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Abstract

The need to determine the structure of a graph arises in many appli-
cations. This paper studies directed graphs and defines the notions
of `-chained and {`, k}-chained directed graphs. These notions reveal
structural properties of directed graphs that shed light on how the
nodes of the graph are connected. Applications include city planning,
information transmission, and disease propagation. We also discuss the
notion of in-center and out-center vertices of a directed graph, which
are vertices at the center of the graph. Computed examples provide
illustrations, among which is the investigation of a bus network for a city.
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1 Introduction

A complex system that is composed of separate items that are interconnected
in some way can be modeled by a network. Networks are represented by graphs,
which are made up of nodes and edges. The latter connect the nodes. Networks
arise in many areas of science and engineering, such as biology, communication,
transportation, and social media; see e.g., [9, 22] for discussions of these and
many other applications.

The edges in a network may have weights, which are real values and gener-
ally positive, and may measure the strength of the interaction between linked
nodes. The connections may have a direction. A graph is referred to as undi-
rected if all edges are undirected, i.e., they are “two-way streets;” a graph with
at least one directed edge (which can be thought of as a “one-way street”) is
said to be directed. We are concerned with directed unweighted graphs without
self-loops. Thus, all edges have the same weight (which we set to one), and
there are no edges from a node back to itself.

A considerable number of mathematical and computational methods for
studying networks have been developed. Among the aims of network analysis
is the identification of the most important nodes or edges of a graph by using
the notion of centrality, which first arose in the context of social science, or to
determine the structure of the underlying graph; see, e.g., [6, 7, 9, 10, 22] for
many examples.

A fundamental topological property of a graph, which will be briefly
recalled in Section 2, is multipartivity. The nodes in an m-partite graph can
be split into m disjoint subsets Vi, i = 1, 2, . . . ,m, called partite sets, with
connections occurring only between the subsets, but not within the subsets.
When m = 2, the graph is said to be bipartite. A refinement of bipartivity
for undirected graphs, referred to as the chained structure of the graph, was
introduced in [5]. The chained structure characterizes undirected multipar-
tite graphs; an m-chained graph has only edges between nodes that belong to
“subsequent” partite sets Vi and Vi+1, i = 1, 2, . . . ,m − 1 (and vice versa).
This paper extends the notion of chained graphs from undirected graphs, dis-
cussed in [5], to directed graphs. The chained structure reveals the “depth” of
a graph, i.e., how many steps it may take to go from a specified node to any
other node, by following edges along their direction.

In [5], we used chained graphs to identify central nodes by introducing the
position centrality measure for nodes of an undirected graphs. This notion is
a generalization of closeness centrality. Central nodes are identified by their
location in the chained structure. For an overview of other centrality measures;
see [3, 10, 12]. This paper generalizes position centrality to directed graphs.
Specifically, for directed graphs that have directed spanning trees, we define
in-position and out-position centralities of a node by examining two different
types of directed spanning trees associated with the graph; see [15] for a discus-
sion on directed spanning trees. These centrality concepts shed light on the ease
of communication within a network. In the two sections devoted to numerical
examples, we compare them to other existing centrality measures. In general,
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it is impossible to state which centrality measure is the best, as the concept
of centrality takes different meanings in different applications. What we show
is that position centrality, by varying the value of the parameter on which it
depends, is able to spot specific aspects of a network that are not detected by
traditional measures, and that depend upon the underlying chained structure.

The identification of the chained structure of a directed graph also can
be useful for detecting the presence of anti-communities, i.e., node subsets
that are loosely connected internally, but have many external connections
with the rest of the graph. Several methods have been developed to identify
anti-communities in undirected graphs; see [4, 11, 13]. The relation between
clustering and community detection in directed graphs has been discussed in
[18]. In [5], we illustrated how the chained structure may be used for introduc-
ing a density measure for computing an “anti-community score” for undirected
graphs. We extend this measure to directed graphs in the present paper. To
the best of our knowledge, while the identification of anti-communities has
been studied in the literature [11] (see also [4, 13]), the identification of near-
anti-communities (which are associated with a small anti-community score)
has not been discussed yet.

This paper is organized as follows. Section 2 introduces notation and dis-
cusses general properties of graphs that will be used later. Directed chained
graphs are defined in Section 3. They can be studied with the aid of directed
spanning trees. This is discussed in Section 4. The chained structure naturally
leads to the concept of position centrality, defined in Section 5. Nodes with
the largest position centrality are referred to as central nodes. Some data sets
deriving from real-world applications, including a social network, are analyzed
in Section 6. Section 7 sheds light on the properties of center nodes by consid-
ering a case study concerning a bus transportation network. Finally, Section
8 contains concluding remarks.

2 Notation and some properties of graphs and
networks

A network can be represented by a graph G = {V, E}, where V = {vi}ni=1 is
a set of nodes, or vertices, and E = {ei}mi=1 a set of edges, which connect the
nodes. Two nodes vi and vj , for i 6= j, are said to be adjacent if there is an
edge from node vi to node vj . In this context, an undirected edge between the
nodes vi and vj points both from vi to vj and from vj to vi. The node vi is
said to be connected to the node vj if there is a path from vi to vj , that is,
if there is a sequence of edges {ers}ks=1 such that er1 originates from vi, erk
points to vj , and if ers points to v`, then ers+1

starts from the same node for
s = 1, 2, . . . , k− 1. A cycle is a path that starts and ends at the same node vi.

An undirected graph is connected if each pair of distinct nodes is connected
by a path. A directed graph is said to be strongly connected if for each vertex
pair (vi, vj) the node vi is connected to the node vj , and the node vj is con-
nected to vi. A directed graph is said to be semi-connected if for each vertex
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pair (vi, vj) either the vertex vi is connected to the vertex vj , or vj is connected
to vi. A directed graph is weakly connected if there is a path between each ver-
tex pair (vi, vj) in the underlying undirected graph, that is, in the undirected
graph obtained by replacing all directed edges by undirected ones. We refer to
Estrada [9] and Newman [22] for discussions of graphs and their properties.

An unweighted graph G with n vertices can be represented by an adjacency
matrix A = [aij ]

n
i,j=1 with aij = 1 if there is an edge from vertex vi to vertex

vj ; otherwise aij = 0. Since an undirected edge can be thought of as being
made up of two directed edges (in opposite directions), the adjacency matrix
of an undirected graph is symmetric; the adjacency matrix of a directed graph
is nonsymmetric.

Multipartivity and, in particular, bipartivity are fundamental topological
characteristics of graphs that model interactions between different types of
objects. Bipartite graphs contain vertices that can be partitioned into two
disjoint vertex subsets V1 and V2, such that there are no connections between
vertices in the same subset. Assume that the n vertices of a bipartite graph G
are separated so that the first n1 vertices make up the vertex set V1 and the
remaining n2 = n−n1 vertices make up the vertex set V2. Then the adjacency
matrix A of G is of the form

A =

[
O C1

C2 O

]
, (2.1)

where C1 ∈ Rn1×n2 , C2 ∈ Rn2×n1 , and O denotes a zero-matrix of suitable
order. If the graph G is undirected, then C2 = CT

1 , where the superscript T

denotes transposition.
In undirected `-chained graphs, the nodes are divided into ` disjoint subsets

V = V1 ∪ V2 ∪ · · · ∪ V` (2.2)

so that there are edges only between nodes belonging to “adjacent” node sets,
that is, all edges from a node in Vi point to a node in Vi+1 or in Vi−1 for some
i. This kind of partitioning is discussed in [5].

3 Directed `-chained graphs and their
adjacency matrices

The directed chained graphs introduced in this section generalize the notion
of undirected chained graphs defined in [5].

Definition 1 A directed graph G = {V, E} is said to be directed `-chained, with
initial vertex vi, if the set of vertices can be subdivided into ` disjoint non-empty
subsets V1,V2, . . . ,V`, see (2.2), such that vi ∈ V1 and all edges from vertices in the
set Vj point to vertices in the set Vj+1 for j = 1, 2, . . . , `− 1, where the chain length
` is the largest number of vertex subsets Vj with this property. The vertex subset
Vj+1 is said to be adjacent to the vertex set Vj .
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The chain length ` of a directed `-chained graph may depend on the choice
of the initial vertex vi. After a suitable permutation of the nodes, the adja-
cency matrix A of a directed `-chained graph G = {V, E} becomes upper block
bidiagonal with zero diagonal blocks,

A =



O A1

O A2

O A3

. . .
. . .

O A`−1
O


, (3.1)

where the submatrix Ai ∈ Rni×ni+1 describes the connections from vertices in
Vi to vertices in Vi+1, for i = 1, 2, . . . , `− 1.

1

2

3 4

Fig. 1 A directed 3-chained graph G with initial vertex v1.

Example 3.1 Consider the graph of Fig. 1. This is a 3-chained graph with the chained
node sets V1 = {v1, v2}, V2 = {v3}, and V3 = {v4}. The initial node can be chosen
to be either v1 or v2. The adjacency matrix is

A =


0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,
where we can choose the submatrices

A1 =

[
1
1

]
∈ R2×1, A2 =

[
1
]
∈ R1×1.

Assume that a graph is known to be directed `-chained for some ` ≥ 1,
but that the value of ` is not known. Moreover, let a permuted version of
the matrix (3.1) be known (for some unknown value of `). Thus, the available
adjacency matrix is of the form

Ã = PAPT ,

where P is a permutation matrix that modifies the vertex ordering. Given
the adjacency matrix Ã, we are interested in determining the vertex subsets
V1,V2, . . . ,V` in Definition 1, as well as the number of sets ` ≥ 1. A method
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for determining if a directed graph is `-chained and partitioning the nodes into
subsets is described by Algorithm 1. Given an adjacency matrix A of a directed
graph, the first node subset V1 is obtained by considering the column indices
j such that Aij = 0 for each row index i; see line 1 of the algorithm. Then
the other vertex subsets are determined by identifying the blocks in A that
describe connections with nodes in the preceding node subset (line 6). If it is
not possible to determine the first vertex set, or if during the process it results
that some node is connected to a vertex in a preceding subset, then the graph
in not `-chained. This process gives a constructive proof of the following result.

Proposition 1 Let G = {V, E} be a directed graph. Then it is possible to detect if
it possesses an `-chained structure and determine the number of subsets, `, as well
as the vertex set partitioning V = V1 ∪ V2 ∪ · · · ∪ V`.

Algorithm 1 Identification of a directed `-chained graph.

Require: Adjacency matrix A = [aij ]
n
i,j=1 ∈ Rn×n

Ensure: Node sets Vi, i = 1, 2, . . . , `, that determine the chained structure, if
it exists

1: V1 = {j : aij = 0, ∀i = 1, 2, . . . , n}
2: if V1 = ∅ then return ”the graph is not `-chained”
3: ` = 0
4: while V`+1 is not empty do
5: ` = `+ 1
6: V`+1 = {j : aij = 1, for i ∈ V`}
7: if aij = 1 for a pair (i, j) ∈ V`+1 × Vk, k = 1, . . . , `+ 1 then
8: return ”the graph is not `-chained”
9: end if

10: end while
11: if there are nodes left then return ”the graph is not `-chained”

The definition of directed `-chained graphs is quite restrictive. To be able to
discuss properties of a larger set of directed graphs, we relax the requirements
of Definition 1 to allow edges between vertices in the vertex subset Vi to vertices
in vertex subset Vj for some j ≤ i with j not much smaller than i.

Definition 2 The directed graph G = {V, E} is said to be directed {`, ki}-chained
with initial vertex vi if it has the chained structure described in Definition 1 with the
extension that edges from vertices in the set Vj are allowed to point to vertices in the
sets Vmax{j−ki,1}, . . . ,Vj ,Vj+1 for j = 1, 2, . . . , ` − 1 and some ki ≥ 0. The integer
ki, which we refer to as the lower bandwidth, is the largest integer with this property.
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We note that Definition 1 corresponds to the situation when ki = −1 for
all i in Definition 2.

Definition 3 The minimal lower bandwidth, k, of a directed chained graph is defined
as

k = min
vi∈V

ki, (3.2)

where the minimum is over all initial vertices vi in the vertex set V ⊂ V that gives
maximal chain length `. When k is the minimal lower bandwidth, the graph is said
to be directed {`, k}-chained.

The {`, k}-chained structure is quite general. We conjecture that any
weakly connected graph with n nodes is {`, k}-chained for some n ≥ ` >
k ≥ −1. A small value of k indicates that information in the graph flows
in a preferred direction, with small back propagation. This structure can be
investigated by means of spanning trees as described in Section 4.

Example 3.2 Consider the directed graph G shown in Fig. 2. It is a directed {5, 2}-
chained graph with initial vertex v1. If one removes the edge from vertex v4 to v2, the
graph becomes a directed {5, 1}-chained graph with initial vertex v1. If one continues
by removing the edge from v3 to v2, then a directed 5-chained graph with the same
initial vertex is obtained.

1 2 3 4 5

Fig. 2 A directed {5, 2}-chained graph G with initial vertex v1.

Example 3.3 The adjacency matrix analogous to Equation (3.1) for a directed {`, k}-
chained graph G = {V, E} can be represented by a lower block Hessenberg matrix

A =



A11 A12

A21 A22 A23

...
...

. . .
. . .

Ak+1,1

...
. . .

. . .

Ak+2,2

. . .
. . .

. . . A`−1,`−1 A`−1,`
A`,`−k · · · A`,`−1 A`,`


, (3.3)

when the nodes are suitably ordered. Here the block Aij represents edges that point
from the vertex subset Vi to the vertex subset Vj . All superdiagonal blocks Ai,i+1 are
nonvanishing, because if all entries of the block Ai,i+1 were zero, then there would
be no edges from the vertex subset Vi to vertices in the subset Vi+1. But this would
contradict the fact that the graph G is directed {`, k}-chained.
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If the minimal lower bandwidth, defined by Equation (3.2), is k = 0, then
there is at least one edge from a node to another node in the same vertex
subset. The adjacency matrix corresponding to such a graph is upper block
bidiagonal when the nodes are suitably ordered. Similarly, a lower bandwidth
k = 1 indicates that when the nodes are suitably enumerated, the adjacency
matrix can be represented by a block tridiagonal matrix. More generally, a
small lower bandwidth (3.2) indicates that there only are edges between vertex
subsets Vj with close indices.

The following result shows that for strongly connected directed {`, k}-
chained graphs, directed cycles will be observed if k ≥ 2. For semi-connected
or weakly connected directed graphs, cycles are not guaranteed to exist.

Proposition 2 Let G = {V, E} be a strongly connected directed {`, k}-chained
graph with vertex partition V = V1 ∪ · · · ∪ V`. Assume there are no edges between
vertices belonging to the same vertex set and that k ≥ 2. Let ej,i ∈ E represent a
directed edge from vertex vj to vi, where vi ∈ Vi and vj ∈ Vi+s for 2 ≤ s ≤ k. Then
there exists at least one directed cycle that starts at vi, contains the edge ej,i, and
ends at vi. The possible minimum length of the directed cycle is s+ 1.

Proof Since the graph G is strongly connected and there are no edges between any
nodes in the same vertex subset, the shortest possible directed path from vertex vi
to vj has length s as shown below

vi → vi1 → · · · → vis−1
→ vj ,

where vit ∈ Vi+t for t = 1, 2, . . . , s − 1. Combining this path with the edge ej,i
determines a directed cycle of length s+ 1. �

Identification of the {`, k}-chained structure of a directed graph (if present)
sheds considerable light on properties of the graph, including the presence of
anti-communities. Anti-communities are vertex subsets Wi, i = 1, 2, . . . , q, of
V such that there are many fewer edges from nodes in Wi to nodes in Wi,
than from nodes in Wi to nodes in Wj for j 6= i. For instance, the node
subsets Vj of an `-chained graph are anti-communities. Recent discussions on
anti-community detection for undirected graphs can be found in [4, 11, 13].
There are several methods and measures that allow one to identify communities
or clusters, such as the intra-cluster density which, for undirected graphs, is
defined as the ratio of the number of internal edges and the number of all
possible internal edges; see [14]. An analogous density measure for computing
the anti-community score for undirected graphs was introduced in [5]. Here,
we extend this measure to directed {`, k}-chained graphs.

Definition 4 The anti-community score ρ ∈ [0, 1] for a node subset Vi of the node
set V of a directed {`, k}-chained graph is the ratio of the number of directed edges
between the vertices in Vi and the total possible number of directed edges between
them. An anti-community with score ρ is said to be a ρ-anti-community.
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We remark that the anti-community score aims at identifying an approx-
imate anti-community as a node set for which ρ takes a small value. A large
value of ρ does not necessarily identify a community, because it does not con-
sider the connections between the nodes in Vi and those not contained in
Vi.

Example 3.4 For directed `-chained graphs with node subset partitioning (2.2), the
subsets Vi, for i = 1, 2, . . . , `, are 0-anti-communities, because there are no internal
edges. For a directed {`, k}-chained graph described in Definition 2, the subset Vi
has a positive anti-community score ρi when it has internal edges. If ρi is small, then
the subset Vi may be considered as an approximate anti-community.

4 Directed chained graphs and directed
spanning trees

The chained structure of a spanning tree T for an undirected graph G is used
in [5] to determine a chained structure for a graph G, if such a structure
exists, and to approximate a graph without a chained structure by a graph
with such a structure. In this section, we consider directed graphs that have
directed spanning trees. We remark that not all directed graphs have a directed
spanning tree. The directed spanning trees are employed to partition the node
set V into subsets Vi that determine directed `-chained graphs; cf. (2.2). This
approach to partition the node set V is applied to partitioning node sets of
directed graphs that have a directed spanning tree, but do not possess a chained
structure, and provides an approach to approximate a directed graph G without
chained structure by a directed graph with chained structure.

We first briefly review results for undirected graphs. Let G = {V, E} be an
undirected graph. A spanning tree for G is a subgraph T = {V, E ′} that is a
tree and contains all the vertices of G; see, e.g., [5, 8, 22]. A spanning tree T is
not uniquely determined by G and, in particular, depends on the chosen initial
vertex of the tree, the so-called root.

When the graph G is directed, two different types of spanning directed
trees, the out-tree (or arborescence) and the in-tree, can be defined; see [8].
We will employ both these directed trees.

Definition 5 An out-tree rooted at node vi for a directed graph G = {V, E} is a
subgraph T i

out = {V, E ′} of G that is a tree with the same vertices as G, and such
that for every vertex vj , for j 6= i, there is only one directed path starting at vi and
ending at vj in the tree.

Definition 6 An in-tree rooted at vi for a directed graph G = {V, E} is a subgraph
T i
in = {V, E ′} of G that is a tree with the same vertices as G, and such that for every

vertex vj , for j 6= i, there is only one directed path from vj to vi in the tree.
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In an out-tree, information may flow from the root to each vertex in the
graph, while in an in-tree information may flow from any vertex to the root.
In the first case, the root is a good source of information for the nodes of the
graph; in the second case, the root is a good receiver.

Out-trees and in-trees exist for every vertex of a directed graph only if the
graph is strongly connected. Any vertex in a semi-connected graph belongs to
an out-tree or an in-tree. This follows from Proposition 3 below. We remark
that this property is not guaranteed to hold for a weakly connected graph.

Proposition 3 Let G = {V, E} be a semi-connected directed graph. Then the graph
G has at least one out-tree and one in-tree.

Proof Let vi, vj ∈ V be arbitrary distinct vertices. Then either vi is connected to vj ,
or vj is connected to vi. Assume there is a directed path P from vi to vj . If all the
vertices of G except for vi and vj are on the path P , then P is an out-tree rooted at
vi and an in-tree rooted at vj .

Let u be a vertex of G that is not on the path P . Assume that there is neither a
directed path from u to vi nor a directed path from vj to u; otherwise, we extend P
by including u as a root. Then E contains directed paths from vi to u and from u to
vj . Therefore an out-tree rooted at vi and an in-tree rooted at vj are obtained. �

Proposition 4 Let G be a directed graph. If the vertex vi of G is the root of both
an out-tree T i

out and an in-tree T i
in of G, then the graph G is strongly connected.

Proof Let vi satisfy the assumption of the proposition. Then for any vertex vj , j 6= i,
there is a directed path from vi to vj and vice-versa. Hence, for every pair of vertices
(vk, vj), k, j 6= i, there is a directed path from vk to vj passing through vi and vice
versa. It follows that the directed graph G is strongly connected. �

Each directed spanning tree has a directed `-chained structure (2.2). For
out-trees, the root of the tree is the only vertex in the first set V1 of the
chained structure, and the partition of the vertex set V is determined by the
relation between the vertices of the tree. Thus, the vertex set V2 contains the
children of the root and, in general, the vertex set Vi contains the children of
the vertices in Vi−1, i = 2, 3, . . . , `. For an in-tree, the root belongs to the last
vertex set V`, and the partition of the vertex set is determined by following the
direction of the edges backwards until one reaches the set V1, which contains
the leaves farthest away from the root.

Remark 4.1 Let G = {V, E}, with V = V1 ∪ V2 ∪ · · · ∪ V`, be an `-chained graph.
A directed out-tree for G does not exist, for example, if the first set V1 contains
more than one node. Similarly, a directed in-tree does not exist when the last set V`
contains more than one node.
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The process of generating directed spanning trees for a directed graph is
illustrated in the following example.

Example 4.1 Consider the directed graph G shown in Fig. 3. It is semi-connected.
The out-tree T 1

out and the in-tree T 3
in rooted at v1 and v3, respectively, are displayed

in Fig. 4. These are the only out-trees and in-trees for the graph G. Their directed
chained structure is illustrated in Fig. 5.

1 2 3

4 5 6

Fig. 3 A directed graph G.

1 2 3

4 5 6

1 2 3

4 5 6

Fig. 4 An out-tree T 1
out with root v1 for the graph G in Fig. 3, and an in-tree T 3

in rooted
at v3.

The chained structure of a directed spanning tree T of G can be used
to detect, or approximate, the directed chained structure of G. The chained
structure of G might not be unique, as it depends on the starting vertex and
the directed spanning tree T .

Definition 7 Let T = {V, E ′} be an out-tree (or in-tree) for the graph G. A directed
`-chained vertex set decomposition for T is said to be a directed `-chained vertex set
decomposition for G. We will refer to leaves of T as leaves of G.

Example 4.2 Consider the partition of the directed tree T 1
out in Example 4.1. Starting

with the vertex v1, we obtain the vertex sets V1 = {v1}, V2 = {v2}, V3 = {v3, v5},
and V4 = {v4, v6}. Thus, ` = 4; see Fig. 5. The graph may have other directed `-
chained partitions that are not determined by using spanning trees. For example,
starting with vertices v1, v4, we obtain the partition V1 = {v1, v4}, V2 = {v2, v5},
and V3 = {v3, v6}, and ` = 3.
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1

2

3 5

4 6

1 4 6

2 5

3

Fig. 5 The directed chained structure of the spanning trees T 1
out and T 3

in in Fig. 4.

Now consider the in-tree T 3
in in Fig. 4. In this case, V1 = {v1, v4, v6}, V2 =

{v2, v5}, V3 = {v3}, and ` = 3.
We have already mentioned that some semi-connected graphs may not allow an

`-chained partitioning for an arbitrarily chosen initial vertex. For example, vertex v2
in Example 4.1 neither can be the root of an out-tree nor of an in-tree that span the
graph.

Let D = E \ E ′ be the set of the edges in G that are not in T , and let C(T )
denote the graph obtained by adding the edges in D to the spanning tree T .
The graph C(T ) coincides with G and inherits the chained structure of T .

Definition 8 A directed graph G is said to be compatible with a spanning tree T if
all the edges in D are compatible with the chained structure of T , that is, if for each
edge ej ∈ D there is an index 2 ≤ i ≤ `− 1 such that ej connects a vertex in Vi to a
vertex in Vi+1.

If G is compatible with T , then the graph G = C(T ) is directed `-chained.
If instead there is at least one edge connecting a vertex in Vi to a vertex in
Vi−k, for i = k + 1, k + 2, . . . , `, and k ≥ 0 is the maximal number with this
property, then the graph G = C(T ) is directed {`, k}-chained.

The graphs C(T 1
out) and C(T 3

in), obtained by adding the missing edges to
the spanning trees of Fig. 5, are displayed in Fig. 6. The former graph is
{4, 1}-chained and the latter one is {3, 1}-chained.

5 Position centrality and some applications

The notion of position centrality for vertices of an undirected network was
introduced in [5]. It is a generalization of closeness centrality. This section
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1

2

3 5

4 6

1 4 6

2 5

3

Fig. 6 The directed graphs C(T 1
out) and C(T 3

in) corresponding to the directed spanning
trees in Fig. 5. The edges in D = E \ E ′ added to the trees are drawn in red.

generalizes position centrality to directed graphs by defining the in-position
and out-position centralities of a node. The in-closeness centrality of a node
measures how close this node is to those it is receiving information from, while
the out-closeness centrality of a node shows how close the node is to the nodes
it is sending information to.

Let (#Vi) denote the number of vertices in the set Vi.

Definition 9 Let us assume that an out-tree Tout = {V, E ′} rooted at the node v
for the directed graph G exist. Moreover, let V1,V2, . . . ,V` be the directed `-chained
structure, starting at vertex v, determined by the tree. For a fixed p ∈ R, the out-
position centrality of v is defined as

P out
p (v) =

`−1∑
k=1

k(#Vk+1)p.

We refer to a vertex vc with the smallest out-position centrality as a p-out-center
vertex.

Definition 10 Let us assume that an in-tree Tin = {V, E ′} rooted at the node v
for the directed graph G exist. Moreover, let V1,V2, . . . ,V` be the directed `-chained
structure, ending at vertex v, determined by the tree. For a fixed p ∈ R, the in-
position centrality of v is defined as

P in
p (v) =

`−1∑
k=1

k(#V`−k)p.

We refer to a vertex vc with the smallest in-position centrality as a p-in-center vertex.

The in/out-position centralities depend on the spanning tree chosen. They
can be defined for every node only if the directed graph is strongly connected.
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The out-center vertex can be described as an “information transfer station”,
such that it can “easily” send information to all the other vertices in the
graph. A similar interpretation holds for the in-center vertex, which acts as
an information sink. The following example illustrates how the in/out-position
centralities of a vertex can be computed by using the chained structures
starting from the vertex.

Example 5.1 Consider the strongly connected directed graph G in Fig. 7. To compute
the out-position centrality of vertex v3, we identify an out-tree rooted at v3 letting
V1 = {v3}, V2 = {v4, v5}, and V3 = {v1, v2}. The 1-out-position centrality of vertex
v3 is

P out
1 (v3) = 1 · 2 + 2 · 2 = 6,

while P out
1/2 (v3) = 4.24 and P out

5 (v3) = 96.
We turn to the in-position centrality of vertex v2. Consider the in-tree rooted at

v2 with vertex set partitioning V1 = {v3, v4}, V2 = {v1, v5}, and V3 = {v2}. We have

P in
1 (v2) = 1 · 2 + 2 · 2 = 6, P in

1/2(v2) = 4.24, P in
5 (v3) = 96.

Since the graph G is strongly connected, we can compute the in/out-position cen-
tralities for all the other vertices similarly. When p = 1

2 and p = 1, the vertex v3 has
the smallest out-position centrality. This indicates that v3 is the out-center vertex.
The in-center vertices are v2 and v5 for p = 1

2 and p = 1. When p = 5, the out-center
vertices are v1 and v5, while the in-center vertex is v1.

1 2

34

5

Fig. 7 A strongly connected directed graph G.

In a semi-connected directed graph, the vertices can be divided into three
subsets: O, which contains vertices connected to every other vertex in the
network, I, whose elements are vertices to which every vertex can send
information, and M, which contains intermediate vertices. There may be a
non-empty intersection between the sets O and I. Out-position centrality is
defined only for vertices in O, while in-position centrality can be computed
for vertices in I. Since every vertex belongs to at least one spanning tree,
semi-connected graphs are directed `-chained or directed {`, k}-chained.

Vertices for weakly connected directed graphs also can be divided into the
above three subsets O, I, and M. However, the sets O and I may both be
empty, since out/in-trees are not guaranteed to exist. Hence, weakly connected
directed graph may not possess a chained structure.
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6 Some examples

This section describes a few examples concerned with directed graphs. For each
graph, we analyze the presence of anti-communities by identifying its directed
chained structure. The out/in-center vertices are identified by computing the
smallest out/in-position centralities. Knowledge of the chained structure is
beneficial in the following contexts:

� Information dissemination in a social network: we are interested in deter-
mining directed `-chained or directed {`, k}-chained structures with initial
vertex (center vertex) such that information from this node can reach all
other individuals in the least amount of time, where we assume that the time
is proportional to the path length. Similarly, we may be interested in deter-
mining which individual(s) can collect information from all other vertices in
the least amount of time. Moreover, in a directed {`, k}-chained graph, the
presence of an edge ej,i from vertex vj ∈ Vj to vertex vi ∈ Vi, for i < j,
indicates the possibility of feedback of the information from vj to vi. The
minimal lower bandwidth k shows the minimal length of the path from vj
to vi.

� Prevention of the spread of an infectious disease: let the edges of a directed
chained graph represent the spread of an infectious disease among subjects
that are represented by nodes. An edge ej,i from vertex vj ∈ Vj to vertex vi ∈
Vi, for i < j, represents a secondary infection of vi from vj . It is reasonable
to prevent the spread of disease by detecting and possibly eliminating the
out-center vertex. In the context of COVID-19, it is important that out-
center vertices are vaccinated. Similarly, it can be important to protect an
in-center vertex from infection from other nodes. Vaccination may be one
way to achieve this.

To graphically illustrate the chained structures revealed by the model discussed
above, we first consider the following two small directed graphs:

� ibm32 (32 vertices, 126 edges): collected from the IBM 1971 conference
advertisement. After removing self-loops, the graph has 94 edges. It is
available at [26].

� n2c6b10, short for JGD Homology/n2c6-b10 (306 vertices, 330 edges): sim-
plicial complexes from homology by Volkmar Welker. There are 329 edges
after removing the self-loop. The graph is available at [27].

These networks are not social networks, but nevertheless will be seen to have
structure that can be studied with the concepts introduced in the present
paper. The network n2c6b10 is represented by a weighted graph. We consider
the corresponding unweighted graph obtained by setting all weights to 1.

Fig. 8 displays the out-tree T 20
out (left) and the in-tree T 20

in (right) for the
ibm32 network. Both trees are rooted at vertex v20 of the graph and have
maximal chained structure length ` = 7. The set C(T 20

out), which contains the
additional edges that are not in T 20

out, is shown on the left-hand side of Fig. 9.
It has {`, k}-chained structure with minimal lower bandwidth k = 4, that
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Fig. 8 Network ibm32: the out-tree (left) and the in-tree (right) rooted at vertex v20. These
trees have maximal chain length ` = 7.

is, edges in C(T 20
out) from vertices in the subset Vi are allowed to point to

vertices in the subsets Vi−4, . . . ,Vi,Vi+1 for i = 5, . . . , `. The right-hand side
of Fig. 9 displays the graph C(T 20

in ) with minimal lower bandwidth k = 4. We
conclude that the graph ibm32 is directed {7, 4}-chained with initial vertex
v20. Consider the chained structure determined by the in-tree T 20

in . There are
four 0-anti-communities (the first subset V1 contains only one vertex) and 3
anti-communities with scores ρ3 = 0.10, ρ4 = 0.11, and ρ5 = 0.06. Moreover,
since both the out-tree and in-tree are rooted at vertex v20, it follows from
Theorem 4 that the graph is strongly connected.

Fig. 9 Network ibm32: Both the sets C(T 20
out) (left) and C(T 20

in ) (right) has {`, k}-chained
structure with k = 4.

Starting from each vertex, an out-tree and an in-tree are constructed and
their associated chained structures are determined. Fig. 10 displays the chain
length ` and the lower bandwidth k of the {`, k}-chained structure associated
with the out-tree (left) and the in-tree (right) rooted at each vertex of the
graph ibm32. The property of “exact length” in the legend represents the
maximal chain length and the property “not exact length” indicates that the
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Fig. 10 Network ibm32: the chain length and lower bandwidth of the {`, k}-chained struc-
ture determined by the out-tree (left) and the in-tree (right) rooted at each vertex vj ,
j = 1, 2, . . . , 32.

chain length is not maximal. The symbol ◦ in the figure displays the chain
length of each structure as a function of the initial vertex vj , j = 1, 2, . . . , 32.
When the chain length is maximal, we use the symbol �.

The symbols ∗ and × display the lower bandwidth kj of the chained struc-
ture with initial node vj for j = 1, 2, . . . , 32; see Definition 2. The lower
bandwidths of the chained structure with the maximal chain length are dis-
played by ∗ symbols; for the other chained structures, the symbol is ×. Among
the lower bandwidths associated with the maximal chain length, the smallest
kj is the minimal lower bandwidth. Hence, Fig. 10 shows the maximal chain
length to be ` = 7 and the minimal lower bandwidth k = 4. It can be seen that
the maximal chain length and the minimal lower bandwidth are not achieved
for each starting or ending vertex.
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Fig. 11 Network ibm32: out-position centrality for p = 1 (left) and in-position centrality
for p = 1 (right) for each vertex vk, k = 1, 2, . . . , 32. The out-center vertices are v2, v3, and
the in-center vertex is v10.

The left-hand side of Fig. 11 displays the 1-out-position centrality, i.e., the
out-position centrality for p = 1, of each vertex of graph ibm32. The 1-in-
position centrality for each vertex is shown on the right-hand side of Fig. 11.
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The out-center vertices of the graph are v2 and v3, and the in-center vertex is
v10.

Fig. 12 displays the out-tree T 28
out with maximal chain length and its cor-

responding graph C(T 28
out) for the graph n2c6b10. We note that this graph is

directed {4, 0}-chained with initial vertex v28. Since the out-tree T 28
out is the

only spanning tree of n2c6b10, the initial vertex is the out-center vertex and
the graph is semi-connected. The graph n2c6b10 has three 0-anti-communities
and the node subset V2 is an anti-community with ρ2 = 0.04.

Fig. 12 Network n2c6b10: out-tree T 28
out and graph C(T 28

out).

Fig. 13 Network gre (1107 vertices): out-tree with root vertex 808 (left), and in-tree ending
at vertex 644 (right) with maximal chained structure length.

We now determine the directed chained-like structure and center vertices
for the medium-sized directed graph gre 1107 with 1107 vertices and 5664
edges. This graph arises from simulation studies in computer systems and
is available at [21]. We refer to the graph as gre. After removing self-loops,
this graph has 4557 edges. The out-tree T 808

out and in-tree T 644
in with maximal

chained structure length are displayed on the left and the right of Fig. 13,
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Fig. 14 Network gre (1107 vertices): the chain length and lower bandwidth of the chain-like
structure determined by out-trees (left) and in-trees (right) rooted at each vertex.

respectively. The graph C(T 808
out ) is {53, 4}-chained and the graph C(T 644

in )
has a {53, 5}-chained structure. The chain length and lower bandwidth of
{`, k}-chained structures starting and ending at each vertex of the graph gre
are shown in Fig. 14. Only one directed out-tree, T 808

out , and one directed
in-tree, T 644

in , are found to have maximal chain length. Their corresponding
{`, k}-chained structures have minimal lower bandwidth k = 4 and k = 5,
respectively; this is not visible in the figure because of the density of the
symbols. Hence, the graph gre is a directed {53, 4}-chained graph with initial
vertex v808. It has five 0-anti-communities and 48-anti-communities with the
minimal score ρ = 0.01 and maximal score ρ = 0.5. The graph gre is strongly
connected since each vertex has both out-trees and in-trees.
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Fig. 15 Network gre (1107 vertices): 1-out-position centrality (left) and 1-in-position cen-
trality (right) for each vertex. The out-center vertex is v400 and the in-center vertex is
v7.

The 1-out-position centrality and 1-in-position centrality of each vertex of
the graph gre are shown in Fig. 15. The out-center vertex is v400 with 1-out-
position centrality P out

1 (v400) = 10129, and the in-center vertex is v7 with
1-in-position centrality P out

1 (v7) = 9030.
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For the previous test networks, of small to medium dimesion, it was possible
to determine both a spanning out-tree and an in-tree. Now, we investigate
the presence of such spanning trees in larger networks, some of which are
extracted from the Stanford Large Network Dataset Collection (SNAP) [25].
The networks are the following

� twitter (3656 vertices, 188712 edges) available from [16], reproduces the
connections of some part of the Twitter social network;

� wikivote (8297 vertices, 103690 edges) nodes in the network represent
Wikipedia users and a directed edge from node i to node j represents that
user i voted on user j in an administrator election [25];

� gnutella (10879 vertices, 39994 edges) it is the p2pGnutella04 network from
[25];

� foldoc (13380 vertices, 120700 edges) is an on-line searchable dictionary [19]:
an edge from term i to term j exists in the network if in the FOLDOC
dictionary the term j is used to describe the meaning of term i. The network
is available at [23].

� math (13840 vertices, 195330 edges) is available from [25] and represents the
interactions on the stack exchange web site Math Overflow [20]. In particu-
lar, a direct edge is present between node i and node j if user i commented
on user j’s answer.

Table 1 displays, for each network, if a spanning out/in-tree exists, and the
values of ` and k in the corresponding {`, k}-chained structure.

Three of the above networks admit either a spanning out-tree or an in-
tree. Two of them do not, so we eliminated the out/in dangling nodes, that is,
vertices that do not have incoming edges or outgoing edges, respectively. This
pre-processing is reflected in a different number of nodes in columns 3 and 5,
than in column 2. The absence of dangling nodes is a necessary condition for
the existence of an out/in spanning tree, but not sufficient, as the results in
Table 1 confirm. The results show that there are real-world networks resulting
from important applicative settings that have a directed spanning tree and
that inherit from it a chained structure.

Table 1 The structure of a few large networks.

network nodes out-tree in-tree
nodes {`, k} nodes {`, k}

twitter 3656 3656 {13, 8} 3656 no tree
wikivote 8297 1368 {10, 9} 5162 no tree
gnutella 10879 4889 {26, 19} 4353 {12, 7}
foldoc 13380 13291 no tree 13291 {16, 13}
math 13840 3460 no tree 3460 {9, 5}

We now analyze in more detail the network twitter. To illustrate the differ-
ent center nodes determined by varying the value of p in Definitions 9 and 10,
we analyzed this graph for the p-values reported in the first column of Table 2.
It turns out that no vertex admits an in-tree, while most of the nodes (3485)
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have an out-tree. The table shows that different out-center vertices are iden-
tified when p varies, even if there is some stability for p between 0 and 1.
Both the depth ` and the minimal lower bandwidth k of the corresponding
{`, k}-chained structure can be seen to grow with p.

Table 2 Network twitter (3656 vertices): in the upper part of the table, we report the
p-out-center and the p-in-center vertices for different values of p; in the lower part, we show
the center vertices identified by other centrality measures. For each vertex we also report
the depth ` of the associated spanning tree and the minimal lower bandwidth k of the
corresponding {`, k}-chained structure.

p out-center {`, k}
-1 1768 {9, 7}

0.1, 0.5, 1 1324 {9, 7}
5 1990 {10, 7}
10 1006 {11, 9}

degree 751 {10, 8}
betweenness 1756 {10, 9}
PageRank 2356 {12, 10}

HITS (hubs) 751 {10, 8}
hub-cent. 751 {10, 8}

In the same table, we also report the out-center nodes identified by other
well-known centrality measures. The out-degree, betweenness centrality [22],
PageRank [24], and hubs score from HITS [17], have been computed by the
centrality function of Matlab. The hub-centrality [2] has been computed by
the hubauth package, developed in [1] and available at https://bugs.unica.it/
cana/software/.

Table 2 confirms the well-known fact that centrality measures often dis-
agree, making it hard to judge which result is the best. The table also points
out that trees rooted at the vertices with largest position centralities tend to
identify chained structures with a smaller depth ` and bandwidth k than trees
rooted at nodes considered important with respect to other measures. Table 2
illustrates that when using position centrality, we are able to identify chained
structure with the smallest ` and k values.

Fig. 16 displays the spanning trees rooted at the first two out-center nodes
of Table 2. It is evident that the tree corresponding to the larger value of p,
shown on the right, produces a chained structure for which the cardinality of
the Vj sets with small j is larger at the beginning of the sequence than for
the tree on the left; the cardinality of the sets in the tree on the left are more
balanced. However, it is difficult to understand the effect of this parameter on
the choice of the center nodes without knowledge of the identity and history of
the people defining the vertices. The transportation network analyzed in the
next section aims to clarify the meaning of p-out-center nodes, as well as to
compare position centrality to other centrality measures.

To gain some insight into how the centrality measures considered in
this section are related, we computed the Kendall rank correlation coeffi-
cient between the in/out position centrality with p = 1 (IPC/OPC) and

https://bugs.unica.it/cana/software/
https://bugs.unica.it/cana/software/
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Fig. 16 Network twitter (3656 vertices): out-trees with root vertices 1768 (left) and 1324
(right).
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Fig. 17 Kendall rank correlation coefficient between the in/out position centrality
(IPC/OPC) and degree (IDC/ODC), closeness (ICC/OCC), betwenness (BC), hub/author-
ity (HC/AC), and PageRank (PRC) centralities. The graph on the left concerns the incoming
connections, the one on the right the outgoing ones. The computation has been performed
for all the networks considered in the paper.

degree (IDC/ODC), closeness (ICC/OCC), betwenness (BC), hub/authority
(HC/AC), and PageRank (PRC) centralities. The comparison has been per-
formed on the ibm32, n2c6b10, gre, twitter, and bus-ca networks. The last
network will be discussed in the next section.

The results are displayed in Fig. 17. The networks n2c6b10 and twitter do
not appear in the graph on the left, because they have no in-center nodes;
there is only one out-center node in n2c6b10, so for this data set the compar-
ison is meaningless, as it is clear in the graph on the right. As it is expected,
the Kendall coefficients of position centrality and closeness centrality for both
incoming and outcoming connections are 1, meaning that the agreement of
the two ranks is perfect. Position centrality is seen to be strongly correlated
to degree and PageRank for some of the data sets, but the two graphs demon-
strate that the considered centrality indexes represent different features of the
networks.
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7 A case study about position centrality

To investigate the effect of the parameter p on the choice of the center vertices
determined by the out-position centrality P out

p (v) and the in-position centrality

P in
p (v) of a vertex v, we studied a transportation network for which it is possible

to judge by common sense the results of the analysis. Like all transportation
networks, it is closely related to the social behaviour of the individuals living
in the area of interest.

We considered the bus network that serves the metropolitan area around
the town of Cagliari in Sardinia, Italy. The area is about 65 km2, hosts 4.2 ·105

people, and includes the town of Cagliari as well as four smaller municipal-
ities very close to Cagliari, contiguous in some parts: Monserrato, Selargius,
Quartucciu, and Quartu Sant’Elena; see Fig. 18.

10/10/21, 4:51 PM Google Earth

https://earth.google.com/web/search/Cagliari,+CA/@39.22787065,9.1422226,-2.94654193a,20112.96297866d,35y,0h,0t,0r/data=CigiJgokCQMcZkrdMkBAEQMcZkrdMkDAGTFlA… 1/1

Data delle immagini: dopo il giorno 03/07/19 Videocamera: 20 km  39°13'40"N 9°08'32"E -3 m

Data SIO, NOAA, U.S. Navy, NGA, GEBCO TerraMetrics

2.000 m

Fig. 18 Cagliari metropolitan area; image produced by Google Earth.

The bus network was constructed using data available on the web. We
refer to this network as bus-ca. There are 970 bus stops. They define nodes.
The distance between the bus stops is not available. We therefore measure
distance as the number of bus stops between the starting and ending nodes
on the shortest path. The bus routes define edges. The resulting network is
unweighted. Some bus routes depend on the direction of travel, e.g., because
some streets are one-way. The bus network therefore is directed.
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A bus network, like most geographical networks, is strongly influenced by
the landscape and urbanization. The Cagliari commercial center is located on
the south-west border of the network, in front of the harbor. A large pond,
the Molentargius Saline Regional Nature Park, is located in the center of the
urban area. It separates the four municipalities from Cagliari, and prevents
straight travel between them.

Table 3 Network bus-ca (970 vertices): we report the p-out-center and the p-in-center
vertices for different values of p, together with the in/out-centers identified by other
centrality measures. For each vertex we also report the depth ` of the associated spanning
tree and the minimal lower bandwidth k of the corresponding {`, k}-chained structure.

p Out-center {`, k} In-center {`, k}
-10 Zuddas {65, 49} Legnano {71, 47}
-1 Zuddas {65, 49} Riu Mortu {65, 47}
0.1 Zuddas {64, 49} Riu Mortu {65, 47}
0.5 San Benedetto {69, 55} Giovanni XXIII {66, 47}
1 San Benedetto {69, 55} Roma {68, 49}
5 Giotto {78, 53} Abruzzi {75, 49}
10 Gherardo delle Notti {79, 50} Vergine di Lluc {76, 49}

degree Roma (Sanità) {68, 49} Roma (Sanità) {67, 49}
betwenness Brigata Sassari {79, 52} same
PageRank Roma (Dogana) {69, 49} same

HITS Carlo Felice {67, 49} Roma (Sanità) {67, 49}
H/A centr. Roma (Dogana) {69, 49} Roma (Sanità) {68, 49}

We computed the p-out-center and the p-in-center vertices of the bus net-
work for different values of p. The results are reported in Table 3, where
the bus stops are identified by their name. The table also reports the center
nodes according to the degree, betweenness [22], PageRank [24], HITS [17],
and hub/authority centrality [1, 2]. Since betweenness and PageRank do not
distinguish out-centers from in-centers, only one center node is reported for
them. For each in/out-center vertex, the depth ` (i.e., the distance between the
center vertex, which is the root, and a most distant leaf of the spanning tree)
is reported. Here the distance is measured in terms of the number of edges on
the shortest path between the root and the leaf. We also report the minimal
lower bandwidth k of the {`, k}-chained graph structure.

The center nodes corresponding to p = 0.5 and p = 1 are in the commercial
center of Cagliari, the part of town where the largest number of shops and
restaurants are located, and where a large number of bus routes converge. The
out-tree rooted at the out-center corresponding to the “San Benedetto” bus
stop is displayed in the right pane of Fig. 19. The density of nodes in the
upper part of the tree shows that many of the first chained sets Vi, i.e., sets
with small index i, contain a large number on nodes. This indicates that it is
possible to reach a large number of destinations within a small number of bus
stops, i.e., in a small time.

When p is significantly smaller than one, the out- and in-centralities defined
in Definitions 9 and 10 give a smaller weight to sets Vi with large cardinality
than when p is larger than one. The effect is that the spanning tree rooted at
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Fig. 19 Network bus-ca (970 vertices): on the left, the out-tree spanning the network
rooted at the node corresponding to the “Zuddas” bus stop, the out-center vertex for
p = −10,−1, 0.1; on the right, the out-tree rooted at the “San Benedetto” bus stop,
out-center node for p = 0.5, 1.

the corresponding out-center node is more balanced; see the picture on the left
of Fig. 19. This corresponds to a less rapid decay in the number of elements of
the sets Vi and also to a smaller depth of the tree. The center node “Legnano”
is located in the Pirri district of Cagliari, while “Zuddas”, and “Riu Mortu”
are in Monserrato, a neighboring municipality. Both these zones join Cagliari
with the small towns in the west part of the area, so they are barycentric for
the network. It is possible to reach the farthest parts of the network from them
after a relatively small number of bus stops.

For a value of p somewhat larger than 1, say p = 5, the center nodes are
found in densely populated parts of Cagliari. When the value of p becomes very
large, the center nodes are suburban bus stops that are served by “strategic”
routes that connects them rather easily to the rest of the network.

The depth of the spanning trees, that is, the maximal length of the routes
starting from the tree root, increases monotonously with p. It is remarkable
that the minimal lower bandwidth is rather large. This is a consequence of
that there are some bus routes going back towards the center node with only
a single bus stop before reaching the center.

The other centrality measures, reported in the lower part of Table 3, with
the exception of the betweenness centrality, produce center vertices located
in the Cagliari harbor area, the commercial center, so they essentially agree
with with position centrality for p close to 1. In any case, these measures pro-
duce results complying with the traditional idea of centrality, while varying the
parameter p in the position centrality gives the possibility to consider different
aspects of this transportation network. The betweenness central vertex is dif-
ficult to interpret, as it is located in the central part of the Quartu Sant’Elena
town, which does not appear to identify the real center of the network.
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8 Conclusion

It is important to be able to identify interesting structural properties of
directed graphs, because they shed light on how the vertices are connected.
This paper introduces the notion of directed chained graphs and illustrates how
it helps us to understand the structure of directed graphs. Also, the related
notions of in-central and out-central nodes are defined and illustrated. The
latter notions are quite intuitive and examples illustrate that they are helpful
for identifying important nodes that differ from nodes that are identified by
several popular available centrality measures.
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