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Abstract

This paper discusses and develops new methods for fitting trigonometric curves,
such as circles, ellipses, and dumbbells, to data points in the plane. Available
methods for fitting circles or ellipses are very sensitive to outliers in the data,
and are time consuming when the number of data points is large. The present
paper focuses on curve fitting methods that are attractive to use when the
number of data points is large. We propose a direct method for fitting circles,
and two iterative methods for fitting ellipses and dumbbell curves based on
trigonometric polynomials. These methods efficiently minimize the sum of the
squared geometric distances between the given data points and the fitted curves.
In particular, we are interested in detecting the general shape of an object such
as a galaxy or a nebula. Certain nebulae, for instance, the one shown in the
experiment section, have a dumbbell shape. Methods for fitting dumbbell curves
have not been discussed in the literature. The methods developed are not very
sensitive to errors in the data points. The use of random subsampling of the
data points to speed up the computations also is discussed. The techniques
developed in this paper can be applied to fitting other kinds of curves as well.

Keywords: least-squares approximation, regularization, curve fitting,
trigonometric polynomials
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1. Introduction

Problems that require fitting circles, ellipses, and curves of other shapes
such as dumbbell curves to data points in the plane arise in many application
areas such as pattern recognition, computer vision, statistics, and data analysis;
see, e.g., [1, 2, 3, 4, 5]. This paper is concerned with minimization problems
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that arise when fitting curves in the (x, y)-plane defined in the standardized
parametric form{

x(t) =
∑3
i=1(a2i−1,1 cos(it) + a2i,1 sin(it)),

y(t) =
∑3
i=1(a2i−1,2 cos(it) + a2i,2 sin(it)),

(1)

where −π < t ≤ π, and the aij ∈ R are coefficients to be determined with
a11, a22 > 0. For our applications of interest, it suffices to consider the sums
(1), however, the methods discussed also can be applied when the sums include
higher frequencies. We assume that the curve t → (x(t), y(t)), −π < t ≤ π,
does not intersect itself, i.e., it is a one-to-one mapping for −π < t ≤ π. The
curve is assumed to be centered at the origin and to have zero tilt angle, i.e.,
the major axis of the curve lies on the x-axis. Section 3 discusses how to handle
the situations when the tilt angle is nonvanishing or the curve is not centered
at the origin.

We consider two minimization problems in this paper. Let (xi, yi), i =
1, 2, . . . , n, be given data points in the (x, y)-plane and define the data matrix

Z =


x1 y1
x2 y2
...

...
xn yn

 ∈ Rn×2. (2)

Introduce the model matrices

T̃ =


cos(t1) sin(t1) cos(2t1) sin(2t1) cos(3t1) sin(3t1)
cos(t2) sin(t2) cos(2t2) sin(2t2) cos(3t2) sin(3t2)

...
...

...
...

...
...

cos(tn) sin(tn) cos(2tn) sin(2tn) cos(3tn) sin(3tn)

 ∈ Rn×6 (3)

and

T =

[
T̃ 0

0 T̃

]
(4)

with parameters ti ∈ (−π, π]. These parameters define the vector t = [t1, t2, . . . , tn]T

∈ (−π, π]n, where the superscript T denotes transposition. We are interested in
the situation when a large number of points has to be fitted. Throughout this
paper we assume that n� 6. Our first minimization problem is

min
t,a
‖Ta− z‖22, (5)

where a = [a11, a21, . . . , a61, a12, a22, . . . , a62]T , z = [x1, x2, . . . , xn, y1, y2, . . . , yn]T ∈
R2n is the data vector, and ‖ · ‖2 denotes the Euclidean vector norm. We note
that (5) minimizes the sum of the squared geometric distances, i.e., the sum of
the squared distance between each given data point zi = (xi, yi) and the point
(x(ti), y(ti)) on the fitted curve.
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The second problem we consider is the regularized minimization problem,

min
t,a

{
‖Ta− z‖22 + µ‖Wa‖qq

}
, (6)

where ‖ · ‖q denotes the vector `q-norm for q ∈ {1, 2}, µ > 0 is a regularization
parameter, and

W = diag[w11, w21, . . . , w61, w12, w22, . . . , w62] ∈ R12×12

is a diagonal weighting matrix whose entry wij > 0 is referred to as the weight
of aij . The first and second terms of the expression (6) are called the fidelity
term and the regularization term, respectively. The regularization parameter
µ determines the relative importance of these terms. Depending on the shape
of the curve to be fitted, different choices of weights and parameter µ may be
employed. We discuss these choices in Sections 3.5 and 4.4. In this paper we
will choose q = 1 since `1-regularization promotes sparsity of the computed
solution. We illustrate in Section 3.5 that most coefficients of the curves that
we are particularly interested in fitting to standardized data vanish.

To the best of our knowledge, dumbbell curve fitting methods have not been
considered in the literature. As for circle and ellipse fitting, available methods
that minimize the sum of the squared geometric distances are iterative and tend
to be time-consuming, in particular when there are many data points; see, e.g.,
Gander et al. [6]. More efficient methods such as the direct ellipse-specific
fitting method [2] and the direct least-algebraic-residuals method [7] are good
candidates when the number of data points is large, because they are faster
than the iterative method described in [6]; however, the former methods do not
minimize the sum of the squared geometric distances and, thus, it is not clear
which physical quantities they minimize. This can make it difficult to determine
the significance of the determined curve. Moreover, the ellipses determined by
the methods described in [2, 7] may be severely affected by outliers among
the data points; this is illustrated by examples in Sections 4.1 and 4.3. This
paper presents a direct circle fitting method that generates a unique solution
to the minimization problem (5), and two alternating iterative methods for
fitting ellipses and dumbbell curves, that solve the minimization problem (5)
and (6), respectively. These methods are efficient, not very sensitive to outliers,
and either minimize the geometric distance (5) or an accurate approximation
thereof if the regularization parameter µ > 0 in (6) is small. The techniques
developed in this paper also can be applied to fitting curves of higher degrees;
then the sum (1) has more terms.

The organization of this paper is as follows. Section 2 briefly reviews methods
for fitting circles and ellipses in the current literature. In Section 3, we propose a
direct circle fitting method (DCF), an iterative alternating least-squares fitting
method (AFM-LS) for ellipse fitting, and another iterative alternating fitting
method with soft-thresholding (AFM-FISTA) for dumbbell curve fitting. We
also show in this section that the AFM-LS method converges to a solution that
is a stationary point of the objective function of the minimization problem (5).
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A few related results on the convergence also are provided. Section 4 illustrates
the performance of the proposed methods and compares them to some available
schemes. The use of random subsampling to speed up the computations is
illustrated. Concluding remarks can be found in Section 5.

2. Review of Current Methods for Circle and Ellipse Fitting

Available least-squares methods for circle or ellipse fitting can be classified
into two categories: i) minimizing the sum of the squared geometric distances,
and ii) minimizing the sum of the norms of algebraic residuals. The algebraic
residual is also referred to as the algebraic distance. This section reviews some
available methods for ellipse fitting; see [6, 8] for circle fitting methods.

2.1. Minimizing the Squared Sum of Geometric Distances

One approach to fit an ellipse to given data points is to minimize the sum of
the square of geometric distances between the given point set and the desired
ellipse. Consider an ellipse in its parametric form

z = zc +Q(α)

[
a cos(t)
b sin(t)

]
, −π < t ≤ π,

where z = [x, y]T , zc = [xc, yc]
T is the center of the ellipse, α is the counter-

clockwise angle from the horizontal axis to the major axis of the ellipse, and

Q(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
is a rotation matrix. To determine the ellipse that minimizes the sum of the
squared geometric distances between the given points (xi, yi), i = 1, 2, . . . , n,
and an ellipse, one solves the minimization problem

min
xc,yc,α,a,b,ti

n∑
i=1

∥∥∥∥[xiyi
]
−
[
xc
yc

]
−Q(α)

[
a cos(ti)
b sin(ti)

]∥∥∥∥2
2

;

see Gander et al. [6] for details on the geometric least-squares (GLS) algorithm
for determining the n+ 5 unknowns xc, yc, α, a, b, t1, t2, . . . tn. Gander et al. [6]
illustrate that geometric algorithms in general produce more visually pleasing
ellipses than algebraic algorithms to be described below. However, the GLS
algorithm is much more computationally expensive than the ones described in
the sequel.

2.2. Minimizing Algebraic Residuals

In analytic geometry, an ellipse is defined as a set of points z = [x, y] ∈ R2

that satisfy the equation

ax2 + bxy + cy2 + dx+ ey + f = 0, (7)
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where f 6= 0 and b2 − 4ac < 0. Let

α = [a, b, c, d, e, f ]T , u = [x2, xy, y2, x, y, 1]T

and define
r(α,u) = αTu = ax2 + bxy + cy2 + dx+ ey + f.

Then the algebraic residual of a point zi = [xi, yi]
T to the ellipse r(α,u) = 0 is

defined as r(α,ui), where

ui = [x2i , xiyi, y
2
i , xi, yi, 1]T . (8)

The optimal ellipse in the sense of least-algebraic-residuals is determined by the
vector α that minimizes

n∑
i=1

r(α,ui)
2; (9)

see [9].
The ellipse determined by equation (7) is invariant under scaling of the vector

α. To avoid the trivial solution α = 0, a constraint such as ‖α‖2 = 1 could
be imposed. The disadvantage of this particular constraint is that it is not
invariant under Euclidean transformation. To overcome this issue, Bookstein
[1] proposes the constraint a2 + b2/2 + c2 = 1 when fitting ellipses, hyperbolas,
and parabolas. When fitting ellipses, Gander et al. [6], Porrill [4], and Rosin [5]
impose the constraint a+ c = 1.

2.3. Direct Methods

The minimization problems in Sections 2.1 and 2.2 are usually solved by
iterative methods. For example, Bookstein [1] and Gander et al. [6] apply
Gauss-Newton methods for minimizing the algebraic residual norms and for
minimizing the squared sum of the geometric distances, respectively. Fitzgib-
bon et al. [2] propose a direct ellipse-specific fitting (DEF) method, which is
significantly faster than the iterative methods, and Bookstein [1] demonstrates
that when a quadratic constraint is imposed on the coefficients to avoid the triv-
ial solution α = 0, the minimization problem (9) can be solved by computing
the solution of a generalized eigenvalue problem

UTUα = λCα subject to αTCα = 1, (10)

where U = [u1,u2, . . . ,un]T is the design matrix of the data, ui is defined as
in (8), and the matrix C ∈ R6×6 expresses the quadratic constraint on α. The
existence of a nontrivial solution α of (10) implies that the the matrix UTU −
λC is rank-deficient. Since the minimization problem (9) with the constraint
b2 − 4ac < 0 is difficult to solve, Fitzgibbon and Fisher [3] impose the equality
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constraint 4ac− b2 = 1. The corresponding constraint matrix then is

C =


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and the constrained ellipse fitting problem is transformed to

min
α
‖Uα‖22 subject to αTCα = 1. (11)

Differentiating ‖Uα‖22 and introducing the Lagrange multiplier λ, one can de-
termine a solution of (11) by solving{

Sα = λCα, (a)

αTCα = 1, (b)
(12)

where S = UTU . The solution of (11) is given by α = µβ, where

µ =

√
1

βTSβ

and (λ,β) is a generalized eigenpair of 12(a).
Ohad [7] describes another direct method to fit an ellipse algebraically. Con-

sider the ellipse equation

ax2 + bxy + cy2 + dx+ ey = 1

with b2 − 4ac < 0, and let ~ denote the Hadamard product of two vectors of
the same size, i.e.,

s~ t = [s1t1, s2t2, . . . , sntn]T ,

where s = [s1, s2, . . . , sn]T and t = [t1, t2, . . . , tn]T . Given the data matrix (2),
introduce the vectors x = [x1, x2, . . . , xn]T and y = [y1, y2, . . . , yn]T . The cost
function for fitting an ellipse to the points zi = [xi, yi]

T , i = 1, 2, . . . , n, is
defined as

C(α) = (Z̃α− 1)T (Z̃α− 1), (13)

where α = [a, b, c, d, e]T , the matrix

Z̃ = [x~ x,x~ y,y ~ y,x,y] ∈ Rn×5

is assumed to have full column rank, and 1 = [1, 1, . . . , 1]T ∈ Rn. The cost
function (13) can be treated as the sum of the squared algebraic residuals for
all points to the ellipse defined by α. At the minimum, the gradient of C(α)
vanishes, i.e.,

∇C(α) = 2αT Z̃T Z̃ − 2 · 1T Z̃ = 0.
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Thus, α is the solution of the linear system of equations

(Z̃T Z̃)α = Z̃T1.

We refer this method as the direct least-algebraic-residuals method (DLAR).
Both direct methods described are efficient and avoid convergence issues that
may arise with iterative methods. However, they do not minimize geometric
distances and the computed solutions may be sensitive to the presence of outliers
in the data.

3. Trigonometric Polynomial-Based Methods

We will fit curves with the parametric representation of equation (1) to n
data points zi = [xi, yi]

T , i = 1, 2, . . . , n. These curves have zero tilt angle
and are centered at the origin. If the data points suggest that the tilt angle
is nonvanishing or the center of the curve is not expected to be at the origin,
then we standardize the data points by rotating and shifting them so that the
parametric representation (1) can be employed.

3.1. Data Standardization

The center zc = [xc, yc]
T of the given points zi = [xi, yi]

T , i = 1, 2, . . . , n, is
the average of the xi and the yi, i.e.,

zc =
1

n

n∑
i=1

[xi, yi]
T .

Let
z
(c)
i = [ui, vi]

T := zi − zc = [xi − xc, yi − yc]T .

We determine the tilt angle θ of the data set based on the idea that the standard
deviation σ of the vi is minimal when θ = 0. The standardized data set can be
written as

Zs =

[
cos θ sin θ
− sin θ cos θ

]
ZTc ,

where

Zs =


x
(s)
1 y

(s)
1

...
...

x
(s)
n y

(s)
n

 and Zc =

u1 v1
...

...
un vn

 .
The standard deviation of the y

(s)
i is

σ =

√√√√√ n∑
i=1

(
y
(s)
i

)2
n− 1

.
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Let

V (θ) = (n− 1)σ2

=

n∑
i=1

(−ui sin θ + vi cos θ)2

=

n∑
i=1

[
(ui sin θ)2 + (vi cos θ)2 − 2uivi sin θ cos θ

]
=

n∑
i=1

[
(ui sin θ)2 + (vi cos θ)2 − uivi sin 2θ

]
.

Then

V ′(θ) = 2 sin θ cos θ

n∑
i=1

u2i − 2 sin θ cos θ

n∑
i=1

v2i − 2 cos 2θ

n∑
i=1

uivi

= sin 2θ

n∑
i=1

u2i − sin 2θ

n∑
i=1

v2i − 2 cos 2θ

n∑
i=1

uivi

= sin 2θ

n∑
i=1

(u2i − v2i )− 2 cos 2θ

n∑
i=1

uivi,

and

V ′′(θ) = 2 cos 2θ

n∑
i=1

(u2i − v2i ) + 4 sin 2θ

n∑
i=1

uivi.

Setting V ′(θ) = 0 yields

θ0 =
1

2
arctan

 2
n∑
i=1

uivi

n∑
i=1

(u2i − v2i )

 .

The tilt angle then is

θt =

{
θ0, if V ′′(θ0) > 0;

θ0 + π/2, otherwise.
(14)

We remark that it is common to employ principal component analysis (PCA)
to determine the tilt angle θt, which usually requires the application of singular
value decomposition to the centralized data, i.e., the mean of each variable
is zero. We prove in the following theorem that the tilt angle determined by
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equation (14) is the same as the angle of the first right singular vector of Zc.
Since our method avoids computing the singular value decomposition of Zc, it is
much faster than PCA. When applied to an experiment data set of 3,528 points,
it is more than 35 times faster.

Theorem 1. The angle determined by equation (14) for a centralized data set
Zc ∈ Rn×2 equals the angle between the horizontal axis and the first right sin-
gular vector of Zc.

Proof. Assume Zc = PSQT is the reduced singular value decomposition of Zc,
where S ∈ R2×2 is a diagonal matrix with singular values s1 > s2 > 0 on the
diagonal, and P ∈ Rn×2 and Q ∈ R2×2 are orthonormal matrices whose columns
are the corresponding left and right singular vectors respectively. Then

(ZcQ)T = (PS)T ,

QTZTc = SPT =

[
s1 0
0 s2

] [
p11 · · · pn1
p12 · · · pn2

]
, (15)

where pij is the entry of P at the ith row and jth column. Since Q−1 = QT ,
equation (15) can be represented as the change from the standard base to a new
base formed by the columns of Q for the data points in Zc.

For simplicity, we refer to the coordinates with respective to the first base
vector as horizontal coordinates and the second coordinates as vertical coordi-
nates. The standard deviation of the new vertical coordinates is

σq =

√√√√√s22
n∑
i=1

p2i2

n− 1

Since P is orthonormal,
n∑
i=1

p2i2 = 1.

Hence,

σq =
s2√
n− 1

.

Suppose the data represented by equation (15) are rotated by an angle α ∈
(−π, 0) ∪ (0, π),[
cosα − sinα
sinα cosα

]
QTZTc =

[
s1p11 cosα− s2p12 sinα · · · s1pn1 cosα− s2pn2 sinα
s1p11 sinα+ s2p12 cosα · · · s1pn1 sinα+ s2pn2 cosα

]
.

The standard deviation of the rotated vertical coordinates is

σα =

√√√√√s21 sin2 α
n∑
i=1

p2i1 + s22 cos2 α
n∑
i=1

p2i2 + 2s1s2 sinα cosα
n∑
i=1

pi1pi2

n− 1
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Since P is orthonormal,

n∑
i=1

p2i1 = 1, and

n∑
i=1

pi1pi2 = 0.

Then

σα =

√
s21 sin2 α+ s22 cos2 α

n− 1
=

√
(s1 − s2)2 sin2 α+ s22

n− 1

Now that s1 > s2 and sin2 α > 0,

σα > σq.

Since Q is orthonormal, the translation of Zc by equation (15) is invariant in
Euclidean space. Thus, we have proven the theorem.

Algorithm 1: Algorithm for Standardizing Data

Input : Z0 =

x1 y1
...

...
xn yn


1 (xc, yc) = mean(Z0), where mean is the column-wise operation;

2 Zc = Z0 − (xc, yc) =

u1 v1
...

...
un vn

;

3 θ =
1

2
arctan

 2
n∑
i=1

uivi

n∑
i=1

(u2i − v2i )

;

4 if cos 2θ
n∑
i=1

(u2i − v2i ) + 2 sin 2θ
n∑
i=1

uivi < 0 then

5 θ = θ + π/2;

6 Z =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
ZT0 −

[
xc
yc

]
;

7 Z = ZT ;
Output: The standardized data Z, the center (xc, yc) and the tilt angle

θ of the original data set.
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3.2. Direct Circle Fitting Method

For a circle, the parameters ti are polar angles of the data points (xi, yi),
i = 1, 2, . . . , n. The ti can easily be determined as follows,

ti =



arctan(yi/xi) if xi > 0,

arctan(yi/xi) + π if xi < 0 and yi ≥ 0,

arctan(yi/xi)− π if xi < 0 and yi < 0,

π/2 if xi = 0 and yi > 0,

−π/2 if xi = 0 and yi < 0.

(16)

When fitting a circle, the parametric form of (1) reduces to{
x = r cos(t),

y = r sin(t),

where r is the radius to be determined. Let

T = [cos(t1), . . . , cos(tn), sin(t1), . . . , sin(tn)]T .

The minimization problem (5) then becomes

r̂ = arg min
r
‖Tr − z‖22. (17)

Let ρ = ‖T‖2 and Q = T/ρ. The unique solution of (17) can be written as

r̂ = ρ−1QTz. (18)

We refer to the use of (16) and (18) for fitting a circle as the direct circle fitting
(DCF) method.

3.3. An Alternating Fitting Method

When the parameters ti are not polar angles, we propose the application of
an alternating fitting method (AFM). We are particularly interested in applying
this method to fit ellipses and dumbbell curves. The method is suitable for
fitting other kinds of shapes such as olives and pillows as well; see illustrations
in Section 3.5.

Given the ti’s, one can solve the minimization problem

â = arg min
a
‖Ta− z‖22, (19)

where the matrix T is defined in (4). If a weighting matrix W is introduced,
then one may solve the `1-regularized problem instead, i.e.,

â = arg min
a

{
‖Ta− z‖22 + µ‖Wa‖1

}
, (20)

where µ > 0 is a regularization parameter and the nonzero entries of the diagonal
matrix W ∈ R12×12 are referred to as weights.
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Conversely, given the coefficient vector â, one can determine a set of param-
eters −π < ti ≤ π, 1 ≤ i ≤ n, by solving

t̂ = arg min
t
‖T (t)â− z‖22. (21)

Let

Ti =

[
T̃i 0

0 T̃i

]
,

where T̃i is the ith row of T̃ as in (3). Define

t̂i = arg min
ti
‖Tiâ− zi‖22 (22)

It is easy to see that t̂ := [t̂1, t̂2, . . . , t̂n]T is a solution of (21).
We describe a heuristic way of choosing the matrix W in Section 3.5 and

of choosing µ in Section 4.4. Our reason for applying `1-regularization is that
the computed solution is less sensitive to outliers in the data than when no reg-
ularization or `2-regularization are used. Moreover, `1-regularization promotes
sparsity of the computed solution. The proof of uniqueness of the solution to
problem (21) for ellipse fitting is immediate. The uniqueness for dumbbell fit-
ting follows from Theorems 2 and 3 in Section 3.5. The proposed AFM solves
the minimization problems (5) or (6) by solving the problems (19) or (20), and
problem (21) in an alternating fashion. The convergence of the AFM is shown
in Section 3.6.

3.4. AFM for Ellipse Fitting

For an ellipse, the parametric form (1) reduces to{
x = a11 cos(t),

y = a22 sin(t),
− π < t ≤ π, (23)

where a11, a22 > 0 are coefficients to be determined. The matrix T and vector
a in (19) are of the form

T =



cos(t1) 0
cos(t2) 0

...
...

cos(tn) 0
0 sin(t1)
0 sin(t2)
...

...
0 sin(tn)


and a =

[
a11
a22

]
.

The AFM for the solution of the minimization problem (5) alternates between
solving the problems (19) and (21): Given the vector t = [t1, t2, . . . , tn]T of
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parameter values, the unique solution of problem (19) can be evaluated by
using a QR factorization of the matrix T . When, instead, the coefficient vector
â is given, one may solve problem (21) for t by an interior-point or trust-region
method; see, e.g., [10, 11, 12]. Alternatively, one may solve (22) for each ti,
1 ≤ i ≤ n, independently so that t̂i yields the shortest distance between the
point (xi, yi) and the ellipse defined by a. We propose to solve (22) in the
following manner. Let di be the squared distance between a point (xti , yti) on
the defined ellipse, and the given point (xi, yi). Then

di = (xi − xti)2 + (yi − yti)2, (24)

where {
xti = a11 cos(ti),

yti = a22 sin(ti).

To minimize (24), we require

d

dti
di = 2a11 sin(ti)(xi − a11 cos(ti))− 2a22 cos(ti)(yi − a22 sin(ti)) = 0. (25)

When cos(ti) 6= 0, equation (25) is equivalent to

a11xi tan(ti)− (a211 − a222) sin(ti)− a22yi = 0. (26)

It may be convenient to compute the solution of the nonlinear equation
(26) by a trust-region algorithm, such as Powell’s dogleg method described in
[11, 12]. However, both approaches mentioned above for determining t are
time-consuming when the number of points n is large. We therefore propose
the following fast method for computing an accurate approximate minimizer of
(24): Let (xti , yti) be the intersection point of an ellipse and the segment that
connects the center of the ellipse and a given point (xi, yi). We approximate the
minimizer of (24) by testing either an increasing or a decreasing sequence for
ti, with the polar angle of (xi, yi) as its starting value, until d starts to increase.
An outline of this scheme is

1. Calculate θi, the polar angle of (xi, yi).

2. Calculate the point (xti , yti) on the ellipse with ti = θi := θ.

3. Calculate d, the distance between (xi, yi) and (xti , yti).

4. Increase θ by a small step δ > 0, i.e., let θ = θi + δ, and update d.

5. If d decreases, then compute d for θ = θi + ntδ, where nt = 2, 3, · · · until
d increases.

6. If d increases, then compute d for θ = θi − ntδ, where nt = 2, 3, · · · until
d increases.

7. If necessary, then adjust the value of θ so that θ ∈ (−π, π].
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8. ti := θ is an approximate minimizer of equation (24).

Details of the above process are described by Algorithm 2. Timings that
compare this algorithm to an interior-point method and a trust-region dog-
leg method are presented in Table 2 of Section 4. We refer to the ellipse-fitting
method that uses Algorithm 2 as AFM-LS since it solves the least-squares prob-
lem (19). We show in Section 3.6 that Algorithm 2 is a convergent descent
method.

Algorithm 2: Fast Algorithm for Determining the Parameter t for a
Point on the Ellipses Closest to (x0, y0).

Input : A point (x0, y0), coefficients a11, a22 > 0 that define the
ellipse (23), t0 the polar angle of (x0, y0), δ > 0 step size for t,
and the squared distance function
d(t) = (a11 cos(t)− x)2 + (a22 sin(t)− y)2.

1 if x0 = 0 then
2 if y0 = 0 then
3 tm = π/2;
4 else
5 tm = t0;

6 else
7 d0 = d(t0);
8 θ = t0 + δ A value close to t0;
9 d1 = d(θ);

10 if d0 > d1 then
11 s = 1
12 else
13 s = −1

14 for nt = 0, 1, 2, · · · do
15 h = d(t0 + s(nt + 1)δ)− d(t0 + sntδ);
16 if h > 0 then
17 N = nt;

18 tm = t0 + sNδ;

Output:
√
d(tm) the approximate minimal distance between (x0, y0)

and the ellipse, and tm, the approximate value of the
parameter t for the point on the ellipse closest to (x0, y0).

3.5. AFM for Dumbbell Curve Fitting

The fitting process for a dumbbell curve is similar to the one for an el-
lipse. An approximate solution of (20) can be determined by the fast iterative
soft-thresholding method (FISTA) described in [13]. More details are provided
below.
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We assume the data to be standardized, i.e., the dumbbell curve is assumed
to be symmetric about both the x- and y-axes, and the tangent lines of the dips
are horizontal. The symmetry requires

a12 = a21 = a31 = a32 = a41 = a42 = a52 = a61 = 0. (27)

Therefore, the parametric form (1) reduces to{
x(t) = a11 cos(t) + a51 cos(3t),

y(t) = a22 sin(t) + a62 sin(3t),
a11, a22 > 0, −π < t ≤ π. (28)

We require two more constraints on the coefficients aij to ensure that the
fitted curve is dumbbell-shaped. First, we demand that the curve does not
self-intersect above or below the x-axis.

Theorem 2. Assume that the coefficient a51 in (28) is nonvanishing. Then
the conditions a11/a51 < −9 and a11/a51 > 3 suffice to ensure that the curve
defined by (28) does not self-intersect for t ∈ (0, π) and t ∈ (−π, 0).

Proof. We consider the case when t ∈ (0, π). Since the curve is symmetric about
the x-axis, a sufficient condition for the curve t→ (x(t), y(t)) for 0 < t < π not
to self-intersect is that x(t) is a decreasing function of t for t ∈ (0, π), i.e., that
dx
dt < 0. Thus, we require

dx

dt
= −a11 sin(t)− 3a51 sin(3t) < 0, t ∈ (0, π).

Rearranging the terms and using the fact that sin(3t) = 3 sin(t)−4 sin3(t) yields

sin(t)(a11 + 9a51 − 12a51 sin2(t)) > 0.

Since sin(t) > 0, we obtain

a51

(
a11

a51
+ 9− 12 sin2(t)

)
> 0.

If a51 > 0, then the above inequality implies that

a11

a51
> 12 sin2(t)− 9. (29)

In order for (29) to hold for all t ∈ (0, π), we obtain the necessary condition

a11

a51
> 3. (30)

If, instead, a51 < 0, then we obtain the inequality

a11

a51
< 12 sin2(t)− 9. (31)
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Since this inequality holds for all t ∈ (0, π), it follows that

a11

a51
< −9. (32)

The proof for −π < t < 0 follows similarly.

We also demand that the curve only intersects the x-axis for t = 0 and t = π.

Theorem 3. Assume that a62 6= 0. Then either one of the conditions a22/a62 <
−3 or a22/a62 > 1 secure that the curve defined by (28) only intersects the x-axis
at t = 0 and t = π.

Proof. Assume that y(t) = a22 sin(t) + a62 sin(3t) = 0 for some 0 < t < π.
Then using the same manipulations as in the proof of Theorem 2 shows that
this equation is equivalent to

sin(t)(a22 + a62(3− 4 sin2(t))) = 0.

We have to ensure that

a22/a62 + (3− 4 sin2(t)) = 0

has no solution for 0 < t < π. This is the case when 4 sin2(t) = a22/a62 + 3 < 0
or 4 sin2(t) = a22/a62 + 3 > 4 Hence,

a22/a62 < −3 or a22/a62 > 1. (33)

The proof for −π < t < 0 follows similarly.

Theorems 2 and 3 ensure that the curve does not self-intersect. In addition,
since the dips of the desired dumbbell curve t→ (x(t), y(t)) are symmetric about
the x-axis, the equation

dy

dt
= a22 cos(t) + 3a62 cos(3t) = 0 (34)

has exactly 6 solutions. Using similar manipulations as in the proof of Theorem
2, we obtain that equation (34) is equivalent to

a22 cos(t) + 3a62(4 cos3(t)− 3 cos(t)) = 0,

which can be written as

cos(t)(a22 + 3a62(4 cos2(t)− 3)) = 0.

The factor cos(t) vanishes for t = ±π/2 and provides two solutions, and
the other factor yields the remaining four solutions. In detail, using similar
manipulations as above, the second factor gives

4 cos2(t)− 3 = −a22/3a62.
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Thus, we need the relation

4 cos2(t) = 3− a22/3a62 ∈ (0, 4)

to hold to secure the existence of the other four solutions. Therefore, we require

−a22/a62 ∈ (−9, 3),

which can be expressed as

− 3 < a22/a62 < 9. (35)

Combining (33) and (35), we obtain the constraints

1 < a22/a62 < 9. (36)

We illustrate in Figure 1 different shapes of curves with different ratios of
a11/a51 and a22/a62. Note that when a11/a51 < −9, the curve appears more
like a pillow than a dumbbell; see Figure 1(b). Thus, in our experiments
for fitting dumbbell curves, we only consider the case when a11/a51 > 3. We
also note that the closer the ratio a22/a62 is to 1, the deeper are the dips of the
dumbbell curve. When the ratio is closer to 9, the dips are shallow and the curve
appears elliptical; see Figure 1(e). When the ratio keeps increasing above 9, the
places where the dips are become “bumps” and an olive-shaped curve begins to
form; see Figure 1(f). The constraint (33) in Theorem 2 indicates that when
solving the minimization problem (6), the weights for a51 and a62 should be
large enough to secure that the desired inequalities hold. The upper bound of
constraint (36) suggests that the weight for a62 should not be too large. We
describe a heuristic way of choosing weights for a51 and a62 after introducing
the fast iterative soft-thresholding algorithm (FISTA) for solving problem (20).

The AFM for solving problem (6) for dumbbell curve fitting alternates be-
tween solving the minimization problems (20) and (21). The former problem is
equivalent to

â = arg min
a

{
‖TW−1Wa− z‖22 + µ‖Wa‖1

}
. (37)

Let Tw = TW−1 and aW = Wa. Then, (37) becomes

âW = arg min
a

{
‖TwaW − z‖22 + µ‖aW ‖1

}
, (38)

and we solve this problem instead of (37). The solution is computed by the fast
iterative soft-thresholding algorithm (FISTA) [13].

FISTA-type methods are designed to solve convex optimization problems of
the form

min
x∈Rn
{J (x) : J (x) := f(x) + g(x)},

with f : Rn → R a smooth convex function of type C1,1, i.e.,

‖∇f(x)−∇f(y)‖2 ≤ lf‖x− y‖2, ∀x, y ∈ Rn,
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(a) (b) (c)

(d) (e) (f)

Figure 1: Curves with different coefficients: (a) a11 = 6, a51 = 3, a22 = 4, a62 = 2, (b)
a11 = 10, a51 = −1, a22 = 4, a62 = 2, (c) a11 = 6, a51 = 1, a22 = 3, a62 = 2, (d) a11 =
6, a51 = 1, a22 = 4, a62 = 2, (e) a11 = 6, a51 = 1, a22 = 9, a62 = 1, (f) a11 = 6, a51 = 1, a22 =
8, a62 = 0.1. All other coefficients vanish.

where lf > 0 is a Lipschitz constant for the gradient ∇f and g : Rn → R is a
continuous, possibly nonsmooth, convex function. The general idea of FISTA is
that, after having determined the point x(k) ∈ Rn at iteration k, an additional
point u(k) ∈ Rn is chosen as a linear combination of x(k) and the previous point
x(k−1) ∈ Rn. Then

x(k+1) = Tlf

(
u(k)

)
:= arg min

x∈Rn

{
Qlf (x, u(k)) + g(x)

}
,

i.e., x(k+1) is the unique minimizer of Qlf (x, u) + g(x) at u = u(k), where

x→ Qlf (x, u) := f(u) + 〈x− u,∇f(u)〉+
lf
2
‖x− u‖22

is a quadratic approximation of f(x). Since the term f(u(k)) in Tlf (u(k)) is
independent of x, we have

x(k+1) = Tlf (u(k))

= arg min
x∈Rn

{
Qlf (x, u(k)) + g(x)

}
= arg min

x∈Rn

{
〈x− u(k),∇f(u(k))〉+

lf
2
‖x− u(k)‖22 + g(x)

}
= arg min

x∈Rn

{
lf
2

∣∣∣∣∣∣∣∣x− (u(k) − 1

lf
∇f(u(k)))

∣∣∣∣∣∣∣∣2
2

+ g(x)

}
.
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Let
f(x) = ‖Ax− b‖22 and g(x) = µ‖x‖1, (39)

where A ∈ Rm×n, b ∈ Rm. Let λmax(ATA) denote the largest eigenvalue of
ATA. Then lf = 2λmax(ATA) is the smallest Lipschitz constant of ∇f . The
quotient

Lf =
lf

s

serves as step size, where 0 < s ≤ 1 is a scalar step size. Beck and Teboulle
[13] show that with constant step size Lf = lf , FISTA achieves a convergence
rate of O(1/k2), where k denotes the number of iterations performed. The
operator TLf

(u) may be considered a proximal regularization operator for the
non-smooth `1-regularized problem

min
x∈Rn

{
‖Ax− b‖22 + µ‖x‖1

}
. (40)

Since the ‖x‖1-term in (40) is separable, we obtain

x(k+1) = TLf
(u(k)) = Φsµ/lf

(
u(k) − s

lf
∇f(u(k))

)
,

where Φα(x), for α > 0, denotes the soft-thresholding operator, i.e.,

Φα(x) = [φα(x1), φα(x2), . . . , φα(xn)]T ∈ Rn

with x = [x1, x2, . . . , xn]T and

φα(x) :=

{
0 if |x| ≤ α,
sign(x)(|x| − α) if |x| > α;

see [13] for details. For the functions f(x) and g(x) given by (39), the iterations
of FISTA, with x(0) = x(1) = 0 and t0 = t1 = 1, can be written as

z(k) = x(k) +
(
tk−1−1
tk

) (
x(k) − x(k−1)

)
,

u(k) = z(k) − 2s
lf
AT (Az(k) − b),

x(k+1) = Φsµ/lf (u(k)),

tk+1 =
1+
√

1+4t2k
2 ,

k = 1, 2, . . . ;

see [13]. The computations are described in Algorithm 3. problem (40) becomes
(38) when x = aW , A = Tw and b = z. Through experiments, we found that
when employing FISTA, the weight of each edge should be set to the reciprocal
value of the ratio of the corresponding constraints (30) and (36). For instance,
when fitting a dumbbell curve, the coefficients a11 and a22 are not related by
a constraint. Therefore, their weights should be the same, i.e., we may set
w11 = w22 = 1. Since

a11

a51
=

5

1
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satisfies (30), and
a22

a62
=

2

1

satisfies (36), we set w51 = 5 and w62 = 2. We specify in Section 4 how the
parameters are chosen in the computed examples.

Algorithm 3: Fast Iterative Soft-Thresholding Algorithm (FISTA)

Input : A ∈ Rm×n, b ∈ Rm, µ > 0, lf = 2λmax(ATA), s ∈ (0, 1],
t0 = t1 = 1, tol > 0, and the soft-thresholding operator
Φsµ/lf (·).

1 x(0) = x(1) = 0 ∈ Rn;
2 for k = 1, 2, . . . do

3 z(k) = x(k) +
tk−1 − 1

tk
(x(k) − x(k−1));

4 u(k) = z(k) −
2s

lf
AT (Az(k) − b);

5 x(k+1) = Φsµ/lf (u(k));

6 if ‖x(k+1) − x(k)‖2 ≤ tol‖x(k)‖2 then
7 exit;

8 tk+1 =
1 +

√
1 + 4t2k
2

;

Output: Approximate solution x(k+1).

We employ Algorithm 1 to standardize the data. When applied to dumbbell
curve fitting, the scheme for estimating the t’s for ellipses does not guarantee
a global minimal distance between the point and the fitted curve, but only a
local one; see the discussion in Section 3.6. We therefore propose a simple
sampling method as an alternative; see Algorithm 5. We refer to the algorithm
for fitting a curve with weights via FISTA as AFM-FISTA, which is described
in Algorithm 4.

We also note that, for an ellipse or dumbbell curve centered at the origin
with no tilt, a solution of (22) t̂i ∈ (−π, π] is unique when zi is on neither of
the axes. In the case when zi is on either one of the axes, one may choose to
only keep the smallest solution of t̂i such that algorithms such as Algorithm 2
and Algorithm 5 generate unique solutions t̂i’s, and thus determine a unique
solution t̂ := [t̂1, t̂2, . . . , t̂n]T of (21) even though the solutions to those problems
themselves are not necessarily unique.

3.6. Convergence of Iterative Alternating Methods

This subsection shows several results on the convergence of the proposed
iterative alternating methods.
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Algorithm 4: Iterative Alternate Method with FISTA (AFM-FISTA)
for Weighted Curve Fitting

Input : Z0 =

x1 y1
...

...
xn yn


T

, soft-thresholding parameter α, weighting

matrix W , tolerance of the relative difference of error τ , and
the initial relative difference of error r(0) =∞.

1 Apply Algorithm 1 on Z0 for the center (centerx, centery), tilt angle θ
of the curve, and the standardized data Z;

2 Calculate T (0) with Z via eq. (16);
3 Let z be the column-stacked vector determined by the columns of Z;
4 for k = 1, 2, 3 . . . do

5 T
(k−1)
w = T (k−1)W−1;

6 µ = 2αλmax(T
(k−1)T
w T

(k−1)
w );

7 Apply FISTA to problem (38) to compute a
(k)
W , an estimate of aW ;

8 a(k) = W−1a
(k)
W ;

9 for i = 1, . . . , n do

10 Apply Algorithm 5 for t
(k)
i and d

(k)
i with a(k) and T (k−1);

11 T (k) is obtained;

12 Fitting error e(k) =
∑n
i=1 d

(k)
i ;

13 if r(k) = ‖
e(k) − e(k−1)

e(k−1)
‖ ≤ τ then

14 a = a(k) and e = e(k);

15 Form A from a;
Output: Fitting error e and the parametric form of the best fit

dumbbell curve[
x
y

]
=

[
centerx
centery

]
+

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
([

cos(t) sin(t) cos(2t) sin(2t) cos(3t) sin(3t)
]
A
)T
.
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Theorem 4. Let Γ be a curve in the (x, y)-plane that is symmetric about both
the x- and y-axes. Consider a point PM = (xM , yM ) on Γ, and let the point
P0 = (x0, y0) ∈ R2 be in a different quadrant than PM . Then, there exists a
point Pm = (xm, ym) on Γ in the same quadrant as P0 such that P0Pm < P0PM ,
where UV denotes the distance between the points U and V .

Proof. We may without loss of generality assume that P0 is in the first quadrant,
i.e., x0, y0 > 0. Consider the following three cases:

Case 1: Let PM be in the second quadrant, i.e., xM < 0 and yM > 0.
Define xm = −xM and ym = yM . Then Pm = (xm, ym) is in the first quadrant.
Since Γ is symmetric about the y-axis, Pm is also on Γ. We have

P0PM
2

= (x0 − xM )2 + (y0 − yM )2,

P0Pm
2

= (x0 − xm)2 + (y0 − ym)2

= (x0 + xM )2 + (y0 − yM )2.

It follows that
P0PM

2 − P0Pm
2

= −4x0xM > 0

and, therefore,
P0Pm < P0PM .

Case 2: Let PM be in the third quadrant, i.e., and xM < 0 and yM < 0.
Define xm = −xM and ym = −yM . Then Pm is on Γ and in the first quadrant.
It follows that

P0Pm
2

= (x0 − xm)2 + (y0 − ym)2

= (x0 + xM )2 + (y0 + yM )2

and, therefore,

P0PM
2 − P0Pm

2
= −4x0xM − 4y0yM > 0,

which shows that
P0Pm < P0PM .

Case 3: Let PM be in the fourth quadrant, i.e., xM > 0 and yM < 0. Define
xm = xM and ym = −yM . Then Pm is on Γ and in the first quadrant. We have

P0Pm
2

= (x0 − xm)2 + (y0 − ym)2

= (x0 − xM )2 + (y0 + yM )2.

Hence,

P0PM
2 − P0Pm

2
= −4y0yM > 0,

and consequently
P0Pm < P0PM .

The proofs for the cases when P0 is in one of the other quadrants are similar.
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Theorem 5. Let the point P0 = (x0, y0) be in one of the quadrants of the
(x, y)-plane. The closest point to P0 on a non-self-intersecting curve Γ defined
by equation (28) is in the same quadrant.

Proof. Suppose that P0 is in the first quadrant, i.e., x0, y0 > 0. Let P (t) =
(x(t), y(t)) for −π < t ≤ π be a parametric representation of Γ and define the
squared distance function

d(t) = ((x(t)− x0)2 + (y(t)− y0)2, −π < t ≤ π. (41)

Then

d′(t) = 2(a11 cos(t) + a51 cos(3t)− x0)(−a11 sin(t)− 3a51 sin(3t))

+2(a22 sin(t) + a62 sin(3t)− y0)(a22 cos(t) + 3a62 cos(3t)).

Hence,
d′(0) = −2y0(a22 + 3a62)

and
d′(π/2) = 2x0(a11 − 3a51).

If a62 = 0, then d′(0) < 0, and if a51 = 0, then d′(π/2) > 0. Moreover, if
a62 6= 0, then the constraint (33) ensures that d′(0) < 0. Finally, if a51 6= 0,
then the constraints (30) and (32) ensure that d′(π/2) > 0. Since d′(t) is a
continuous function, there is some t0 ∈ (0, π/2) such that

d′(t0) = 0

and
d(t0) ≤ d(t), ∀t ∈ (0, π/2).

Theorem 4 ensures that for any point

PM = (x(tM ), y(tM )), tM ∈ (−π,−π/2) ∪ (−π/2, 0) ∪ (π/2, π)

on Γ, one can find a point

Pm = (x(tm), y(tm)), tm ∈ (0, π/2),

on Γ in the first quadrant such that P0Pm < P0PM , i.e., d(tm) < d(tM ). It
follows that

d(t0) ≤ d(tm) < d(tM ), where t0, tm ∈ (0, π/2).

The proofs for the cases when P0 is in one of the other three quadrants are
similar.

Theorem 6. With the notation of Algorithm 2 it holds that the algorithm stops
after a finite number of steps and, if nt < N ,

d(t0 + s(nt + 1)δ) < d(t0 + sntδ).
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Therefore, Algorithm 2 is a descent method. Moreover, let tδm denote the output
of Algorithm 2 with parameter δ, and let t∗m be the global minimizer of the
squared distance function (41). Then it holds

lim
δ→0

tδm = t∗m.

Proof. Algorithm 2 details how we determine the closest point on an ellipse
centered at the origin, with zero tilt angle to a given point P0 = (x0, y0) in the
(x, y)-plane. The algorithm considers two situation:

(i) P0 is in one of the four quadrants;

(ii) P0 is on one of the axes or at the origin.

The proof below is divided into four cases. Case 1 is for the situation (i), and
Cases 2 to 4 are for the situation (ii).

We express the ellipse (23) in standard form,

x2

a211
+

y2

a222
= 1.

Without loss of generality, we may assume that a11 > a22 > 0. Consider for
now the piece of the ellipse where 0 ≤ x ≤ a11 and y ≥ 0. Expressing y in terms
of x gives

y =

√
a222 −

a222
a211

x2.

Then the squared distance between P0 and a point on this piece of the ellipse is

d(x) = (x− x0)2 +

√a222 − a222
a211

x2 − y0

2

.

The first and second derivatives of d(x) are

d′(x) = 2(x− x0) + 2

√a222 − a222
a211

x2 − y0

 1

2

(
a222 −

a222
a211

x2

)−1/2(
−2

a222
a211

x

)

= 2x− 2x0 − 2
a222
a211

x

1− y0

(
a222 −

a222
a211

x2

)−1/2
= 2x− 2x0 − 2

a222
a211

x+ 2y0
a22

a211
x

(
1−

x2

a211

)−1/2
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and

d′′(x) = 2− 2

(
a22

a11

)2

+ 2y0
a22

a11

(1−
x2

a211

)−1/2
−
x

2

(
1−

x2

a211

)−3/2
(−2x)


= 2− 2

(
a22

a11

)2

+ 2y0
a22

a11

(1−
x2

a211

)−1/2
− x2

(
1−

x2

a211

)−3/2

= 2− 2

(
a22

a11

)2

+ 2y0
a22

a11

(
1−

x2

a211

)−1/21 +
x2

1−
x2

a211

 ,

respectively.
In the following, we show that there is a unique global minimizer of d(x).
Case 1: Let P0 be in the first quadrant, i.e., x0, y0 > 0. Consider the last

factor of the last term of d′(x). One has

lim
x→a−11

(
1−

x2

a211

)−1/2
=∞ (42)

and, therefore,
lim
x→a−11

d′(x) =∞ > 0. (43)

Moreover,
lim
x→0

d′(x) = d′(0) = −2x0 < 0. (44)

Thus, there exists some xm ∈ (0, a11) such that d′(xm) = 0.
Now consider d′′(x). It follows from a11 > a22 that

2− 2

(
a22

a11

)2

> 0,

and, therefore, (
1−

x2

a211

)−1/2
> 0 and 1 +

x2

1−
x2

a211

> 0.

Thus, d′′(x) > 0 for 0 < x < a11. It follows that d′(x) is monotonically increas-
ing for 0 < x < a11, xm is a unique minimizer of d(x), and d(x) is monotonically
decreasing for 0 ≤ x ≤ xm. Since the points

Pm =

xm,
√
a222 −

a222
a211

x2m
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and P0 are in the same quadrant, Theorem 5 ensures that xm is a global mini-
mizer of d(x).

Case 2: Let P0 be on the positive y-axis, i.e., x0 = 0 and y0 > 0. The limits
(42) and (43) are still valid, and the limit (44) becomes

lim
x→0

d′(x) = d′(0) = −2x0 = 0. (45)

Since the expression for d′′(x) is independent of x0, it still holds that d′′(x) > 0.
This property together with (45) shows that d′(x) is positive on this interval.
Consequently, d(x) is monotonically increasing for 0 ≤ x ≤ a11. Hence, xm = 0
is a unique minimizer of d(x).

It is easy to show that xm = 0 also is a global minimizer. Let the point
P3 = (x′, y′) be on the ellipse in the third quadrant. Then P2 = (x′,−y′) is on
the ellipse in the second quadrant and P1 = (−x′,−y′) is on the ellipse in the
first quadrant. Since P0 = (0, y0) is on the positive y-axis, we have

P0P3 > P0P2 = P0P1 =
√
d(−x′) ≥

√
d(xm) = P0Pm.

Case 3: Let the point P0 = (x0, y0) be on the positive x-axis, i.e., x0 > 0
and y0 = 0. Then

d′(x) = 2x− 2x0 − 2
a222
a211

x = 2

[
x

(
1−

a222
a211

)
− x0

]
.

Thus,
lim
x→0

d′(x) = d′(0) = −2x0 < 0,

and

lim
x→a−11

d′(x) = 2

[
a11

(
1−

a222
a211

)
− x0

]
.

Moreover, since y0 = 0, one has

d′′(x) = 2

(
1−

a222
a211

)
> 0.

To show the existence of a unique minimizer xm ∈ [0, a11] of d(x), we consider
three subcases:

Subcase 3a: Assume that 0 < x0 < a11

(
1−

a222
a211

)
. Then

lim
x→a−11

d′(x) > 0.

Similarly to the argument in Case 1, there is a unique minimizer xm ∈ (0, a11)
of d(x), d(x) is monotonically decreasing for 0 ≤ x ≤ xm, and d′(xm) = 0.
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Subcase 3b: Assume that x0 = a11

(
1−

a222
a211

)
. Then

lim
x→a−11

d′(x) = 0.

Since d′′(x) > 0 and d′(x) is continuous, d′(x) < 0 on [0, a11). Thus, d(x) is
strictly decreasing on [0, a11) until x→ a−11. It follows that xm = a11 is a unique
minimizer.

Subcase 3c: Assume that x0 > a11

(
1−

a222
a211

)
. Then

lim
x→a−11

d′(x) < 0.

Since d′′(x) > 0 and d′(x) is continuous, d′(x) < 0 on [0, a11). Thus, d(x) is
strictly decreasing on [0, a11]. It follows that xm = a11 is a unique minimizer.

It is easy to show that xm = a11 also is a global minimizer of all subcases
of Case 3. Let the point P2 = (x′, y′) be in the second quadrant on the ellipse.
Then P1 = (−x′, y′) is on the ellipse in the first quadrant. Since P0 = (x0, 0) is
on the positive x-axis, it follows that

P0P2 > P0P1 =
√
d(−x′) ≥

√
d(xm) = P0Pm.

Case 4: Let the point P0 = (x0, y0) be at the origin, i.e., x0 = y0 = 0.
Then

d′(x) = 2x− 2
a222
a211

x = 2x

(
1−

a222
a211

)
.

It follows that d′(x) = 0 if and only if x = 0. Since d′′(0) > 0, xm = 0 is the
unique minimizer of d(x). By a similar argument as in Case 3, xm = 0 also is a
global minimizer.

Algorithm 2 determines the exact global minimizer for Cases 2 to 4. For Case
1, the algorithm searches for a point that reduces the squared distance function
d(t), see (41), and terminates once d(t) starts to increase. It is immediate to see
that, since δ > 0 and the function d(t) is monotonically increasing or decreasing
on each quadrant, the algorithm stops after a finite number of iterations, Nδ,
that depends on δ. Let t∗m denote the global minimizer of d(t), and let tδm be
the approximation obtained with the algorithm. By construction, we have

|tδm − t∗m| ≤ 2δ.

Therefore,
0 ≤ lim

δ→0
|tδm − t∗m| ≤ lim

δ→0
2δ = 0,

which concludes the proof.
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Figure 2: P0 = (x0, y0) is a point in the (x, y)-plane, and M1 and M2 are two points on a
dumbbell curve that correspond to local minimizers of the squared distance function (46) in
the first quadrant.

When replacing the squared distance function by

d(t) = (a11 cos(t) + a51 cos(3t)− x0)2 + (a22 sin(t) + a62 sin(3t)− y0)2 (46)

for dumbbell curves, Algorithm 2 is not guaranteed to determine a global mini-
mize, but only a local one. This is illustrated by Figure 2: Let P0 = (x0, y0) be
a point in the first quadrant of the (x, y)-plane, and let M1 and M2 be two points
on the dumbbell curve that correspond to local minima of (46). Algorithm 2
terminates once it has determined tm, an approximation of the parameter value
t for the point M1. However, P0M1 > P0M2. Therefore, tm is not a global
minimizer for (46).

To determine an approximation of a global minimum, we apply a simple
sampling method. The idea is to sample points (x(t), y(t)) on the dumbbell
curve for equidistant values of t in −π < t ≤ π, see (28), in one of the four
quadrants, possibly including a point on the axes, and to choose the value of
the parameter t that produces the smallest squared distance to a given data
point (x0, y0); see Algorithm 5 for details. As the number of sample points
increases, Algorithm 5 will produce more accurate approximations of a global
minimizer of the squared distance function.

To show convergence of AFM, we first present the 2-block Gauss-Seidel (GS)
method described in [14]. Suppose that g(a1, . . . , am, t1, . . . , tn) : Rm+n → R is
a continuously differentiable function. Let a = [a1, . . . , am] and t = [t1, . . . , tn]
be the two components, i.e., the two blocks, of the variables of g. The 2-block
GS method minimizes the objective function g by alternating between fixing one
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Algorithm 5: Fast Algorithm of Estimation of the Parameter t for
Dumbbell Curves
Input : A point (x0, y0), coefficients a11, a51, a22, and a62 that define

the dumbbell curve (28), nt ≥ 2 the number of sample points
of t, the squared distance function d(t) =
(a11 cos(t) + a51 cos(3t)− x0)2 + (a22 sin(t) + a62 sin(3t)− y0)2.

1 δ = π/2(nt − 1);
2 if x0 ≥ 0 and y0 ≥ 0 then
3 t0 = 0;

4 if x0 ≥ 0 and y0 < 0 then
5 t0 = −π/2;

6 if x0 ≤ 0 and y0 ≤ 0 then
7 t0 = −π;

8 if x0 ≤ 0 and y0 > 0 then
9 t0 = π/2;

10 for i = 0, 1, · · · , nt − 1 do
11 di = d(t0 + iδ)

12 Find m such that dm is the minimum of all di’s;
13 tm = t0 +mδ;

Output:
√
d(tm) the approximate minimal distance between (x0, y0)

and the dumbbell curve, and tm the approximate solution of
the parameter.
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block of variables at a time; see Algorithm 6 for details. The proposed AFM-LS
scheme is a 2-block GS method since the objective function in problem (5) can
be written as

f(t,a) = f(t1, . . . , tn, a11, . . . , a62) =

n∑
i=1

(Z2
x,i + Z2

y,i), (47)

where

Zx,i =

3∑
j=1

(a2j−1,1 cos(jt) + a2j,1 sin(jt))− xi,

Zy,i =

3∑
j=1

(a2j−1,2 cos(jt) + a2j,2 sin(jt))− yi,

and (xi, yi) is the ith given data point in the (x, y)-plane. It is clear that the
function f(t,a) is continuously differentiable.

The minimization problem

arg min
t,a
{F (t,a) = f(t,a) + µ‖Wa‖1},

where t = [t1, t2, . . . , tn]T ∈ (−π, π]n and a = [a11, a21, . . . , a61, a12, a22, . . . , a62]T ,
is equivalent to problem (5) when µ = 0 and to problem (6) when µ > 0. The
following result is a rewording of [14, Theorem6.3(ii)].

Theorem 7. Suppose that global minimization of the function g(a, t) with re-
spect to each component of the argument vectors is well defined. Then the 2-block
GS method generates an infinite sequence {a(k), t(k)}∞k=0 such that if the level
set of g corresponding to the initial point [a(0), t(0)],

L = {[a, t] ∈ Rm+n : g(a, t) ≤ g(a(0), t(0))},

is compact, then limk→∞∇g(a(k), t(k)) = 0 and there exists at least one limit
point that is a stationary point of g.

Algorithm 6: 2-block Gauss-Seidel Method

Input : g([a, t]) and initial guess [a(0), t(0)] ∈ Rm+n.
1 for k = 1, 2, . . . do
2 a(k) = arg mina g(a, t(k−1));

3 t(k) = arg mint g(a(k), t);

Output: [a(k), t(k)] ∈ Rm+n.

To apply Theorem 7 to AFM-LS, we need the following result.
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Proposition 1. Let the function f be defined by (47). Then the level set

L =
{

[a, t] ∈ R12+n : f(a, t) ≤ f(a(0), t(0))
}

of f corresponding to the point [a(0), t(0)] is compact, where we assume that the
level set is non-empty.

Proof. The proposition follows from the continuity of the function (47).

Proposition 2. AFM-LS generates a sequence [a(k), t(k)], k = 0, 1, . . . , that
converges to a stationary point [a(K), t(K)] of f as in (47), which is another
form of the objective function of (5).

Proof. Problems (19) and (21) are minimization problems with respect to the
two components of problem (5). Thus, the first assumption of Theorem 7 is
satisfied.

By Proposition 1, the level set L of f corresponding to the initial point
[a(0), t(0)] is compact. Hence, the second assumption of Theorem 7 is satisfied.

The function f is continuously differentiable. Therefore, by Theorem 7,

lim
k→∞

∇f(a(k), t(k)) = 0.

The proposition is thus established.

Recall that, for the model matrix T̃ ∈ Rn×6 in (3), we assume that the
parameters ti are in the interval (−π, π]. Moreover, we assume that the fitted
curve does not intersect itself. These two assumptions secure that any point
on the curve corresponds to a unique parameter value ti. This is trivial for an
ellipse, and it is not hard to arrive at the same conclusion for a curve defined
by (28) by using Theorem 2. Hence, under the condition that there are at least
6 points, whose closest points on the curve are pair-wise distinct, the matrix T̃
has full column rank. In addition, when these points on the curve are not too
close to each other, T̃ is fairly well-conditioned. In this case,

T =

[
T̃ 0

0 T̃

]
also has full column rank and is fairly well-conditioned. Since we seek to fit
a curve to a large number, n, of points, one has n � 6. The two conditions
mentioned above are typically satisfied. Therefore, for the remainder of this
section, we assume that the iterates T (k) generated by AFM have full column
rank and their condition numbers are uniformly bounded.

Theorem 8. Let z = [x1, x2, . . . , xn, y1, y2, . . . , yn]T ∈ R2n, where (xi, yi),
i = 1, 2, . . . , n, are the n given points, and n � 6. Suppose that [a∗, T ∗]
is an optimal solution of (5). Let the matrix T (k) be determined by t(k) as
in (4) and assume the condition numbers of T (k) are uniformly bounded. Let
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a(K) := limk→∞ a
(k) and T (K) := limk→∞ T (k) be the two components of the

stationary point generated via AFM-LS. Then,

‖dK − d∗‖ ≤ ‖θa∗‖, (48)

where dK = ‖T (K)a(K) − z‖, d∗ = ‖T ∗a∗ − z‖, and θ = T ∗ − T (K).

Proof. Let
d′ = ‖T (K)a∗ − z‖.

Given T (K), a(K) is the unique solution of

min
a
‖T (K)a− z‖22.

Thus,
dK ≤ d′.

The definition of d∗ guarantees

d∗ ≤ dK ≤ d′. (49)

By the Cauchy-Schwarz inequality, we have

d′ = ‖(T ∗ − θ)a∗ − z‖ = ‖T ∗a∗ − z − θa∗‖ ≤ d∗ + ‖θa∗‖. (50)

If d′ ≤ d∗ + ‖θa∗‖ < dK , then dK > d′, contradicting inequality (49). If
d′ ≤ d∗ + ‖θa∗‖ = dK , then via (49),

d′ = dK .

Then
d′ = d∗ + ‖θa∗‖ = dK .

It follows that
dK − d∗ = ‖θa∗‖.

If d∗ + ‖θa∗‖ > dK , then via (49) and (50),

dK ≤ d′ ≤ d∗ + ‖θa∗‖.

Therefore,
0 ≤ dK − d∗ ≤ ‖θa∗‖.

As for AFM-FISTA (µ > 0), since the `1-regularization term is not contin-
uously differentiable, we cannot apply Theorem 7. Nevertheless, we have the
following results.
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Theorem 9. The objective function values of problem (6) with q = 1 generated
by the iterates of AFM-FISTA form a strictly monotonically decreasing sequence
which converges to a positive value, assuming any two consecutive iterates of
a are not equal and the condition numbers of all iterates T (k) are uniformly
bounded.

Proof. Define the objective function value at the kth iteration to be

d(k) = ‖T (k)a(k) − z‖22 + µ‖Wa(k)‖1, k = 1, 2, . . . , (51)

where T (k) and a(k) are the kth determined by AFM-FISTA. These iterates are
calculated at the end of the kth iteration.

Since the d(k) are bounded below by zero, to prove the convergence, we only
need to show that the sequence is strictly monotonically decreasing. Based on
the analysis of the basic approximation model of the iterative soft-thresholding
algorithm (see [13, Section 2.3]), the unique minimizer of problem (20) with the
given matrix T (k) is

a(k+1) = arg min
a

{
µ‖Wa‖1 +

L

2

∥∥∥∥a− (a(k) − 1

L
∇f(a(k))

)∥∥∥∥2
}
,

where f(a) = ‖T (k)a−z‖22,∇f denotes the gradient of f , and L = 2λmax(T (k)TT (k)).
Since a(k+1) 6= a(k), one has

d(k) > d
(k+1)
0 := ‖T (k)a(k+1) − z‖22 + µ‖Wa(k+1)‖1.

Let t
(k+1)
truei be a true solution that minimizes the distance function d(t) in Algo-

rithm 5 defined by a(k+1) and zi. We have that t
(k+1)
i → t

(k+1)
truei as the number

of samples increases to infinity.
Since Algorithm 5 determines the unique solution T (k+1) of (21), given

a(k+1), one has

d
(k+1)
0 ≥ d(k+1).

Hence,
d(k) > d(k+1), k = 1, 2, . . . .

One can show the following theorem similarly as Theorem 9.

Theorem 10. The objective function values of problem (5) generated by the
iterates of AFM-LS form a strictly monotonically decreasing sequence, which
converges to a positive value, under the assumption that any two consecutive
iterates a(k) are not equal and the condition numbers of all iterates T (k) are
uniformly bounded.

The following theorem gives conditions when a stationary point of AFM is
found.
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Theorem 11. Define d(k) as in (51) and assume that the condition numbers of
all iterates T (k) are uniformly bounded. Consider AFM-LS (µ = 0) and AFM-
FISTA (µ > 0). If T (K−1) = T (K) or a(K−1) = a(K) for some K, then for all
k ≥ K, one has

d(k) = d(k+1), T (k) = T (k+1), a(k) = a(k+1).

Proof. We divide the proof of the theorem into two parts.
Part 1: Assume that T (K−1) = T (K). Then

a(K) = arg min
a
‖T (K−1)a− z‖22 + µ‖Wa‖1

= arg min
a
‖T (K)a− z‖22 + µ‖Wa‖1

= a(K+1).

Since the Algorithms 2 and 5 determine a unique solution to problem (21), we
have

T (K) = T (K+1). (52)

It follows by (51) that d(k) = d(k+1), for k ≥ K.
Part 2: Assume that a(K−1) = a(K). Similarly to the process of reaching

(52), one has T (K−1) = T (K). The rest of the proof is the same as in Part 1.

4. Computed Examples

In this section, we seek to fit a curve to the edge of the black hole at the
center of galaxy M87 [15], the edge of the Andromeda galaxy [16], and the edges
of two different brightnesses of MyCn18 [17], a young planetary nebula; see the
first column of Figure 3 for the images of these celestial bodies. Each of the
original color images from NASA.org has three color channels, referred to as
red, green and blue. For our experiments, we extract data points only from the
red channel; see the second column of Figure 3. The pixel values from the red
channel vary from 0 to 255, with 0 meaning no red color to 255, meaning the
brightest red.

Define the fitting error of the fitted curve generated at the kth iteration as

e(k) =

n∑
i=1

d
(k)
i , (53)

where d
(k)
i is the shortest distance between the point (xi, yi) and the curve gen-

erated in the iteration. Since the e(k) decrease monotonically with k according
to Theorems 9 and 10, we let the stopping criterion for AFM be

e(k−1) − e(k)

e(k−1)
≤ 10−3.

For Algorithm 2, we set the step size to δ = π/1080, and for Algorithm 5 the
number of sample points is nt = 540.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 3: (a1) The black hole at the center of galaxy M87 and (a2) its red channel image;
(b1) The Andromeda galaxy and (b2) its red channel image; (c1) MyCn18 and (c2) its red
channel image.
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(a) (b)

Figure 4: (a) The black hole at the center of M87, and (b) The points where the pixel value
in the red channel equals 60.

The experiments are run on an Apple MacBook Air laptop with an M2 8-
Core 3.49 GHz chip and 8 GB of RAM, using macOS Ventura 13.0 and 64-bit
arithmetic. All computations are carried out in Rosetta-translated MATLAB
R2022b with about 15 significant decimal digits.

4.1. Circle Fitting

Figure 4 (a) is the central portion of an image of the black hole at the center
of galaxy M87 taken by the Event Horizon Telescope. The original resolution
is 2330 × 4000 pixels, from which we downsize the image to about 25% of the
original size and crop it to its central region. The resulting resolution is 980×980
pixels. We seek to fit a circle to points whose pixel value in the red channel
equals 60; see panel (b). There are a total of 1,946 such points. Results for the
direct circle-fitting method (DCF), the iterative least-algebraic-residuals (LAR)
method, the iterative geometric least-squares (GLS) method described in [6],
and the direct geometric least-squares (DGLS) method proposed in [8] are listed
in Table 1. DCF and DGLS are at least more than 100 times faster than LAR
and GLS while DCF produces the smallest fitting error, which is more than 12%
smaller than the next smallest fitting error produced by GLS. The fitted circles
and their corresponding individual fitting errors, i.e., the shortest distance from
a point to the fitted circle for CDF and GLS are shown in Figure 5. These
experiments demonstrate that, compared with other methods, DCF is efficient
and accurate.

4.2. Methods of Computing the ti’s

Figure 6(a) shows the main portion of a two-color composite image of the
Andromeda galaxy from NASA’s Galaxy Evolution Explorer. Here blue rep-
resents far-ultraviolet light and orange represents near-ultraviolet light. The
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Table 1: Circle fitting test for 1,946 points in Figure 4(b): Method, CPU time in seconds,
fitting error, center and radius.

Method Time Error Center Radius
DCF ≤ 0.0001 32,022 (503.5, 529.95) 292.78
LAR 0.0109 37,804 (512.95, 540.25) 293.38
GLS 0.0091 36,556 (512.87, 537.83) 293.18

DGLS ≤ 0.0001 36,801 (512.2, 538.78) 293.64

(a) (b)

(c) (d)

Figure 5: Fitted circles for data points in Figure 4(b) by (a,b) DCF, and (c,d) GLS. Each
gray line segment represents the shortest distance between a point and the fitted circle.
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(a) (b)

Figure 6: (a) The Andromeda galaxy, and (b) the points whose pixel value in the red channel
equals 45.

Table 2: Computation of ti’s for the standardized 3, 528 points in Figure 6(b). The major
and minor axes of the ellipse are listed in the first line of Table 3. The CPU time is measured
in seconds.

Method Time Error
Algorithm 2 0.0117 200,556

Interior points 2.3085 529,429
Trust-region 19.6524 729,690

resolution of the original image is 7, 000× 9, 400 pixels, which we downsize to a
smaller image about 4% of the original size and crop to show the central region
of the original large image. The resulting image has 760 × 1, 320 pixels. We
filter out the points whose pixel value in the red channel equals 45; see panel (b).
There are 3, 528 such points, which we first standardize by using Algorithm 1.
We then apply Algorithm 2, the interior point method, and the trust-region
method to compare their performances.

Table 2 lists results for the computed ti’s, where the ellipse is defined by
a11 = 622.26 and a22 = 163.39. For each method, the initial guess of the
parameter value ti associated with a given point is obtained by (16). The step
size of Algorithm 2 is set to δ = π/1080. We measure the error of the computed
solution by

n∑
i=1

√
(a11 cos(ti)− xi)2 + (a22 sin(ti)− yi)2.

Both the interior point method and the trust-region method terminate the com-
putations prematurely, because they exceed the default upper bound of the num-
ber of function evaluations in MATLAB, 8, 500 and 352, 800, respectively. Table
2 shows Algorithm 2 to be faster than the other methods in our comparison and
to determine the most accurate approximations of the ti’s.

4.3. Ellipse Fitting

We compare several methods for fitting ellipses to the set of data points
shown in Figure 6(b). The test results are listed in Table 3. AFM-LS shows its
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Table 3: Ellipse fitting test for the 3,528 points in Figure 6(b): Method, CPU time in seconds,
fitting error, center, major axis, minor axis, and the tilt angle of the fitted ellipse in degrees.

Method Time Error Center Major Axis Minor Axis Tilt
AFM-LS 0.0417 200,556 (672.43, 379.94) 622.26 163.39 24.27

LAR 6.3654 325,955 (617.44, 366.47) 480.45 244.22 163.28
GLS - - - - - -
DEF ≤ 0.0001 314,228 (655.74, 373.65) 516.58 258.62 15.48

DLAR 0.0013 381,297 (654.96, 373.41) 613.59 328.14 8.48

Figure 7: The 312 selected points from Figure 6(b)

superiority over the other methods in our comparison with regard to efficiency,
fitting error, and robustness against outliers. LAR is applied with the constraint
a + c = 1 as proposed in [6]. Due to the amount of noise in the data, GLS
fails to detect an ellipse. DEF and DLAR are the fastest of the methods, but
the computed ellipses are strongly affected by the outliers and these methods
produce large fitting errors.

To compare the fitting results obtained with GLS to those of other methods,
we rotate all the points in Figure 6(b) around its center (672.43, 379.94) by
24.27 degrees clockwise, and discard points whose x- or y-coordinates are more
than 650 and 250, respectively, away from the center to reduce the number
of outliers. We then rotate all the remaining 3,112 points around the center
counterclockwise by 24.27 degrees. GLS still fails to converge within 30 minutes.
We therefore reduce the data set by picking every 10th point; see Figure 7 for
a display of the resulting 312 points. The results obtained when fitting ellipses
to this small set of points are listed in Table 4. GLS produces the smallest
fitting error, but AFM-LS is more than 70 times faster and produces a similarly
visually appealing ellipse; see Figure 7.
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(a) (b)

(c) (d)

Figure 8: Fitted ellipses for data points in Figure 6(b) by (a,b) AFM-LS, and (c,d) DEF with
trace constraint. Each gray line segment shows the distance between the point and the fitted
ellipse.

(a) (b)

(c) (d)

Figure 9: Fitted ellipses for data points in Figure 7 by (a,b) AFM-LS, and (c,d) GLS. Each
gray line segment shows the distance between the point and the fitted ellipse.
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Table 4: Ellipse fitting test for the 312 points in Figure 7: Method, CPU time in seconds,
fitting error, detected center, major axis, minor axis, and the tilt angle of the fitted ellipse in
degrees.

Method Time Error Center Major Axis Minor Axis Tilt
AFM-LS 0.0039 11,519 (681.95, 370.31) 616.84 135.09 26.92

LAR 0.0076 12,718 (638.65, 355.58) 533.57 149.77 153.94
GLS 0.2755 9,466 (633.63, 365.26) 644.15 139.24 154.49
DEF ≤ 0.0001 12,570 (647.63, 368.76) 549.97 169.95 24.99

DLAR ≤ 0.0001 13,821 (648.31, 368.53) 588.22 188.35 24.38

4.4. Dumbbell Curve Fitting

Figure 10(a) is a Hubble telescope snapshot of MyCn18, a young planetary
nebula. The resolution of the image is 1, 280× 1, 280 pixels. We form two sets
of data points from the image. The first and second sets consist of the points
whose pixel values in the red channel equal 46 and 160, respectively; see panel
(b) and (c). There are 3, 528 points in the first set and 1, 601 in the second.

This example uses FISTA to determine a suitable dumbbell curve. We set
the step size in FISTA to s = 1 for the fastest global convergence; see [13]. The
regularization parameter µ is defined as

µ = αLf ,

where Lf = 2λmax(TTw Tw) and α > 0 is a user-specified parameter. This
parameter also is used to define soft thresholding, which is carried out in each
iteration of FISTA. Let aW be the available computed approximate solution
and let φα(·) denote the soft-thresholding operator for a specified α > 0,

φα(wijaij) :=

{
0 if |wijaij | ≤ α,
sign(wijaij)(|wijaij | − α) if |wijaij | > α.

Here wij is the weight for the coefficient aij . We have found that letting 500α be
the half-length of the major axis of the dumbbell curve to be a suitable choice.
For example, if the half-length is about 5, then we set α = 0.01.

In our first experiment, we seek to fit a dumbbell curve to the points in
Figure 10(b). The simplest fitting method is to solve the least-squares problem
(19) by QR factorization of T . We obtain the solution

ALS =


421.8357 2.5434
3.2423 309.4641
−13.5107 −9.1222
22.8378 4.0918
49.1261 −5.1334
−2.3615 73.0413

 .
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All the coefficients are nonvanishing. The computed dumbbell therefore is not
symmetric about its center, because symmetry requires (27) to hold. The com-
puted solution is displayed in Figure 11(a).

We turn to an application of FISTA. Following the heuristics for determining
weights for the coefficients discussed at the end of Section 3.5, we set w11 =
w22 = 1, w51 = 3.1, and w62 = 2. To force the rest of the coefficients to vanish
to preserve symmetry, we set their weights to wij = 10. The half-length of the
major axis is about 500. We therefore set α = 1. The iterations with FISTA
are terminated when the relative difference of two consecutive iterates is smaller
than 10−3. We use the same weights and α-value for fitting dumbbell curves
to points in Figure 10(b) and all the remaining AFM-FISTA fitting tests. For
each test, we report the ratio a22/a62 as the deepness of the dips of a dumbbell
curve. The smaller this ratio is, the deeper are the dips. We list the results
in Table 5. Figure 11(c) demonstrates that AFM-FISTA determines dumbbell
curves that capture the edge of the nebula and preserve symmetry is preserved.
The latter is also evident from the zero entries of the computed solution

AFISTA =


425.7607 0

0 307.6677
0 0
0 0

44.0641 0
0 69.9298

 .

In our second experiment, we seek to fit a dumbbell curve to the points
in Figure 10(c). Straightforward solution of the least-squares problem (19) by
QR factorization of T gives a self-intersecting curve; see Figure 11(a). All coef-
ficients of the solution are nonvanishing, similarly as in the previous example.
AFM-FISTA generates a non-self-intersecting dumbbell curve that is symmetric
about the center and captures the brighter edge of the nebula. The solutions
determined by this method have many vanishing coefficients,

AFISTA =


253.3355 0

0 162.5876
0 0
0 0

74.9386 0
0 94.1630

 .

4.5. Curve Fitting to Subsampled Points

For the first test in this subsection, we randomly subsampled 10% of the
data points in Figure 6(b) five times and fit ellipses to them using AFM-LS.
The results demonstrate that the subsampling method is up to more than 10
times faster and generates well-fitted ellipses; see Figure 13 and Table 6.

In the next experiment, we fit dumbbell curves to randomly subsampled 10%
of the data points in Figure 10(b) five times using AFM-LS and AFM-FISTA
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(a) (b) (c)

Figure 10: (a) MyCn18, (b) The points where the pixel value in the red channel equals 46,
and (c) The points where the pixel value in the red channel equals 160.

Table 5: Results for dumbbell curve fitting to data points in Figure 10(b) and (c): Panel of
the figure, number of data points, method, CPU time in seconds, number of iterations, fitting
error, center, tilt angle in degrees, and deepness of the dips.

Panel Points Method Time Iter. Error Center Tilt Dip
(b) 3,975 AFM-LS 2.5558 9 70,901 (627.09, 646.39) 84.78 4.24
(b) 3,975 AFM-FISTA 1.3878 4 79,093 (627.09, 646.39) 84.78 4.40
(c) 1,601 AFM-LS 3.8086 33 48,803 (658.67, 649) 86.93 1.18
(c) 1,601 AFM-FISTA 3.6097 26 51,589 (658.67, 649) 86.93 1.73

Table 6: Results for fitting ellipses 10% of randomly subsampled points, and to all data points
in Figure 6(b) using AFM-LS. The number of data points, CPU time in seconds, number of
iterations, fitting error, center of the curve, major axis, minor axis, and the tilt angle in
degrees are shown. The first row shows the result when fitting all the data points.

Points Time Iter Error Center Major Axis Minor Axis Tilt
3,528 0.0417 14 200,556 (672.43, 379.94) 622.26 163.39 24.27
353 0.0079 18 194,929 (692.65, 361.69) 643.63 158.06 23.78
353 0.0044 14 210,027 (650.76, 390.22) 626.98 173.62 22.83
353 0.0050 16 192,947 (654.64, 381.15) 597.23 162.19 24.41
353 0.0044 14 235,286 (705.16, 385.48) 628.76 162.79 24.44
353 0.0037 11 213,995 (664.87, 393.36) 603.02 160.89 24.76
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(a) (b)

(c) (d)

Figure 11: Fitted curves for data points in Figure 10(b) by (a,b) AFM-LS, and (c,d) AFM-
FISTA. Each gray line segment represents the shortest distance between a point and the fitted
curve.
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(a) (b)

(c) (d)

Figure 12: Fitted curves for data points in Figure 10(c) by (a,b) AFM-LS, and (c,d) AFM-
FISTA. Each grey line segment represents the shortest distance between a point and the fitted
curve.

(a) (b)

Figure 13: Results for fitting ellipses to 10% of randomly subsampled points, and to all data
points in Figure 6(b) using AFM-LS. The solid curves and black asterisk are respectively
the fitted ellipse and its centers for all the points. The dotted curves and hollow dots are
respectively the fitted ellipses and their centers for the subsampled points.
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Table 7: Dumbbell curve fitting to randomly subsampled 10% of the data points and all the
data points in Figure 10(b). The table shows the number of data points, the method, CPU
time in seconds, number of iterations, fitting error, center of the curve, tilt angle in degrees,
and the deepness of the dips. The first and the seventh row display result for fitting all the
data points.

Points Method Time Iter. Error Center Tilt Dip
3,975 AFM-LS 2.5558 9 70,901 (627.09, 646.39) 84.78 4.24
398 AFM-LS 0.4866 14 75,198 (618.40, 663.78) 79.35 4.28
398 AFM-LS 0.2741 8 68,080 (639.88 645.00) 83.19 4.26
398 AFM-LS 0.3827 11 73,198 (624.11, 661.13) -86.92 4.71
398 AFM-LS 0.5181 18 76,860 (613.61, 655.80) -89.63 4.81
398 AFM-LS 0.4601 16 79,767 (614.92, 627.94) 83.57 4.58

3,975 AFM-FISTA 1.3878 4 79,093 (627.09, 646.39) 84.78 4.40
398 AFM-FISTA 0.1769 5 94,007 (626.98, 622.60) 82.16 4.61
398 AFM-FISTA 0.1724 5 88,197 (630.18, 666.08) -87.62 4.88
398 AFM-FISTA 0.1140 4 90,915 (624.62, 643.87) -87.86 4.77
398 AFM-FISTA 0.1381 4 105,224 (620.72, 627.45) 89.50 4.30
398 AFM-FISTA 0.1378 4 93,980 (626.11, 662.86) -84.01 5.24

with the same weighting matrix W and soft-thresholding value α as in Section
4.4. The subsampling combined with AFM-LS or AFM-FISTA is up to more
than 12 times faster than using all points, and generates curves that capture
the edge of the nebula; see Figure 14 and Table 7.

5. Conclusion

The direct circle-fitting (DCF) method and the iterative alternating methods
AFM-LS proposed in this paper minimize the sum of the geometric distances
between the generated curves and the given data points. They are efficient
methods for fitting curves to a large number of data points. The experimental
results show that they are robust against noise in the data. We provide a heuris-
tic technique for choosing weights and the regularization parameter for fitting
dumbbell curves using AFM-FISTA by exploring the relationship between the
coefficients. We show that AFM-LS converges to a solution that is a station-
ary point of the objective function. We also demonstrate that the objective
function values generated by iterates of AFM form a strictly monotonically de-
creasing convergent sequence. Compared with other methods for fitting circles
and ellipses, DCF and AFM-LS are fast, outlier-resistant, and produce smaller
fitting errors. The experimental results for subsampling methods illustrate that
they are competitive with regard to CPU time and generally determine suitable
curves.
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(a) (b)

(c) (d)

Figure 14: Fitted dumbbell curves for 10% of randomly subsampled points and all the data
points in Figure 10(b) by (a,b) AFM-LS, and (c,d) AFM-FISTA. The solid curves and black
asterisks are respectively the fitted dumbbell curves and their centers for all the points. The
dotted curves and hollow dots are respectively the fitted dumbbell curves and their centers
for the subsampled points.
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