centrality,
eigenvector centrality based on the computation of the Perron vector, and the
position centrality described in this paper.

The idea behind the subgraph centrality, introduced by Estrada and Ro-
driguez-Velazquez [16], consists of characterizing the importance of a node in
all subgraphs in a network by considering its participation in all closed walks
starting (and ending) at it. More precisely, the subgraph centrality for the
node i, in a network described by the adjacency matrix A, is the i-th diagonal
entry of the exponential of A, that is, it is given by

eT
i exp(A)ei,

where ei denotes the i-th column of the identity matrix.
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Fig. 21: domestic airlines network (164 vertices): chain structure length de-
tected by Algorithm 3 (a), and relative error in the minimal position centrality
detected by Algorithm 4 (b), starting from each node in the network.

The eigenvector centrality was introduced by Bonacich as a measure of the
influence a node has in a network [5]. The i-th entry of the principal eigenvector
q1 of the adjacency matrix A of a graph is known as the eigenvector centrality
of node i. Typically, q1 is normalized and, by the Perron-Frobenius theorem,
it can be chosen so that all of its components are nonnegative.

The node identified by both the subgraph centrality and the eigenvector
centrality is New York City, one of the largest commercial centers of the US.
The center vertex determined by the position centrality is located at Las Vegas.
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network deg btwin prank sgcen eig P1 P5 P1/5

autobahn 693 219 693 693 219 698 565 693
yeast 535 138 1338 442 427 518 258 273
geom 20 956 2967 79 956 20 655 43
airlines 79 79 79 104 104 79 84 79

Table 1: Central nodes for the networks considered in the paper, according
to different centrality measures: degree (deg), betweenness centrality (btwin),
PageRank (prank), subgraph centrality (sgcen), eigenvalue centrality (eig),
and position centrality Pp, for p = 1, 5, 15 .

Indeed, given its position and connections, it is easy to travel from Las Vegas
to any other town.

For completeness, we report in Figure 21 the results obtained by running
Algorithm 3 to approximate the chain structure length, and Algorithm 4 to
determine an approximation of the center vertex. We see that in this case Al-
gorithm 3 is not very accurate, but the network is too small for the experiment
to be of significance. On the contrary, the center node is determined with high
accuracy.

Finally, Table 1 reports the central nodes for the networks autobahn, yeast,
geom, and airlines, according to various centrality indices. Position centrality,
with p = 1, 5, 15 , is compared to the degree of a node, betweenness central-
ity [25], PageRank [26], subgraph centrality, and eigenvector centrality. We
note that for the autobahn network P1/5, the degree, the PageRank, and the
subgraph centrality agree in the determination of the center node. For airlines
most of the methods agree, with the exception of subgraph and eigenvector
centrality, which identify the same node, and P5. In most cases, different indices
select different center vertices, illustrating that they take different features of
the network into consideration. We emphasize the fact that the position cen-
trality associates to a center vertex a hierarchy of the nodes, namely, the chain
structure, which contains additional strong information about the topology of
the network.

7 Conclusion

The notions of chained and semi-chained graphs, as well as of center nodes,
are introduced. Their properties and use to analyze networks are discussed,
and algorithms for approximating both the chained structure of a graph and
its center nodes are presented.
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