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Abstract Gauss quadrature is a popular approach to approximate the value of an
integral determined by a measure with support on the real axis. Laurie proposed an
(𝑛 + 1)-point quadrature rule, referred to as an anti-Gauss rule, that gives an error of
the same magnitude and of opposite sign as the associated 𝑛-point Gauss quadrature
rule for all polynomials of degree up to 2𝑛 + 1. Laurie also described averaged rules
that are the average of an 𝑛-point Gauss rule and the associated (𝑛 + 1)-point anti-
Gauss rule. The difference between an averaged rule and the associated Gauss rule
have recently been used to estimate the quadrature error in the Gauss rule. For many
integrands and measures the error estimate so obtained is quite accurate, but not
for all integrands and measures. This paper proposes to use the difference between
enhanced averaged rules introduced in [1, eq. (1.14)] and the associated Gauss rule
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to estimate the quadrature error in the latter. The enhanced averaged rules generalize
averaged rules introduced by Laurie. Also enhanced averaged rules associated with
Gauss rules determined by measures with support in the complex plane are described.
Computed examples illustrate the performance enhanced averaged rules applied to
error estimation of Gauss rules.

1 Introduction

Orthogonal polynomials and quadrature play an important role in computational
mathematics; see, e.g., Gautschi [2] for discussions of many applications. Milo-
vanović has made numerous significant contributions to both the analysis and appli-
cations of orthogonal polynomials and quadrature; see, e.g., [3, 4, 5, 6, 7, 8, 9] for
some recent publications.

The present paper is concerned with error estimation for Gauss quadrature rules.
Let 𝑑𝜇 be a nonnegative measure with support on the real axis such that the integral

I( 𝑓 ) :=
∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝜇(𝑥), −∞ ≤ 𝑎 < 𝑏 ≤ ∞, (1)

is a positive definite linear functional on the space of algebraic polynomials P, i.e.,
such that the bilinear form

( 𝑓 , 𝑔) := I( 𝑓 𝑔)

is an inner product on P. Without loss of generality we may assume that I(1) =∫
𝑑𝜇 = 1. Let 𝑝0, 𝑝1, 𝑝2, . . . denote the sequence of monic orthogonal polynomials

with respect to the functional I, i.e.,

I(𝑝 𝑗 𝑝𝑘) = (𝑝 𝑗 , 𝑝𝑘)
{
> 0, 𝑗 = 𝑘,

= 0, 𝑗 ≠ 𝑘.

Thus, 𝑝 𝑗 is of degree 𝑗 with leading coefficient one. The polynomials 𝑝 𝑗 satisfy a
three-term recursion relation of the form

𝑝1 (𝑥) = (𝑥 − 𝑎0)𝑝0 (𝑥), 𝑝0 (𝑥) = 1,
𝑝𝑖+1 (𝑥) = (𝑥 − 𝑎𝑖)𝑝𝑖 (𝑥) − 𝑏𝑖 𝑝𝑖−1 (𝑥), 𝑖 = 1, 2, . . . , (2)

with 𝑏𝑖 > 0 and 𝑎𝑖 ∈ R. The recursion relations for 𝑝0, 𝑝1, . . . , 𝑝𝑛 can be expressed
as

𝑥


𝑝0 (𝑥)
𝑝1 (𝑥)
...

𝑝𝑛−1 (𝑥)


= 𝐽𝑛


𝑝0 (𝑥)
𝑝1 (𝑥)
...

𝑝𝑛−1 (𝑥)


+


0
...

0
𝑝𝑛 (𝑥)


,

where



Enhanced Averaged Quadrature Rules with Application to Error Estimation 3

𝐽𝑛 =



𝑎0 1 0
𝑏1 𝑎1 1

. . .

. . .
. . . 1

0 𝑏𝑛−1 𝑎𝑛−1


∈ R𝑛×𝑛. (3)

The matrix 𝐽𝑛 can be symmetrized by a real diagonal similarity transformation.
Denote the symmetrized tridiagonal matrix so obtained by 𝑇𝑛.

Let the function 𝑓 be continuous on the convex hull of the support of the measure
𝑑𝜇. The 𝑛-point Gauss quadrature rule for the approximation of the functional I is
of the form

G𝑛 ( 𝑓 ) :=
𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖)𝑤𝑖 (4)

and is characterized by the property that

I( 𝑓 ) = G𝑛 ( 𝑓 ), ∀ 𝑓 ∈ P2𝑛−1, (5)

where P2𝑛−1 denotes the set of all polynomials of degree at most 2𝑛−1; see Gautschi
[2] or Szegő [10] for discussions on Gauss quadrature.

It is well known that the eigenvalues and the square of the first component of
the normalized eigenvectors of 𝑇𝑛 are the nodes and weights of the Gauss rule
(4), respectively. They can be computed quite efficiently with the Golub-Welsch
algorithm (see, e.g., [2, 11, 12]) or by a method described by Laurie [13].

The Gauss rule (4) can be expressed as

G𝑛 ( 𝑓 ) = 𝑒𝑇1 𝑓 (𝑇𝑛)𝑒1, (6)

where 𝑒1 = [1, 0, . . . , 0]𝑇 ∈ R𝑛 denotes the first axis vector and the superscript 𝑇

stands for transposition. This representation allows the evaluation of the Gauss rule
without computing the spectral factorization of 𝑇𝑛. This may be attractive for some
functions 𝑓 . More generally,

I( 𝑓 ) = 𝑒𝑇1 𝑓 (𝑇𝑛)𝑒1, ∀ 𝑓 ∈ P2𝑛−1, (7)

for any tridiagonal matrix

𝑇𝑛 =



𝑎̂0 𝑐1 0
𝑏̂1 𝑎̂1 𝑐2

. . .
. . .

. . .

𝑏̂𝑛−2 𝑎̂𝑛−2 𝑐𝑛−1
0 𝑏̂𝑛−1 𝑎̂𝑛−1


∈ R𝑛×𝑛, (8)

such that the polynomials
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𝑐1𝑝1 (𝑥) = (𝑥 − 𝑎̂0)𝑝0 (𝑥), 𝑝0 (𝑥) = 1,
𝑐𝑖+1𝑝𝑖+1 (𝑥) = (𝑥 − 𝑎̂𝑖)𝑝𝑖 (𝑥) − 𝑏̂𝑖 𝑝𝑖−1 (𝑥), 𝑖 = 1, 2, . . . , 𝑛 − 1,

are orthogonal with respect to the functional I. The matrices 𝑇𝑛 and 𝐽𝑛 are related
in the following way:

𝑎𝑖 = 𝑎̂𝑖 , 𝑏𝑖 = 𝑏̂𝑖𝑐𝑖 . (9)

An analogous discussion holds in the case when the functional I is not positive
definite but quasi-definite on P𝑛−1. The functional I is said to be quasi-definite if all
𝑘 × 𝑘 leading principal submatrices (for 𝑘 = 1, 2, . . . , 𝑛) of the Hankel matrix

𝐻𝑛 =



𝜇0 𝜇1 𝜇2 𝜇3 · · · 𝜇𝑛−1
𝜇1 𝜇2 𝜇3 · · · 𝜇𝑛

𝜇2 𝜇3
...

𝜇3
...

. . .

𝜇𝑛−1 · · · 𝜇2𝑛−2


determined by the moments

𝜇 𝑗 := I(𝑥 𝑗 ), 𝑗 = 0, 1, 2, . . . ,

are nonsingular; see, e.g., [14]. The crucial difference with respect to the case of a
positive definite functional I is that the coefficients 𝑏𝑖 in the three-term recurrence
relation (2) are not necessarily positive; they only are known to be nonvanishing. If I
is real-valued functional, then the coefficients 𝑏𝑖 and 𝑎𝑖 are real for all 𝑖. It follows that
the symmetrization of the matrix (8) may have complex entries, and the eigenvalues
of the symmetrized matrix may be complex-valued and have multiplicity larger than
one. However, formula (7) remains valid and we may consider it an 𝑛-point Gauss
quadrature rule for I. We remark that if the matrix 𝑇𝑛 has multiple eigenvalues, then
expression (7) is not of the form (4); see, for example, [15, p. 10]. Since the matrix
𝑇𝑛 is unreduced, i.e., all subdiagonal entries are nonvanishing, this matrix has 𝑛

distinct eigenvalues if and only if it is diagonalizable, in which case the Gauss rule
is of the form (4). Non-real nodes and weights in (4) (if they exist) come in complex
conjugate pairs. Therefore the value of G𝑛 ( 𝑓 ) is a real number if the integrand 𝑓 is
real-valued.

This paper is concerned with enhanced averaged rules that are associated with a
quasi-definite functional I. Consider the enhanced averaged rule that is the average
of the (𝑛 + 𝑘)-point generalized anti-Gauss quadrature rule

G̃ (𝑘 )
𝑛+𝑘 ( 𝑓 ) :=

𝑛+𝑘∑︁
𝑖=1

𝑓 (𝑥̃ (𝑘 )
𝑖

)𝑤 (𝑘 )
𝑖

(10)

and the Gauss rule (4). The rule (10) satisfies
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(I − G̃ (𝑘 )
𝑛+𝑘) ( 𝑓 ) = −(I − G𝑛) ( 𝑓 ), ∀ 𝑓 ∈ P2𝑛+2𝑘−1, (11)

for some 𝑘 ≥ 2; see Section 2. This rule was introduced in [1] for a positive definite
functional I and generalizes the (𝑛 + 1)-point anti-Gauss rule described by Laurie
[16]. The latter is obtained when 𝑘 = 1. The present paper is concerned with the
more general case when the functional I is allowed to be quasi-definite. It follows
from (5) that

G̃ (𝑘 )
𝑛+𝑘 ( 𝑓 ) = I( 𝑓 ), ∀ 𝑓 ∈ P2𝑛−1. (12)

We can express (11) as

G̃ (𝑘 )
𝑛+𝑘 ( 𝑓 ) = (2I − G𝑛) ( 𝑓 ), ∀ 𝑓 ∈ P2𝑛+2𝑘−1.

This shows that when the quadrature rule G̃ (𝑘 )
𝑛+𝑘 exists, we may consider it an (𝑛+ 𝑘)-

point Gauss quadrature rule associated with the functional 2I − G𝑛. Existence of
the quadrature rule G̃ (𝑘 )

𝑛+𝑘 is guaranteed if the functional 2I − G𝑛 is quasi-definite on
P𝑛+𝑘−1.

Let 𝜋0, 𝜋1, 𝜋2, . . . , 𝜋𝑛+𝑘 be the unique family of monic orthogonal polynomials
associated with the bilinear form

⟨ 𝑓 , 𝑔⟩ := (2I − G𝑛) ( 𝑓 𝑔).

These polynomials satisfy the recursion formulas

𝑥


𝜋0 (𝑥)
𝜋1 (𝑥)
...

𝜋𝑛+𝑘−1 (𝑥)


= 𝐽

(𝑘 )
𝑛+𝑘


𝜋0 (𝑥)
𝜋1 (𝑥)
...

𝜋𝑛+𝑘−1 (𝑥)


+


0
...

0
𝜋𝑛+𝑘 (𝑥)


,

where

𝐽
(𝑘 )
𝑛+𝑘 =



𝛼0 1 0
𝛽1 𝛼1 1

. . .

. . .
. . . 1

0 𝛽𝑛+𝑘−1 𝛼𝑛+𝑘−1


∈ R(𝑛+𝑘 )×(𝑛+𝑘 ) (13)

for 𝑛 ≥ 2 and 𝑘 ≥ 1. Then we have

G̃ (𝑘 )
𝑛+𝑘 ( 𝑓 ) = 𝑒𝑇1 𝑓 (𝐽 (𝑘 )

𝑛+𝑘)𝑒1.

There is an interesting relation between the matrices 𝐽𝑛 and 𝐽
(𝑘 )
𝑛+𝑘 . Note that the

functionals I and 2I − G𝑛 coincide on P2𝑛−1. This means that 𝑎𝑖 = 𝛼𝑖 and 𝑏𝑖 = 𝛽𝑖

for 𝑖 = 0, 1, . . . , 𝑛−1. Only the last 𝑘 rows of 𝐽 (𝑘 )
𝑛+𝑘 have to be computed to determine

the quadrature rule G̃ (𝑘 )
𝑛+𝑘 if we already know the matrix 𝐽𝑛.

We are in a position to introduce the enhanced averaged quadrature rule
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A (𝑘 )
𝑛+𝑘 :=

1
2
(G𝑛 + G̃ (𝑘 )

𝑛+𝑘),

associated with quasi-definite functionals I. These rules have previously been de-
fined for positive definite functionals in [1]. They generalizes the averaged rule A (1)

𝑛+1
defined by Laurie [16]. We will show in Section 2 that the averaged rule A (𝑘 )

𝑛+𝑘
integrates a larger set of polynomials exactly than G𝑛 and G̃ (𝑘 )

𝑛+𝑘 . Therefore, the
difference

A (𝑘 )
𝑛+𝑘 ( 𝑓 ) − G𝑛 ( 𝑓 ) (14)

may be a useful estimate of the quadrature error

I( 𝑓 ) − G𝑛 ( 𝑓 ). (15)

We illustrate in Section 4 that this is indeed the case.
Having a fairly accurate estimate of the quadrature error (15) is important in

many applications in which Gauss quadrature rules are used, because this allows us
to determine a suitable number of nodes, 𝑛, in the Gauss rule (4). We note that a too
small value of 𝑛 yields an approximation of I( 𝑓 ) of insufficient accuracy, while a
too large value of 𝑛 requires that unnecessarily many evaluations of the integrand 𝑓

are carried out. The latter may increase the computational cost significantly when it
is expensive to evaluate 𝑓 .

The estimation of the quadrature error in an 𝑛-point Gauss quadrature rule has
received considerable attention in the literature. The classical approach to estimate
this error is to evaluate a (2𝑛 + 1)-node Gauss-Kronrod rule associated with the
Gauss rule; see Notaris [17] for an insightful discussion on this approach. However,
Gauss-Kronrod rules are not guaranteed to exist for all measures 𝑑𝜇 and numbers of
nodes 𝑛, and they are somewhat complicated to compute when they exist. Therefore,
the application of the optimal averaged rule 𝑆2𝑛+1 associated with the Gauss rule
(4) has recently attracted some attention. These rules were proposed by Spalević
[18] for positive definite functionals I. The rule 𝑆2𝑛+1 has 2𝑛 + 1 real nodes and
exists for all positive definite functionals. Moreover, it is easy to evaluate; see [19].
The application of these rules for more general measures is discussed in [20]. The
difference

S2𝑛+1 ( 𝑓 ) − G𝑛 ( 𝑓 ) (16)

furnishes in many situations a quite accurate estimate of the quadrature error (15);
see [21] for computed examples. However, when the integrand 𝑓 is not smooth, the
quality of the quadrature error estimate (16) may be poor. We therefore are interested
in investigating the performance of the error estimate (14).

We also derive error estimates that are analogous to (14) for approximations of
matrix functionals of the form

L( 𝑓 ) = L (𝐴,𝑢,𝑣) ( 𝑓 ) = 𝑢𝑇 𝑓 (𝐴)𝑣, (17)
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where 𝐴 ∈ R𝑁×𝑁 is a large possibly nonsymmetric matrix, 𝑓 is a function such that
𝑓 (𝐴) ∈ R𝑁×𝑁 is well defined, and 𝑢, 𝑣 ∈ R𝑁 such that 𝑢𝑇 𝑣 = 1. Obviously, L is a
real-valued linear functional.

This paper is organized as follows. Section 2 discusses properties of generalized
anti-Gauss rules and describes the entries of the matrix (13). Section 3 reviews how
the non-symmetric Lanczos process determines a nonsymmetric tridiagonal matrix
that is analogous to the matrix (3). We derive enhanced averaged quadrature rules for
the approximation of (17). Section 4 presents a few computed examples and Section
5 contains concluding remarks.

2 Enhanced anti-Gauss rules ˜G
(𝒌)
𝒏+𝒌

for 𝒌 < 4.

This section reviews results from [1, 16], where it is shown how to compute the
coefficients 𝛼𝑛, 𝛼𝑛+1, 𝛼𝑛+2, 𝛽𝑛, 𝛽𝑛+1, and 𝛽𝑛+2 in (13) when the matrix 𝐽𝑛+3 is
known. These formulas are in [1] derived under the assumption that the functional I
is positive definite. Here we show that they are valid in the more general case when
I is quasi-definite.

Laurie showed in [16] that

𝛼𝑛 = 𝑎𝑛, 𝛽𝑛 = 2𝑏𝑛,

which indicates that the quadrature rule G̃ (1)
𝑛+1 exists whenever I is quasi-definite. If

I is positive definite, then the nodes of G̃ (1)
𝑛+1 are real and simple.

We turn to the rule G̃ (2)
𝑛+2. This rule is defined by the matrix 𝐽

(2)
𝑛+2. The expressions

for the entries

𝛼𝑛+1 =
𝑎𝑛+1𝑏𝑛+1 − 𝑎𝑛−1𝑏𝑛

𝛽𝑛+1
,

𝛽𝑛+1 = 𝑏𝑛+1 − 𝑏𝑛,

of this matrix are shown in [1] for the situation when I is positive definite. These
expressions also hold when I is quasi-definite. Note that when 𝛽𝑛+1 vanishes, the
coefficient 𝛼𝑛+1 is not defined. It is not straightforward to define the generalized
anti-Gauss rule in this situation. When 𝛽𝑛+1 > 0 and I is positive definite, the rule
G̃ (1)
𝑛+1 exists and has real and simple nodes.
The formulas for the entries 𝛼𝑛+2 and 𝛽𝑛+2 of 𝐽 (3)

𝑛+3 are more complicated. They
are in [1, Theorem 2.1] shown to be

𝛽𝑛+2 =
𝛽𝑛+1 (𝑏𝑛+2𝑏𝑛+1 − 𝑏𝑛𝑏𝑛−1) − 𝑏𝑛+1𝑏𝑛 (𝑎𝑛+1 − 𝑎𝑛−1)2

𝛽2
𝑛+1

and
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𝛼𝑛+2 =
𝑏𝑛+2𝑏𝑛+1 (𝑎𝑛+2 + 2𝑎𝑛+1 − 2𝛼𝑛+1) + 𝑏𝑛𝑏𝑛−1 (2𝛼𝑛+1 − 2𝑎𝑛−1 − 𝑎𝑛−2)

𝛽𝑛+2𝛽𝑛+1

+ 𝑎𝑛+1𝑏𝑛+1 (𝑎𝑛+1 − 𝛼𝑛+1)2 − 𝑎𝑛−1𝑏𝑛 (𝑎𝑛−1 − 𝛼𝑛+1)2

𝛽𝑛+2𝛽𝑛+1

when I is positive definite. These expressions for 𝛽𝑛+2 and 𝛼𝑛+2 also are valid when
I is quasi-definite. It is possible, but tedious, to compute the entries of the matrices
𝐽
(𝑘 )
𝑛+𝑘 for 𝑘 ≥ 4.

It is shown in [1, Section 3] that the enhanced averaged rule A (𝑘 )
𝑛+𝑘 satisfies

A (𝑘 )
𝑛+𝑘 ( 𝑓 ) = I( 𝑓 ), ∀ 𝑓 ∈ P2𝑛+2𝑘−1,

when I is positive definite, and this formula remains valid when I is quasi-definite.
It follows that the enhanced averaged rule A (𝑘 )

𝑛+𝑘 is exact for polynomials of higher
degree than the Gauss and generalized anti-Gauss rules that determine it; cf. (5) and
(12).

3 Enhanced averaged rules for measures with support in the
complex plane

We consider the approximation of the functional (17) with 𝐴 ∈ R𝑁×𝑁 and the
vectors 𝑢, 𝑣 ∈ R𝑁 such that 𝑢𝑇 𝑣 = 1. We assume that 𝑁 is large so that the evaluation
of (17) by computing 𝑓 (𝐴) is too expensive to be attractive.

The functional (17) can be associated with a measure with support in the complex
plane. Assume for the moment that the matrix 𝐴 has the spectral factorization

𝐴 = 𝑆Λ𝑆−1,

where the columns of 𝑆 ∈ C𝑁×𝑁 are linearly independent eigenvectors of 𝐴, and the
diagonal entries of

Λ = diag[𝜆1, 𝜆2, . . . , 𝜆𝑁 ]

are eigenvalues. Since the matrix 𝐴 is real, the eigenvalues are real or appear in
complex conjugate pairs. Substituting the spectral factorization into (17) gives

L( 𝑓 ) = L (𝐴,𝑢,𝑣) ( 𝑓 ) = 𝑢𝑇𝑆 𝑓 (Λ)𝑆−1𝑣 =

𝑁∑︁
𝑗=1

𝑓 (𝜆 𝑗 )𝜇 𝑗𝜇
′
𝑗 ,

where [𝜇1, 𝜇2, . . . , 𝜇𝑁 ] = 𝑢𝑇𝑆 and [𝜇′1, 𝜇
′
2, . . . , 𝜇

′
𝑁
]𝑇 = 𝑆−1𝑣. The right-hand side

can be expressed as an integral

L( 𝑓 ) = L (𝐴,𝑢,𝑣) ( 𝑓 ) =
∫

𝑓 (𝑡)𝑑𝜇𝐴,𝑢,𝑣 (𝑡)
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with the measure

𝑑𝜇𝐴,𝑢,𝑣 (𝑡) =
𝑁∑︁
𝑗=1

𝛿(𝑡 − 𝜆 𝑗 )𝜇 𝑗𝜇
′
𝑗 ,

where 𝛿(·) denotes the Dirac delta-function. We can determine an approximation of
(17) by carrying out ℓ steps of the nonsymmetric Lanczos method applied to 𝐴 with
initial vectors 𝑢 and 𝑣. This method is described by Algorithm 1 below.

Algorithm 1 The nonsymmetric Lanczos process
Require: 𝐴 ∈ R𝑁×𝑁 ; 𝑢, 𝑣 ∈ R𝑁 such that 𝑢𝑇𝑣 = 1; number of steps ℓ.
1: 𝑢0 := 𝑣0 := 0 ∈ R𝑁 ; 𝑢1 := 𝑢; 𝑣1 := 𝑣; 𝛽0 := 0; 𝛾0 := 0;
2: for 𝑗 = 1, 2, . . . , ℓ do
3: 𝛼𝑗−1 := 𝑢𝑇

𝑗
𝐴𝑣 𝑗 ;

4: 𝑟 := 𝐴𝑣 𝑗 − 𝛼𝑗−1𝑣 𝑗 − 𝛾 𝑗−1𝑣 𝑗−1;
5: 𝑠 := 𝐴𝑇𝑢 𝑗 − 𝛼𝑗−1𝑢 𝑗 − 𝛽 𝑗−1𝑢 𝑗−1;
6: 𝛽 𝑗 := |𝑟𝑇𝑠 |1/2; 𝛾 𝑗 := 𝑟𝑇𝑠/𝛽 𝑗 ;
7: 𝑣 𝑗+1 := 𝑟/𝛽 𝑗 ; 𝑢 𝑗+1 := 𝑠/𝛾 𝑗 ;
8: end for

Ensure: Tridiagonal matrix 𝑇ℓ ∈ Rℓ×ℓ with diagonal entries {𝛼𝑗 }ℓ−1
𝑗=0 , subdiagonal entries

{𝛽 𝑗 }ℓ−1
𝑗=1 , and superdiagonal entries {𝛾 𝑗 }ℓ−1

𝑗=1 (see (18) below) and vectors 𝑢1, 𝑢2, . . . , 𝑢ℓ+2

and 𝑣1, 𝑣2, . . . , 𝑣ℓ+2 in R𝑁 .

We assume that the linear functional L is quasi-definite on the set of polynomials
𝑃𝑛+𝑘 with 𝑘 small enough so that all quantities of interest can be computed. This
is equivalent to the fact that it is possible to carry out 𝑛 + 𝑘 steps of Algorithm 1
without breakdown, i.e., without 𝛽 𝑗 = 0 for some 1 ≤ 𝑗 ≤ 𝑛 + 𝑘; see [15, Section 2].
Properties and implementation details of Algorithm 1 are discussed, e.g., by Saad
[22] and Ye [23].

Introduce the matrices for ℓ = 𝑛 + 𝑘 for a suitable 𝑘 ,

𝑈ℓ = [𝑢1, . . . , 𝑢ℓ] ∈ R𝑁×ℓ , 𝑉ℓ = [𝑣1, . . . , 𝑣ℓ] ∈ R𝑁×ℓ ,

where the vectors 𝑢 𝑗 and 𝑣𝑘 are determined by Algorithm 1. The vectors 𝑢 𝑗 and 𝑣𝑘
are biorthonormal, i.e., 𝑈𝑇

ℓ
𝑉ℓ = 𝐼. Define the tridiagonal matrix

𝑇ℓ =



𝛼0 𝛾1 0
𝛽1 𝛼1 𝛾2

. . .
. . .

. . .

𝛽ℓ−2 𝛼ℓ−2 𝛾ℓ−1
0 𝛽ℓ−1 𝛼ℓ−1


∈ Rℓ×ℓ . (18)

Its sub-diagonal and super-diagonal entries are nonvanishing.
The recursions of Algorithm 1 can be written as
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𝐴𝑉ℓ = 𝑉ℓ𝑇ℓ + 𝛽ℓ𝑣ℓ+1𝑒
𝑇
ℓ
,

𝐴𝑇𝑈ℓ = 𝑈ℓ𝑇
𝑇
ℓ
+ 𝛾ℓ𝑢ℓ+1𝑒

𝑇
ℓ
.

Moreover, the recursion formulas show that

𝑢 𝑗+1 = 𝑞 𝑗 (𝐴𝑇 )𝑢, 𝑣 𝑗+1 = 𝑝 𝑗 (𝐴)𝑣, 0 ≤ 𝑗 ≤ ℓ, (19)

for some polynomials 𝑝 𝑗 and 𝑞 𝑗 of degree 𝑗 . It follows that

L(𝑞 𝑗 𝑝𝑘) = 𝑢𝑇𝑞 𝑗 (𝐴)𝑝𝑘 (𝐴)𝑣 = 𝑢𝑇𝑗+1𝑣𝑘+1 =

{
1, 𝑗 = 𝑘,

0, 𝑗 ≠ 𝑘.

This shows that the Lanczos polynomial 𝑝𝑘 is orthogonal to any polynomial from
span{𝑞0, 𝑞1, . . . , 𝑞𝑘−1} = P𝑘−1 with respect to the functional L. In other words,
𝑝0, 𝑝1, . . . , 𝑝ℓ is a family of orthogonal polynomials with respect to L. It follows
from (19) that the polynomials 𝑝 𝑗 satisfy the same recursion relations as the vectors
𝑣 𝑗 , i.e.,

𝛽 𝑗 𝑝 𝑗 (𝑥) = (𝑥 − 𝛼 𝑗−1)𝑝 𝑗−1 (𝑥) − 𝛾 𝑗−1𝑝 𝑗−2 (𝑥), 𝑗 = 1, 2, . . . , ℓ + 1,

with 𝑝−1 (𝑥) := 0, 𝛾0 := 0, and 𝛽0 := 0. We conclude that

L( 𝑓 ) = 𝑒𝑇1 𝑓 (𝑇ℓ)𝑒1, ∀ 𝑓 ∈ P2ℓ−1, (20)

i.e., the right-hand side of (20) is an ℓ-point Gauss quadrature rule for approximating
L. This quadrature rule is of the form (4) if and only if 𝑇ℓ is diagonalizable; see [15]
for details.

We can construct the generalized anti-Gauss quadrature rules G̃ (𝑘 )
𝑛+𝑘 for 1 ≤ 𝑘 ≤ 3

in the following way. Carry out ℓ = 𝑛+ 𝑘 steps of Algorithm 1 to generate the matrix
𝑇𝑛+𝑘 . Using (9), we compute the matrix 𝐽𝑛+𝑘 , and then by formulas from Section 2,
we update the last 𝑘 rows of 𝐽𝑛+𝑘 to construct the matrix 𝐽

(𝑘 )
𝑛+𝑘 . Thus, we get

G̃ (𝑘 )
𝑛+𝑘 ( 𝑓 ) = 𝑒𝑇1 𝑓 (𝐽 (𝑘 )

𝑛+𝑘)𝑒1.

4 Numerical examples

This section presents a few computed examples that illustrate the quality of the
approximations and error estimates discussed in this paper. All computations were
carried out in double precision arithmetic (i.e., with about 15 significant decimal
digits) using MATLAB R2021a on a 64-bit personal computer.

We compute the exact value (up to the influence of round-off errors) of the
functional L( 𝑓 ) = 𝑢𝑇 𝑓 (𝐴)𝑣 for several different matrices 𝐴, vectors 𝑢 and 𝑣, and
functions 𝑓 . We will assume that the functions 𝑓 can be evaluated not only at 𝐴, but
also at the reduced matrices 𝑇𝑛 and 𝐽

(𝑘 )
𝑛+𝑘 . We compare 𝑢𝑇 𝑓 (𝑇𝑛)𝑣 to approximations
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determined by the standard and generalized anti-Gauss rules and the standard and
enhanced averaged rules. Estimates of the approximation errors by the techniques
discussed in Sections 2 and 3 are tabulated.

Example 4.1. This example shows an application of the techniques of this paper
to network analysis. Let 𝐴 = [𝛼𝑖, 𝑗 ] ∈ R500×500 be the adjacency matrix for the
network Air500, which describes flight connections between the top 500 airports
within one year from July 1, 2007, to June 30, 2008; see [24, 25]. The airports are
modeled by vertices 𝜈𝑖 and the flights are modeled by edges in the directed graph
determined by the network. The matrix 𝐴 has the entry 𝛼𝑖, 𝑗 = 1 if there is a flight
from airport 𝑖 to airport 𝑗 ; otherwise 𝛼𝑖, 𝑗 = 0. Generally, but not always, 𝛼𝑖, 𝑗 = 1
implies that 𝛼 𝑗 ,𝑖 = 1. This makes 𝐴 nonsymmetric. The number of edges is much
smaller than 5002. Therefore the adjacency matrix 𝐴 is sparse. A walk of length 𝑘

in a graph is a sequence of vertices 𝜈𝑖1 , 𝜈𝑖2 , . . . , 𝜈𝑖𝑘+1 such that there is an edge from
vertex 𝜈𝑖 𝑗 to vertex 𝜈𝑖 𝑗+1 for 𝑗 = 1, 2, . . . , 𝑘 . Vertices in a walk may be repeated. The
entry 𝛼

(ℓ )
𝑖, 𝑗

of the matrix 𝐴ℓ = [𝛼 (ℓ )
𝑖, 𝑗

] is equal to the number of walks of length ℓ

starting at vertex 𝑖 and ending at vertex 𝑗 . Short walks are generally considered more
important than long walks. This motivates the use of the exponential function in
network analysis. The subgraph centrality of node 𝑣 𝑗 is defined as 𝑒𝑇

𝑗
exp(𝐴)𝑒 𝑗 ; see

[26]. We are interested in computing the total communicability of the graph, which
is defined as 𝑣𝑇 exp(𝐴)𝑣, where 𝑣 = [1, 1, . . . , 1]𝑇/

√
500; see, e.g., [27].

Table 1 Example 4.1: Magnitude of the relative errors of computed approximations of L( 𝑓 ) =

𝑣𝑇 exp(𝐴)𝑣, where 𝐴 ∈ R500×500 and 𝑣 = [1, 1, · · · , 1]𝑇/
√

500.

𝑛 = 6 𝑛 = 8

A (1)
𝑛,1 ( 𝑓 ) 4.61 · 10−6 1.16 · 10−9

A (2)
𝑛,2 ( 𝑓 ) 1.11 · 10−6 2.38 · 10−9

A (3)
𝑛,3 ( 𝑓 ) 1.59 · 10−7 8.28 · 10−12

G̃ (1)
𝑛,1 ( 𝑓 ) 4.66 · 10−4 2.46 · 10−7

G̃ (2)
𝑛,2 ( 𝑓 ) 4.59 · 10−4 2.39 · 10−7

G̃ (3)
𝑛,3 ( 𝑓 ) 4.57 · 10−4 2.43 · 10−7

G𝑛 ( 𝑓 ) 4.57 · 10−4 2.44 · 10−7

Table 1 displays the relative error of computed approximations of the total com-
municability for the network. The approximations of the total communicability
determined by the enhanced averaged rules A (𝑘 )

𝑛,𝑘
( 𝑓 ), 𝑘 ∈ {1, 2, 3}, can be seen to be

more accurate than the approximations determined by the standard Gauss rule and
related Gauss-type formulas. This suggests that one may use the enhanced averaged
quadrature rules to estimate the error in the Gauss rule. Table 2 reports the relative
difference (14) for several enhanced averaged rules. All of the differences provide
a quite accurate estimate of the quadrature error (15) in the Gauss rules. The error
estimates obtained with the rules A3

𝑛+3 ( 𝑓 ) are very accurate. 2
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Table 2 Example 4.1: Magnitude of the relative differences of enhanced averaged and Gauss rules,
where L, 𝐴, 𝑣, and 𝑓 are the same as in Table 1.

Error
𝑁 𝑛 = 6 𝑛 = 8

500 A (1)
𝑛+1 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 4.61 · 10−4 2.45 · 10−7

A (2)
𝑛+2 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 4.58 · 10−4 2.41 · 10−7

A (3)
𝑛+3 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 4.57 · 10−4 2.44 · 10−7

I( 𝑓 )−G𝑛 ( 𝑓 )
L( 𝑓 ) 4.57 · 10−4 2.44 · 10−7

Example 4.2. Let 𝑁 = 200 and let 𝐴 ∈ R𝑁×𝑁 be the nonsymmetric Toeplitz
matrix with first row [1, 1/2, . . . , 1/𝑁] and first column [1, 1/22, . . . , 1/𝑁2]. We
seek to approximate L( 𝑓 ) = 𝑣𝑇 𝑓 (𝐴)𝑣 by Gauss rules, where 𝑣 = [1, . . . , 1]𝑇/

√
𝑁 ∈

R𝑁 and 𝑓 (𝑥) = exp(𝑥). Table 3 shows the magnitude of the relative errors in
the computed approximations. We note that the smallest errors are achieved by
the approximations furnished by the enhanced averaged rules. Table 4 reports the
magnitude of the relative differences determined by (14) and (15). The table shows
all the enhanced averaged rules to provide accurate estimates of the error in the
Gauss quadrature rules. 2

Table 3 Example 4.2: Magnitude of the relative errors of computed approximations of L =

𝑣𝑇 𝑓 (𝐴)𝑣 for 𝐴 ∈ R𝑁×𝑁 a nonsymmetric Toeplitz matrix, 𝑓 (𝑡 ) = exp(𝑡 ) , and 𝑣 =

[1, 1, . . . , 1]𝑇/
√
𝑁 .

𝑁 𝑛 = 4 𝑛 = 6

200 A (1)
𝑛,1 ( 𝑓 ) 1.16 · 10−7 2.72 · 10−11

A (2)
𝑛,2 ( 𝑓 ) 1.12 · 10−9 4.78 · 10−14

A (3)
𝑛,3 ( 𝑓 ) 1.70 · 10−10 0

G̃ (1)
𝑛,1 ( 𝑓 ) 1.81 · 10−5 2.65 · 10−9

G̃ (2)
𝑛,2 ( 𝑓 ) 1.79 · 10−5 2.60 · 10−9

G̃ (3)
𝑛,3 ( 𝑓 ) 1.79 · 10−5 2.60 · 10−9

G𝑛 ( 𝑓 ) 1.79 · 10−5 2.60 · 10−9
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Table 4 Example 4.2: Magnitude of the relative differences of enhanced averaged and Gauss rules,
where L, 𝐴, 𝑣, and 𝑓 are the same as in Table 3.

Error
𝑁 𝑛 = 4 𝑛 = 6

200 A (1)
𝑛+1 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 1.80 · 10−5 2.62 · 10−9

A (2)
𝑛+2 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 1.79 · 10−5 2.60 · 10−9

A (3)
𝑛+3 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 1.79 · 10−5 2.60 · 10−9

I( 𝑓 )−G𝑛 ( 𝑓 )
L( 𝑓 ) 1.79 · 10−5 2.60 · 10−9

The following examples are concerned with functionals L = 𝑢𝑇 𝑓 (𝐴)𝑣 with a
symmetric matrix 𝐴. Generalized anti-Gauss rules and enhanced averaged rules for
these kinds of functionals with𝑢 = 𝑣 have previously been introduced in [1]. However,
the application of enhanced averaged rules for the estimation of the quadrature error
in Gauss rules has not been illustrated before.

Example 4.3. Let 𝐴 ∈ R300×300 be the symmetric tridiagonal Toeplitz matrix
with first row [0, 1, 0, . . . , 0]. The vector 𝑣 ∈ R300 has normally distributed random
entries with zeros mean and is scaled to have unit Euclidean norm. We let 𝑓 (𝑡) =
exp(𝑡 )
𝑡2+1 . This example allows the application of the quadrature rules of Section 2; the

other examples of this section require the quadratures of Section 3 based on the
nonsymmetric Lanczos process. Table 5 depicts the magnitude of the relative errors
in the computed approximations. We can observe that the smallest errors are achieved
with the enhanced averaged rules. Table 6 shows the error estimates furnished by the
averaged rules A (𝑘 )

𝑛+𝑘 ( 𝑓 ) for 𝑘 ∈ {2, 3} to give very accurate estimates of the errors
in G𝑛 𝑓 . We remark that the errors in Table 6 are close to the relative errors, because
L( 𝑓 ) = 𝑣𝑇 𝑓 (𝐴)𝑣 = 0.8063.

Table 5 Example 4.3: Magnitude of the relative errors of computed approximations of 𝑣𝑇 𝑓 (𝐴)𝑣
for 𝐴 ∈ R𝑁×𝑁 a symmetric banded Toeplitz matrix, 𝑓 (𝑡 ) = exp(𝑡 )

(𝑡2+1) , and 𝑣 with normally distributed
random entries.

𝑁 𝑛 = 4 𝑛 = 8

300 A (1)
𝑛,1 ( 𝑓 ) 1.10 · 10−3 3.83 · 10−5

A (2)
𝑛,2 ( 𝑓 ) 7.26 · 10−4 6.88 · 10−6

A (3)
𝑛,3 ( 𝑓 ) 2.15 · 10−4 4.00 · 10−6

G̃ (1)
𝑛,1 ( 𝑓 ) 1.26 · 10−2 2.71 · 10−4

G̃ (2)
𝑛,2 ( 𝑓 ) 1.33 · 10−2 2.08 · 10−4

G̃ (3)
𝑛,3 ( 𝑓 ) 1.52 · 10−2 2.02 · 10−4

G𝑛 ( 𝑓 ) 1.47 · 10−2 1.94 · 10−4
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Table 6 Example 4.3: Magnitude of the relative differences of enhanced averaged and Gauss rules,
where L, 𝐴, 𝑣, and 𝑓 are the same as in Table 5.

Error
𝑁 𝑛 = 4 𝑛 = 8

300 A (1)
𝑛+1 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 1.37 · 10−2 2.33 · 10−4

A (2)
𝑛+2 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 1.40 · 10−2 2.01 · 10−4

A (3)
𝑛+3 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 1.49 · 10−2 1.98 · 10−4

I( 𝑓 )−G𝑛 ( 𝑓 )
L( 𝑓 ) 1.47 · 10−2 1.94 · 10−4

Example 4.4. We approximate L( 𝑓 ) := 𝑢𝑇 𝑓 (𝐴)𝑣, where 𝑓 (𝑡) = exp(𝑡), 𝑢 = 𝑒2,
𝑣 = 𝑒2+ 𝑒3√

2
, and the matrix 𝐴 ∈ R300×300 is the same as in Example 4.3. Table 7 shows

the magnitude of the relative errors in the computed approximations. The table shows
the smallest errors to be achieved by the enhanced averaged rules A (𝑘 )

𝑛,𝑘
( 𝑓 ); the errors

are particularly small for 𝑘 ∈ {2, 3}. Table 8 shows the differences A (𝑘 )
𝑛+𝑘 ( 𝑓 )−G𝑛 ( 𝑓 ),

𝑘 ∈ {1, 2, 3}, to be accurate estimates of the quadrature error in G𝑛 ( 𝑓 ).

Table 7 Example 4.4: Magnitude of the relative errors of computed approximations of 𝑢𝑇 𝑓 (𝐴)𝑣
for 𝐴 ∈ R𝑁×𝑁 a symmetric banded Toeplitz matrix, 𝑓 (𝑡 ) = exp(𝑡 ) , and 𝑢 different from 𝑣.

𝑁 𝑛 = 4 𝑛 = 6

300 A (1)
𝑛,1 ( 𝑓 ) 5.22 · 10−8 1.49 · 10−12

A (2)
𝑛,2 ( 𝑓 ) 4.78 · 10−11 5.31 · 10−15

A (3)
𝑛,3 ( 𝑓 ) 2.27 · 10−13 5.31 · 10−16

G̃ (1)
𝑛,1 ( 𝑓 ) 4.70 · 10−6 2.51 · 10−10

G̃ (2)
𝑛,2 ( 𝑓 ) 4.80 · 10−6 2.54 · 10−10

G̃ (3)
𝑛,3 ( 𝑓 ) 4.80 · 10−6 2.54 · 10−10

G𝑛 ( 𝑓 ) 4.80 · 10−6 2.54 · 10−10
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Table 8 Example 4.4: Magnitude of the relative differences of enhanced averaged and Gauss rules,
where L, 𝐴, 𝑣, and 𝑓 are the same as in Table 7.

Error
𝑁 𝑛 = 4 𝑛 = 6

300 A (1)
𝑛+1 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 4.75 · 10−6 2.53 · 10−10

A (2)
𝑛+2 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 4.81 · 10−6 2.54 · 10−10

A (3)
𝑛+3 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 4.81 · 10−6 2.54 · 10−10

I( 𝑓 )−G𝑛 ( 𝑓 )
L( 𝑓 ) 4.81 · 10−6 2.54 · 10−10

Example 4.5. We approximate L( 𝑓 ) := 𝑢𝑇
(
𝐴2 + 𝐼

)−1
𝑢, where 𝑢 is a random

vector of unit norm with normally distributed entries with zero mean, and the
symmetric matrix 𝐴 ∈ R100×100 has randomly generated uniformly distributed real
eigenvalues in the interval [−1, 1] and a random orthogonal eigenvector matrix. The
exact value of L( 𝑓 ) is 0.8934. Table 9 shows the magnitude of the relative errors
in the computed approximations. The table shows the smallest errors to be achieved
by the the enhanced averaged rules A (𝑘 )

𝑛,𝑘
( 𝑓 ); the errors are particularly small for

𝑘 = 3. Table 10 shows the differences A (𝑘 )
𝑛+𝑘 ( 𝑓 ) −G𝑛 ( 𝑓 ), 𝑘 ∈ {1, 2, 3}, to be accurate

estimates of the quadrature error in G𝑛 ( 𝑓 ).

Table 9 Example 4.5: Magnitude of the relative errors of computed approximations of
𝑢𝑇

(
𝐴2 + 𝐼

)−1
𝑢 for 𝐴 ∈ R100×100 a random symmetric matrix, and 𝑢 is a random vector.

𝑁 𝑛 = 3 𝑛 = 5

100 A (1)
𝑛,1 ( 𝑓 ) 3.63 · 10−4 4.33 · 10−6

A (2)
𝑛,2 ( 𝑓 ) 5.01 · 10−5 1.34 · 10−6

A (3)
𝑛,3 ( 𝑓 ) 3.33 · 10−7 1.28 · 10−8

G̃ (1)
𝑛,1 ( 𝑓 ) 3.50 · 10−3 7.88 · 10−5

G̃ (2)
𝑛,2 ( 𝑓 ) 2.90 · 10−3 6.74 · 10−5

G̃ (3)
𝑛,3 ( 𝑓 ) 2.80 · 10−3 7.02 · 10−5

G𝑛 ( 𝑓 ) 2.80 · 10−3 7.01 · 10−5
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Table 10 Example 4.5: Magnitude of the relative differences of enhanced averaged and Gauss
rules, where L, 𝐴, 𝑣, and 𝑓 are the same as in Table 9.

Error
𝑁 𝑛 = 3 𝑛 = 5

100 A (1)
𝑛+1 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 3.20 · 10−3 7.45 · 10−5

A (2)
𝑛+2 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 2.80 · 10−3 6.88 · 10−5

A (3)
𝑛+3 ( 𝑓 )−G𝑛 ( 𝑓 )

L( 𝑓 ) 2.80 · 10−3 7.01 · 10−5

I( 𝑓 )−G𝑛 ( 𝑓 )
L( 𝑓 ) 2.80 · 10−3 7.01 · 10−5

5 Conclusion

This paper proposes to use enhanced averaged rule to estimate the error in Gauss
quadrature rules. The enhanced averaged rules are modifications of averaged rules
introduced by Laurie. They are defined with the aid of generalized anti-Gauss rules.
The latter rules, as well as the enhanced averaged rules, are determined for quasi-
definite functionals I. In particular, we allow functionals that are associated with
measures with support in the complex plane. Computed examples illustrate the
performance of the enhanced averaged rules.
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