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Abstract

Linear ill-posed operator equations arise in various areas of science and engineer-
ing. The presence of errors in the operator and the data often makes the computation
of an accurate approximate solution difficult. In this paper, we compute an approxi-
mate solution of an ill-posed operator equation by first determining an approximation
of the operators of generally fairly small dimension by carrying out a few steps
of a continuous version of the Golub–Kahan bidiagonalization (GKB) process to
the noisy operator. Then Tikhonov regularization is applied to the low-dimensional
problem so obtained and the regularization parameter is determined by solving a low-
dimensional nonlinear equation. The effect of the errors incurred in each step of the
solution process is analyzed. Computed examples illustrate the theory presented.
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1 INTRODUCTION

Let  ∶  →  be an injective linear operator between the Hilbert spaces  and  with norms ‖ ⋅ ‖ and ‖ ⋅ ‖ , respectively,
and let () denote the range of . Then the equation

x = y (1.1)

has a unique solution x ∈  for every y ∈ (). Thus, we can define an inverse of  for y ∈ (), which we denote by
−1. We are interested in the situation when the solution of (1.1), which we denote by xexact, does not depend continuously on
the right-hand side y, i.e., when the inverse operator −1 is not bounded. Then the computation of the solution of (1.1) is an
ill-posed problem.

In many ill-posed problems that arise in applications in physics, technology, and various branches of science, the operator 
and the right-hand side function y in (1.1) are not available. Instead, only an approximation ℎ, which we also assume to be
injective, of  and an error-contaminated approximation y� ∈  of y are known, where ℎ and y� satisfy

‖ −ℎ‖ ≤ ℎ, ‖y − y�‖ ≤ �, (1.2)

for some scalars ℎ > 0 and � > 0. Here ‖ ⋅ ‖ denotes the operator norm induced by the norms ‖ ⋅ ‖ and ‖ ⋅ ‖ , i.e.,

‖A‖ = sup
x∈∖{0}

‖Ax‖
‖x‖

.

We will let  and  be L2-spaces. Then ‖A‖ is the largest singular value of A.
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Our task is to determine an approximation of xexact by computing an approximate solution of the available equation

ℎx = y� . (1.3)

The perturbed right-hand side y� might not be in (ℎ); then equation (1.3) does not have a solution. It follows that the
computation of a solution of (1.3) also might be an ill-posed problem. Moreover, even when y� ∈ (ℎ), the solution x� of
(1.3) might not be a meaningful approximation of the solution xexact of (1.1) since ℎ might not have a bounded inverse.

The solution of inverse problems with an inexact operator and a noisy right-hand side has been widely discussed in the
literature; see, e.g.,4, 18, 21. The approach of the present paper differs from previous investigations in that it focuses on Golub–
Kahan bidiagonalization. Our analysis is inspired by the work of Neubauer21, who approximates the operator ℎ in a fairly
general finite-dimensional subspace. We are interested in discretizing ℎ with the aid of Golub–Kahan bidiagonalization due
to the fact that typically only very few bidiagonalization steps, and therefore a subspace of low dimension, are required to
determine a suitable approximation of xexact. This makes this solution approach inexpensive. Illustrations of the performance of
Golub–Kahan bidiagonalization when  is a finite-dimensional matrix and y� a finite-dimensional vector can be found, e.g., in5.

Due to the ill-posed nature of problem (1.3), it is necessary to apply regularization, i.e., the operator ℎ in (1.3) is replaced by
an operator �

reg
∶  →  that approximates ℎ in some sense and has a bounded inverse on  . Therefore, instead of solving

equation (1.3), one solves the regularized equation

�
reg
x = y� . (1.4)

It is desirable to choose the regularized operator �
reg

so that the solution x�,ℎ
reg

of (1.4) is a meaningful approximation of the
solution xexact of equation (1.1) with unknown operator and right-hand side function.

One of the most commonly used regularization methods is Tikhonov regularization, which approximates xexact by the unique
minimizer x�,ℎ� of the functional

J�(x) ∶= ‖ℎx − y�‖2 + �‖x‖2 , (1.5)

where � > 0 is a regularization parameter. Then (�
reg
)−1 = (∗

ℎℎ+�I)−1∗
ℎ, where ∗

ℎ denotes the adjoint of ℎ, and I is the
identity. Numerically, one determines an approximate solution of (1.5) by minimizing J� over some m-dimensional subspace
m, 1 ≤ m < ∞, of  . We denote the approximate solution of (1.5) so obtained by x�,ℎ�,m. The choice of a suitable value of the
regularization parameter � is important. This parameter determines how sensitive the computed approximate solution x�,ℎ�,m of
(1.5) is to perturbations in y and how close x�,ℎ�,m is to the solution xexact of (1.1). Ideally, one would like to choose � = �(m, �, ℎ)
so that the minimizer x�,ℎ�,m of J� over m satisfies

lim
m→∞
�, ℎ→0

x�,ℎ�,m = xexact,

and that the rate of convergence is high.
There are several strategies for determining a suitable value of �, including the discrepancy principle, generalized cross

validation, and the L-curve criterion; see, e.g.,7–9, 12, 13, 16, 17, 19, 24 for recent discussions on these and other methods. We will
determine the regularization parameter � > 0 by an approach closely related to the one described by Neubauer21. It allows
discretization and other errors both in the operator and right-hand side function. We will carry out an analogous analysis for
the situation when ℎ is discretized by a continuous version of the partial Golub–Kahan bidiagonalization (GKB) process.
Application of a few steps of this process gives a finite-dimensional approximation of the operator ℎ. We replace ℎ in (1.3)
by this approximation, and compute an approximate solution of the operator equation so obtained with the aid of Tikhonov
regularization. This replacement reduces the computational cost of Tikhonov regularization. We will discuss the effect of this
replacement on the computed solution, as well as the effect of the errors in the operator ℎ and in the right-hand side function
y� . Another approach for determining a low-rank approximation of the operator ℎ by applying the Arnoldi process instead of
the GKB process has been discussed in23. This approach is quite different from the one of the present paper and is based on
results by Natterer20.

This paper is organized as follows. Section 2 discusses the application of the GKB process to the operator ℎ, which gives
orthonormal bases for finite-dimensional (and usually low-dimensional) subspaces of  and  . These bases allow us to define
an approximation of finite (and usually low) rank of the operator ℎ in (1.3). In Section 3, we discuss the effect of the error in
this approximation of ℎ. A few computed examples in Section 4, some of which using the MATLAB package Chebfun, which
simulates operators and functions, illustrate the theory. Concluding remarks can be found in Section 5.
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2 GOLUB–KAHAN BIDIAGONALIZATION

This section describes the Golub–Kahan bidiagonalization (GKB) process for linear operators. An analogous discussion is
presented by Karimi and Jozi15. Before describing the GKB process, we need the following definition.

Definition 1. Let and be Hilbert spaces and let ∶  →  be a linear operator. Let z = [z1, z2,… , zm]T ∈ ℝm,C ∈ ℝm×m

and Vm = [v1, v2,… , vm], where the vi ∈  , i = 1, 2,… , m, are orthonormal functions to be specified below. Define

(i) Vmz ∶=
∑m

i=1 zivi ∈  .

(ii) VmC ∶= [VmC(∶, 1), VmC(∶, 2),… , VmC(∶, m)] ∈ m, whereC(∶, i) ∈ ℝm denotes the ith column of the matrix C .

(iii) Vm ∶= [v1,v2,… ,vm] ∈ m.

Here m and m denote m-dimensional subspaces of elements in  and  , respectively. We also will need the inner products
⟨⋅, ⋅⟩ and ⟨⋅, ⋅⟩ of functions in  and  , respectively.

Application of m + 1 steps of the GKB process (see Algorithm 1 below) to the operator ℎ with initial function ℎ∗
ℎy

�

gives the decompositions
ℎVm = Um+1Cm+1,m, ∗

ℎUm = Vm C∗
m,m, (2.1)

where the entries of Vm = [v1, v2,… , vm] ∈ m and Um+1 = [u1, u2,… , um+1] ∈ m+1 are orthonormal functions in  and  ,
respectively, i.e.,

⟨

vi, vj
⟩

 =
⟨

ui, uj
⟩

 =
{

1, i = j,
0, i ≠ j,

for i, j = 1, 2,… ,

with u1 = ℎ∗
ℎy

�∕‖ℎ∗
ℎy

�
‖ . Moreover,

Cm+1,m =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1
�2 �2

⋱ ⋱
�m �m

�m+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ(m+1)×m

is a lower bidiagonal matrix, and Cm,m ∈ ℝm×m denotes its leading m × m submatrix. The matrix C∗
m,m denotes the transpose of

Cm,m. Note that the matrix C∗
m+1,mCm+1,m is positive definite because it is an orthogonal section of the positive definite operator

∗
ℎℎ. We remark that the initial function ℎ∗

ℎy
� is not an analogue of the standard choice of initial vector often used in a

linear algebra context; see22. Our reason for this choice of initial function is that we would like it to be in the range of ℎ.
Algorithm 1 describes the GKB process under the assumption that breakdown of the recursion relations does not occur. We
comment on how to handle breakdown at the end of this section. The algorithm also determines the function vm+1 which is
required in the decomposition (3.6) below.

Algorithm 1 The Golub–Kahan bidiagonalization (GKB) process.
Input: : Linear operator ℎ, the right-hand side y� ≠ 0, number of steps m + 1 ≥ 1
Initialize: �1 = ‖ℎ∗

ℎy
�
‖ , u1 = ℎ∗

ℎy
�∕�1, v = ∗

ℎu1, �1 = ‖v‖ , v1 = v∕�1
For j = 2,… , m + 1

u = ℎvj−1 − �j−1uj−1
�j = ‖u‖
uj = u∕�j
v = ∗

ℎuj − �jvj−1
�j = ‖v‖
vj = v∕�j

EndFor
Output: Golub–Kahan decomposition (2.1)
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It is easy to see that the functions {uj}m+1j=1 and {vj}m+1j=1 generated by Algorithm 1 form orthonormal bases for the Krylov
subspaces

m+1(ℎ∗
ℎ,ℎ∗

ℎy
�) = span{ℎ∗

ℎy
� ,… , (ℎ∗

ℎ)
m+1y�},

m+1(∗
ℎℎ, (∗

ℎℎ)∗
ℎy

�) = span{(∗
ℎℎ)∗

ℎy
� ,… , (∗

ℎℎ)m+1∗
ℎy

�},

respectively; see also15 for a discussion of the GKB process for operators. For the situation when ℎ is a finite-dimensional
matrix, this process is described by Paige and Saunders22.

We remark that the functions vj and uj determined by Algorithm 1 are orthonormal when the computations are carried out
in exact arithmetic. However, when the computations are carried out in finite-precision arithmetic, this is typically not the case.
We apply reorthogonalization in the computed examples reported in Section 4 to avoid loss of orthogonality.

Algorithm 1 assumes thatm+1 steps can be carried out without breakdown, i.e., without any of the coefficients �1, �2,… , �m+1
and �1, �2,… , �m+1 vanishing. This is the generic situation. In particular, this implies that y� is not allowed to be an eigenfunction
of ℎ∗

ℎ associated with a zero eigenvalue.
We conclude this section with some comments on the rare event of breakdown of the recursions of Algorithm 1. First consider

the case when �k > 0 for 1 ≤ k < j and �k > 0 for 2 ≤ k < j, but �j = 0. Then the decompositions

ℎVj−1 = Uj−1Cj−1,j−1, ∗
ℎUj−1 = Vj−1 C

∗
j−1,j−1,

which are analogous to (2.1) can be computed, but the “next” function uj cannot be generated by the algorithm. If the above
decompositions yield an approximation of xexact of sufficient accuracy, then we are done; otherwise we can let uj be a fairly
arbitrary function that is orthogonal to the available functions u1, u2,… , uj−1, substitute it into the algorithm and continue the
computations. In the theory developed below, we rule out this situations because it is very unusual, and it is difficult to show
results when the solution subspace contains fairly arbitrary functions.

We now investigate whether breakdown can occur in Algorithm 1 when

�k > 0, 1 ≤ k < j, �k > 0, 2 ≤ k ≤ j, �j = 0.

In this case, ∗
ℎuj = �jvj−1, and we can compute the decomposition

∗
ℎUj = Vj−1 C

∗
j,j−1.

Since ℎ is injective, so is ∗
ℎ. Therefore, the space {∗

ℎUjz, z ∈ ℝj} is of dimension j, but the space {Vj−1 C∗
j,j−1z, z ∈ ℝj}

is of dimension j − 1. This contradiction shows that �j > 0.

3 ERROR ESTIMATES

Let us first consider the situation when we just have an error in the operator , i.e., when  ≠ ℎ and y = y� . Let x� denote
the minimizer of J� in (1.5) over  with y� replaced by y, and let xℎ� denote the corresponding minimizer obtained when  is
replaced by ℎ. Thus,

x� = (∗ + �I)−1∗y,
xℎ� = (∗

ℎℎ + �I)−1∗
ℎy.

It is known19 that
‖x� − xℎ�‖ ≤ c ⋅

‖ −ℎ‖

�
for some constant c > 0 independent of � and ℎ. Assume that y ∈ (). Then Neubauer21 (Lemma 2.1) shows that

‖x� − xℎ�‖ ≤
‖ −ℎ‖

√

�
‖xexact‖ +

‖Qℎ(I −Q)y‖
2
√

�
, (3.1)

where Q and Qℎ denote the orthogonal projectors onto () and (ℎ), respectively.

Remark 1. Assume that
‖ −ℎ‖ ≤ ℎ and ‖Qℎ (I −Q) y‖ ≤ ℎ

for some scalar ℎ > 0. It can be shown that, if
ℎ∕

√

� → 0 for � → 0,
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then
xℎ� → xexact for � → 0 and ℎ → 0;

see26 Chapter III.

Since ∗ is injective, () =  and Q = I , where I denotes the identity operator. Therefore, Qℎ(I − Q)y = 0 and the
bound (3.1) simplifies to

‖x� − xℎ�‖ ≤
‖ −ℎ‖

√

�
‖xexact‖ .

We turn to the situation when the right-hand side function is error-contaminated and assume that y� ∈  . In the numerical
computations, we project the operator ℎ into the finite-dimensional subspace

̃m+1 = (Um+1) = m+1(ℎ∗
ℎ,ℎ∗

ℎy
�) (3.2)

for a suitable m > 0.
The adjoint U ∗

m+1 of Um+1 is applied to functions z ∈  as

U ∗
m+1z =

[

⟨z, u1⟩, ⟨z, u2⟩,… ,
⟨

z, um+1
⟩]T .

Due to the orthonormality of the functions u1, u2,… , um+1, the operator U ∗
m+1Um+1 is the identity in ̃m+1 and

Q̃m+1 = Um+1U
∗
m+1 (3.3)

is an orthogonal projector onto ̃m+1. This projector is determined by applying m+ 1 steps of the GKB process to the operator
ℎ with initial function ℎ∗

ℎy
� .

Define the projector P̃m+1 ∶= Vm+1V ∗
m+1. We will approximate xexact by

xℎ,��,m+1 = (∗
ℎ,m+1ℎ,m+1 + �I)−1∗

ℎ,m+1y
� , ℎ,m+1 = Q̃m+1ℎP̃m+1 (3.4)

for some � > 0. Thus, ℎ,m+1 is a projection of ℎ that is determined by Q̃m+1and P̃m+1.
Assume that infinitely many steps of the Golub–Kahan bidiagonalization process can be applied to the operator ℎ with initial

function ℎ∗
ℎy

� without breakdown. This results in infinite vectors U = [u1, u2,… ] and V = [v1, v2,… ] with orthonormal
function elements and an infinite lower bidiagonal matrixC; see15. We will determine (approximate) solutions of (1.1) in subsets
of the space (V ) and, therefore, consider the restriction of ℎ to this space. We have analogously to (2.1) the decompositions

ℎV = UC, ∗
ℎU = V C∗. (3.5)

This is the infinite-dimensional analogue of (2.1).
Introduce the orthogonal projector P̃ = V V ∗ and consider the projection of ℎP̃ onto the space (3.2). Then

Q̃m+1ℎP̃ = Q̃m+1(ℎV )V ∗

= Um+1U
∗
m+1(UC)V ∗

= Um+1[Cm+1,m+1, O]V ∗

= Um+1Cm+1,m+1V
∗
m+1,

where Cm+1,m+1 is the leading (m + 1) × (m + 1) principal submatrix of the infinite bidiagonal matrix C in (3.5) and the zero
matrix O has m + 1 rows and infitiely many columns. We will approximate ℎ by

ℎ,m+1 = Um+1Cm+1,m+1V
∗
m+1. (3.6)

The following result is both a generalization and specialization of Alqahtani et al.1 (Corollary 3); it is a generalization because
infinite-dimensional operators are considered, and it is a specialization because tridiagonal matrices with scalar entries are
regarded.

Theorem 1. Let {�i;wi}∞i=1 be an eigensystem of the self-adjoint compact operator ℎP̃∗
ℎ. Assume that the eigenvalues

are ordered so that �i ≥ �i+1 ≥ 0 for all i ≥ 1, and let the eigenfunctions wi be orthonormal. Assume that the Golub–
Kahan bidiagonalization process applied to ℎ with initial function ℎ∗

ℎy
� can be carried out infinitely many steps without
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breakdown, and let the �i and �i be the diagonal and subdiagonal entries, respectively, of the (infinite) bidiagonal matrix C in
(3.5). It follows from Algorithm 1 that these entries are positive. Then

m+1
∏

i=1
�i�i+1 ≤

m
∏

i=1
�i, m = 1, 2,… . (3.7)

Proof. LetℎP̃∗
ℎ = SΛS∗ denote the spectral factorization, whereΛ = diag[�1, �2,… ] andS is a unitary operator. Introduce

the monic polynomial pm(t) =
∏m

i=1(t − �i) with 1 ≤ m < ∞. The eigenvalues �j are nonnegative, since they are the square of
the singular values of ℎV . Therefore,

‖pm(ℎP̃∗
ℎ)‖ = ‖pm(Λ)‖ = sup

j≥m+1
|pm(�j)| ≤ |pm(0)| =

m
∏

i=1
�i.

Hence,

‖pm(ℎP̃∗
ℎ)ℎ∗

ℎy
�
‖ ≤ ‖ℎ∗

ℎy
�
‖

m
∏

i=1
�i. (3.8)

Application of infinitely many steps of the Golub–Kahan bidiagonalization process to the operator ℎ with initial function
ℎ∗

ℎy
� gives (3.5) with u1 = ℎ∗

ℎy
�∕‖ℎ∗

ℎy
�
‖ . We obtain from (3.5) that

ℎP̃∗
ℎ = UTU ∗, (3.9)

where T = [tij]∞i,j=1 ∶= CC∗ is an infinite symmetric tridiagonal matrix with diagonal entries tii = �2
i + �2i , i = 1, 2,… , with

�1 = 0, and subdiagonal entries ti+1,i = �i+1�i, i = 1, 2,… . We have

pm(ℎP̃∗
ℎ)ℎ∗

ℎy
� = Upm(T )U ∗ℎ∗

ℎy
� = Upm(T )e1‖ℎ∗

ℎy
�
‖ .

Here and in the following, ej = [0,… , 0, 1, 0, 0,… ]T denotes the (infinite) jth axis vector and ‖ ⋅ ‖2 denotes the l2-norm. The
next inequality follows by direct computation,

‖pm(ℎP̃∗
ℎ)ℎ∗

ℎy
�
‖ = ‖pm(T )e1‖2‖ℎ∗

ℎy
�
‖ ≥ ‖ℎ∗

ℎy
�
‖‖e

T
m+1pm(T )e1‖2. (3.10)

We will show by induction over m ≥ 1 that

eTm+1pm(T )e1 =
m+1
∏

i=1
�i�i+1 (3.11)

for m ≥ 1. When m = 1, equation (3.11) becomes

eT2 pm(T )e1 = [�1�2, (�2
2 + �22 ) − �1, �2�3, 0, 0,… ]e1 = �1�2.

Assume that equation (3.11) holds for m ≥ 2. We would like to show that (3.11) is valid for m + 1. We have

eTm+2pm+1(T )e1 = eTm+2(T − �m+1I)pm(T )e1
= (�m+2�m+3eTm+1 + ((�2

m+2 + �2m+2) − �m+1)eTm+2 + �m+3�m+4e
T
m+3)pm(T )e1.

Since the operator pm(T ) is (2m + 1)-banded, it follows that

eTm+2pm+1(T )e1 = �m+2�m+3e
T
m+1pm(T )e1.

Applying the induction hypothesis, we obtain

eTm+2pm+1(T )e1 = �m+2�m+3
m+1
∏

i=1
�i�i+1 =

m+2
∏

i=1
�i�i+1.

Thus, the relation (3.11) holds. Substituting (3.11) into (3.10), and combining with (3.8), shows the theorem.

Figure 1 displays, in logarithmic scale, the values taken by each side of inequality (3.7) with the number of iteration, m,
ranging from 1 to 10. The graphs show that the product

∏m+1
i=1 �i�i+1 converges to zero much faster than the product

∏m
i=1 �i as

m increases. The operators are integral operators of the first kind defined in Section 4.
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FIGURE 1 Behavior of the bound (3.7) with respect to the iteration index m for Baart, Foxgood, Gravity, and Shaw integral
equations of the first kind. These integral equations are described in Section 4. The left-hand side of inequality (3.7) is represented
by gray stars and the right-hand side is represented by black circles.

Theorem 2. Let ℎ be a compact operator and assume that infinitely many steps of the Golub–Kahan bidiagonalization process
can be applied to this operator with initial function ℎ∗

ℎy
� without breakdown. Let the identity (3.5) hold and let ℎ,m+1 be

given by (3.6). Furthermore, assume that, for all j ≥ 1,

�j+1�j+2 ≤ � min
1≤i≤j

�i�i+1, (3.12)

�2
j+1 + �2j+1 ≤ � min

1≤i≤j
(�2

i + �2i ), (3.13)

for some constant � independent of j. Here the �i and �i are the nontrivial entries of the lower bidiagonal matrix C in (3.5).
Then the bound 
m+1 > 0 in

‖ℎP̃ −ℎ,m+1‖ ≤ 
m+1 (3.14)

can be chosen arbitrarily small by letting m be sufficiently large.

Proof. Consider the infinite tridiagonal matrix T = CC∗ of the proof of Theorem 1; see (3.9). It has diagonal entries tii = �2
i +�

2
i ,

i = 1, 2,… , with �1 = 0, and subdiagonal entries ti+1,i = �i+1�i, i = 1, 2,… . It follows from (3.7) that the product of the
subdiagonal entries ti+1,i of T converges to zero as the number of factors, ti+1,i, increases. The requirment (3.12) secures that
the subdiagonal entries ti+1,i converge to zero as i increases. Let " > 0 be an arbitrary (small) constant. Then there is an integer
m", depending on ", such that ti−1,i ≤ " for all i ≥ m". In particular, limi→∞ ti−1,i = 0.

We turn to the diagonal entries tii of T . Since ℎ∗
ℎ is a compact operator, its eigenvalues cluster at the origin, which is the

only cluster point. The matrix T is unitarily similar to the operator ℎP̃∗
ℎ. Therefore, its eigenvalues also cluster at the origin,

and this is the only cluster point. In particular, T has only finitely many, say m̃", eigenvalues larger than ".
We now show that the diagonal entries tii of T converge to zero as i increases. Assume to the contrary that the tii are bounded

below by � > 0 for all i ≥ m� for some finite m� ≥ 1. Let " = �∕3 and m = max{m", m� , m}. Define the symmetric tridiagonal
matrix T0 by setting all the diagonal and off-diagonal entries tii and ti+1,i of T to zero for 1 ≤ i ≤ m + 1. Then T0 is a compact
operator with all entries of its leading m + 1 rows and columns vanishing. Thus, T0 has m + 1 vanishing eigenvalues. The
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remaining eigenvalues of T0 can be bounded with the aid of Gershgorin disks. These eigenvalues are in the set

{z ∈ ℂ ∶ ∪∞
j=m+2|z − tjj| ≤ tj,j−1 + tj+1,j}. (3.15)

The radius of every disk {z ∈ ℂ ∶ |z − tjj| ≤ tj,j−1 + tj+1,j} is bounded by 2" = 2
3
�, and the diagonal entries are bounded

below by �. Therefore, every nonvanishing eigenvalue � of T0 satisfies

|� − tii| ≤
2
3
�,

which leads to
� − � ≤ 2

3
�,

i.e., � ≥ �∕3, Hence, the eigenvalues of T0 do not cluster at the origin. This contradiction shows that the tii are not bounded
below by a constant strictly larger than zero. The requirement (3.13) secures that limi→∞ �2

i + �2i = 0.
Since both the diagonal and subdiagonal entries of T0 converge to zero with increasing index number, we may choose the

cut-off index m large enough so that
ti−1,i + tii + ti+1,i ≤ 
2m+1 ∀i ≥ m + 1.

Application of Gershgorin disks then shows that the largest eigenvalue of T0 is bounded by 
2m+1. Introduce the infinite lower
bidiagonal matrix

C0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Om
⋮

�m+2 �m+2
�m+3 �m+3

⋱ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where Om denotes the zero matrix with m columns and infinitely many rows. Then T0 = C0C∗
0 and ‖C0‖2 = ‖T0‖

1∕2
2 ≤ 
m+1.

Finally, we obtain from (3.5) and (3.6) that

ℎP̃ −ℎ,m+1 = UCV ∗ − Um+1Cm+1,m+1V
∗
m+1 = UC0V

∗.

It follows that
‖ℎP̃ −ℎ,m+1‖ = ‖C0‖2.

This shows that the bound (3.14) can be chosen arbitrarily small by letting m be sufficiently large.

Figure 2 displays the convergence of the diagonal entries tii and subdiagonal entries ti+1,i of the matrix T in (3.9) to zero as i
increases. The matrices T are determined by Fredholm integral equations of the first kind described in Section 4.

Golub–Kahan bidiagonalization determines a basis {v1, v2,… } for the solution subspace. The operator ℎ maps this basis
to orthonormal functions {u1, u2,… } in the range of ℎ. We will let  = span{u1, u2,… } and, if necessary, replace y in (1.1)
by UU ∗y.

The following proposition establishes that the conditions in Neubauer21 (Assumption 2.3) are satisfied.

Proposition 1. Assume that the Golub–Kahan bidiagonalization process applied to ℎ with initial function ℎ∗
ℎy

� can be
carried out infinitely many steps without breakdown and that the representation (3.5) holds. Let m+1 = (ℎ,m+1) for m =
0, 1,… . Then with the operators defined as above, we have

m+1 ⊂ (ℎP̃ ), (3.16)
(Q̃m+1ℎ,m+1) = m+1, (3.17)

‖Q̃m+1(ℎP̃ −ℎ,m+1)‖ ≤ 
m+1, (3.18)
‖Q̃m+1(y − y�)‖ ≤ �, (3.19)

Q̃m+1 → I as m → ∞ point-wise in (U ). (3.20)

Proof. It follows from (3.6) that
ℎ,m+1P̃ = Um+1Cm+1,m+1V

∗
m+1 = ℎ,m+1
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Foxgood

tii
ti+1,i

5 10 15 20 25 3010−10

10−4

102

m

Gravity

tii
ti+1,i
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101

m

Shaw

tii
ti+1,i

FIGURE 2 Illustration of convergence of the subdiagonal entries ti+1,i and diagonal entries tii of the tridiagonal matrix T in
Theorem 2 to zero. The matrices T are determined by Fredholm integral equations of the first kind described in Section 4.

and, therefore,
m+1 = (ℎ,m+1) ⊂ (ℎP̃ ),

which shows (3.16). Furthermore, (Q̃m+1ℎ,m+1) = (ℎ,m+1), which shows (3.17). We have

‖Q̃m+1(ℎP̃ −ℎ,m)‖ ≤ ‖Q̃m+1‖‖ℎP̃ −ℎ,m‖
(3.14)
≤ 
m+1

and
‖Q̃m+1(y − y�)‖ ≤ ‖y − y�‖

(1.2)
≤ �.

This shows (3.18) and (3.19).
Finally, let f ∈ (U ) with U = [u1, u2,… ]. The functions uj form an orthonormal basis for (U ). We have for coefficients

�j that

f =
∞
∑

j=1
�juj ,

∞
∑

j=1
|�j|

2 < ∞.

The convergence of the latter sum implies that for any arbitrarily small � > 0, there is an m = m� such that

‖f − Q̃m+1f‖
2
 =

∞
∑

j=m+2
|�j|

2 < �.

This shows (3.20).

We are in a position to derive a bound for ‖xℎ,��,m+1 − xexact‖ .

Lemma 1. Let xℎ,��,m+1 be defined by (3.4), let y ∈ (), and assume that Proposition 1 holds. Then, for any 0 < � < ∞,

‖xℎ,��,m+1 − xexact‖ ≤ 1
2
√

�

(

� + 
m+1‖xexact‖
)

+ ℎ
(

‖y‖
�

+ c + O(ℎ)
)

‖P̃m+1∗Q̃∗
m+1y‖

+ �‖(∗
m+1m+1 + �I)−1xexact‖ , (3.21)
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where c is a constant that is independent of �, �, and m, and m+1 = Q̃m+1P̃m+1.

Proof. Split the error into three parts

xℎ,��,m+1 − xexact = (xℎ,��,m+1 − xℎ�,m+1) + (xℎ�,m+1 − x�,m+1) + (x�,m+1 − xexact),

where

xℎ�,m+1 =
(

∗
ℎ,m+1ℎ,m+1 + �I

)−1
∗

ℎ,m+1y,

x�,m+1 =
(

∗
m+1m+1 + �I

)−1 ∗
m+1y

and ℎ,m+1 is defined by (3.4). For any operator , one can easily show that

‖ (∗ + �I)−1 ∗
‖ ≤ 1

2
√

�
. (3.22)

This inequality and (1.2) yield
‖xℎ,��,m+1 − xℎ�,m+1‖ ≤ �

2
√

�
. (3.23)

Using the definitions, the second part can be written as

xℎ�,m+1 − x�,m+1 =
(

∗
ℎ,m+1ℎ,m+1 + �I

)−1
∗

ℎ,m+1y −
(

∗
m+1m+1 + �I

)−1 ∗
m+1y

=
(

P̃m+1∗
ℎQ̃m+1ℎP̃m+1 + �I

)−1
P̃m+1∗

ℎQ̃m+1y −
(

P̃m+1∗Q̃m+1P̃m+1 + �I
)−1

P̃m+1∗Q̃m+1y,

where we have used that Q̃∗
m+1Q̃m+1 = Q̃m+1, P̃ ∗

m+1P̃m+1 = P̃m+1, Q̃∗
m+1 = Q̃m+1, and P̃ ∗

m+1 = P̃m+1.
Let Mℎ = P̃m+1∗

ℎQ̃m+1ℎP̃m+1 and M = P̃m+1∗Q̃m+1∗P̃m+1. We have

xℎ�,m+1 − x�,m+1 =
(

Mℎ + �I
)−1 P̃m+1

(

∗
ℎ −∗) Q̃m+1y +

(

(

Mℎ + �I
)−1 − (M + �I)−1

)

P̃m+1∗Q̃m+1y.

Since ‖

(

Mℎ + �I
)−1

‖ ≤ �−1 and ‖P̃m+1
(

∗
ℎ −∗) Q̃m+1‖ ≤ ℎ, it follows that

‖xℎ�,m+1 − x�,m+1‖ ≤
ℎ ‖y‖

�
+ ‖

(

(

Mℎ + �I
)−1 − (M + �I)−1

)

P̃m+1∗Q̃m+1y‖ .

Let Mℎ = M + Eℎ. Then
(

Mℎ + �I
)−1 − (M + �I)−1 = (M + �I)−1

(

(

I + (M + �I)Eℎ
)−1 − I

)

= −Eℎ + O
(

‖Eℎ‖
2) .

Using the fact that ‖Eℎ‖ ≤ c ℎ for some constant c > 0, we get

‖xℎ�,m+1 − x�,m+1‖ ≤ ℎ
(

‖y‖
�

+ c + O (ℎ)
)

‖P̃m+1∗Q̃m+1y‖ . (3.24)

We turn to the last part:

x�,m+1 − xexact =
(

∗
m+1m+1 + �I

)−1 ∗
m+1y − xexact

=
(

∗
m+1m+1 + �I

)−1 ∗
m+1 xexact − xexact, (y = xexact)

=
(

∗
m+1m+1 + �I

)−1 ∗
m+1

(

m+1 +
(

 −m+1
))

xexact − xexact.

By applying (3.14) and (3.22), we obtain

‖x�,m+1 − xexact‖ ≤ ‖

(

∗
mm+1 + �I

)−1 ∗
m+1m+1xexact − xexact‖ +


m+1
2
√

�
‖xexact‖

= �‖
(

∗
m+1m+1 + �I

)−1 xexact‖ +

m+1
2
√

�
‖xexact‖ . (3.25)

Combining (3.23), (3.24), and (3.25) shows the lemma.

Using the error estimate (3.21), we obtain the following convergence rate results from21 Proposition 2.6.
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Proposition 2. Let xℎ,��,m+1 be defined by (3.4) and assume that

xexact =
(

∗
ℎℎ

)� vℎ, vℎ ∈  (ℎ)⊥, vℎ ≠ 0, (3.26)

for some � ∈ [0, 1] with vℎ uniformly bounded for all ℎ > 0 sufficiently small. Let the regularization parameter

�̄ = �
(

m+1, 
m+1,ℎ,m+1, �, y
�) > 0

satisfy

�3∕2
‖

(

∗
ℎ,m+1Aℎ,m+1 + �I

)−1 (
∗

ℎ,m+1ℎ,m+1

)�
vℎ‖ =

(


m+1‖xexact‖ + 1
2
�
)

. (3.27)

Then �
(

m+1, 
m+1,ℎ,m, �, y�
)

→ 0 as m → ∞ and 
m+1, � → 0. Moreover,

‖xℎ,��̄,m+1 − xexact‖ = o
(

(

� + 
m+1
)2�∕(�+1)

)

+ p(m + 1, �), (3.28)

where o(⋅) has to be replaced by O(⋅) if � = 1 and

p(m + 1, �) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if � = 0,
�m+1‖(I − Q̃m+1)z‖ , if � = 1

2
, ∗

ℎz =
(

∗
ℎℎ

)1∕2 vℎ,
�m+1‖(I − Q̃m+1)ℎvℎ‖ ≤ �2m+1‖vℎ‖ , if � = 1,
(4∕�) �2�m+1‖vℎ‖ , otherwise,

and �m+1 = ‖(I − Q̃m+1)ℎ‖.

Remark 2. The standard smoothness condition for obtaining convergence rates in inverse problems, also used by Neubauer21,
reads xexact = (∗)v. In contrast, we require (3.26) to hold for xexact and each ℎ with associated source element vℎ and uniform
bound ‖vℎ‖ ≤ �. This condition has already been used in proving convergence rates for Arnoldi-Tikhonov regularization23

Proposition 4.2. In real applications, (3.26) might be hard to verify. For a discussion of (3.26), we refer the reader to23 Remark
4.3 and Proposition 4.5.

The convergence rate in (3.28) is usually optimal with respect to � and 
m+1. However, the choice of the regularization
parameter �̄ of Proposition 2 is not computable, since v is not known and � typically is not available. Following Neubauer, we
use21 Theorem 3.5 to obtain an a posteriori parameter selection method, which yields the same rate as in Proposition 2, but only
uses available data.

Proposition 3. Let the constants L > 1 and E > 3‖xexact‖ be such that

0 ≤ E
m+1 + L� ≤ ‖Q̃m+1y
�
‖

holds. For xexact let (3.27) be fulfilled, and let xℎ,��̂,m+1 be defined by (3.4) such that �̂ is the unique solution of

�̂3
⟨

(

ℎ,m+1∗
ℎ,m+1 + �̂I

)−3
Q̃m+1y

� , Q̃m+1y
�
⟩

=
(

E
m + L�
)2 . (3.29)

Then the same asymptotic estimates hold for xℎ,��̂,m+1 − xexact as for xℎ,��̄,m+1 − xexact in Proposition 2.

The approach for selecting the parameter � described in Proposition 3 does not tell us how to choose the constants L and E
when solving actual problems. We would like these constants to be such that ‖xℎ,��,m+1 − xexact‖ is as small as possible for given
values of m, 
m+1, and �. Results of21 Proposition 3.6 show that Proposition 3 also holds for L ≥ 1 and E ≥ ‖xexact‖ , and that
the best choices of these constants are L = 1 and E = ‖xexact‖ .

However, we may not know an accurate estimate of ‖xexact‖ . In this case, Neubauer21 suggests to let �̄ = �
(

m + 1, 
m+1, �
)

be the unique solution of

�̄3
⟨

(

ℎ,m+1∗
ℎ,m+1 + �̄I

)−3
Q̃m+1y

� , Q̃m+1y
�
⟩

=
(

D
m+1‖x
ℎ,�
�,m+1‖ + �

)2
(3.30)

for some constant D > 1. Observe that ‖xℎ,��,m+1‖ is a decreasing function of � and, thus, a solution of (3.30) exists if

� < ‖Q̃m+1y
�
‖
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holds. Let �̂ be the solution of (3.29) with L = 1 and E = ‖xexact‖ , and let �̃ be the solution of (3.29) with L = 1 and
E = 2D‖xexact‖ . For some constant D > 1, we obtain that �̂ ≤ �̄ ≤ �̃ and, therefore,

‖xℎ,��̂,m+1 − xexact‖ ≤ ‖xℎ,��̄,m+1 − xexact‖ ≤ ‖xℎ,��̃,m+1 − xexact‖

for m sufficiently large, and both ℎ and � sufficiently small. This provides a computable method for selecting a value of the
parameter �, since we do not need any information about the exact solution xexact or the parameter �.

In our analysis, we require that the basis of the discretized space does not change when we decrease the noise level. To this end,
we fix the noise level and therefore the initial function ℎ∗

ℎy
� when applying bidiagonalization. If subsequently the amount of

error is decreased, and this requires more bidiagonalization steps to be carried out to satisfy (3.30), then we keep the functions,
say {uj}m+1j=1 and {vj}m+1j=1 already available, and generate more functions uj and vj for j > m + 1 as necessary to satisfy (3.30).

We finally comment on the evaluation of the expression
⟨

(

ℎ,m+1∗
ℎ,m+1 + �̂I

)−3
Q̃m+1y

� , Q̃m+1y
�
⟩

in the left-hand side of (3.29). In actual computations, the number of bidiagonalization steps m+1 typically is fairly small. It is
then convenient to evaluate (3.29) by first computing the singular value decomposition of ℎ,m+1 by evaluating the singular value
decomposition of the lower bidiagonal matrix Cm+1,m+1 associated with ℎ,m+1, cf. (3.6), and then using this decomposition to
solve

(ℎ,m+1∗
ℎ,m+1 + �̂I)z = Q̃m+1y

�

for z. This is followed by solving another system of equation with the same operator and right-hand side z.

4 NUMERICAL EXPERIMENTS

In this section, we apply Golub–Kahan bidiagonalization with Tikhonov regularization to solve integral equations of the first
kind

∫
Ω1

�(s, t)x(t) dt = y(s), s ∈ Ω2, (4.1)

where x ∈ L2(Ω1), y ∈ L2(Ω2), and � ∈ L2(Ω1 ×Ω2) is a nondegenerate kernel. The Ωi are subsets of ℝdi for i = 1, 2. We first
consider four test problems from Regularization Tools14; they are problems in one space-dimension and are listed in Table 1. For
two test problems, Gravity and Shaw, the function y(s) is not explicitly known and, therefore, not given explicitly in the table.
Instead, it is computed by evaluating the integral (4.1). Subsequently, we apply Golub–Kahan bidiagonalization with Tikhonov
regularization to solve an inverse problem in two space-dimensions. This problem is inspired by the IR TOOLS package11.

All computations were carried out in MATLAB R2017a with about 15 significant decimal digits, some with the MATLAB
package Chebfun, running on a laptop computer with core CPU Intel(R) Core(TM)i7-7Y75 @1.60GHz processor with 16GB
of RAM. Chebfun carries out computations with approximations of continuous functions and operators. The functions and
operators are approximated by piece-wise Chebyshev polynomials, so called chebfuns; see2, 6 for details. Chebfun makes it
unnecessary for a user to explicitly discretize functions and operators. This makes the computations closer to the theory devel-
oped in, e.g., Engl et al.7, than when using the more common approach of discretizing the integral equation (4.1) before solution.

The most common approach to solve the integral equation (4.1) is to first discretize the equation to obtain a linear system of
algebraic equations. The matrix of this system will be ill-conditioned. This approach requires that the integrals be approximated
by quadrature rules. One can choose the quadrature rules so that the error caused by this approximation is insignificant compared
to the regularization error caused by noisy data. We discretize the integral equation (4.1) by a Nyström method based on the
composite trapezoidal rule with n nodes. This transforms (4.1) into a linear system of equations Ax = y, where A ∈ ℝn×n is a
symmetric or nonsymmetric matrix, x ∈ ℝn is a discretization of the exact solution, xexact, and y ∈ ℝn is considered an error-free
right-hand side vector. We carry out these computations using standard MATLAB (without Chebfun).

We turn to the continuous solution approach that is based on the use of Chebfun. Then ‖ ⋅ ‖Ωi
stands for an L2-norm. Thus,

‖x(t)‖2Ωi
= ∫

Ωi

|x(t)|2 dt, for i = 1, 2.
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TABLE 1 Test problems used for the numerical experiments.

Example Domain �(s, t), x(t) and y(s) Reference

Baart Ω1 = [0, �] �(s, t) = exp(s cos(t)) 3 Ex. 4.2
Ω2 = [0, �

2
] x(t) = sin(t)

y(s) = 2 sinh(s)
s

Foxgood Ω1 = [0, 1] �(s, t) = (s2 + t2)
1
2 10 p. 520

Ω2 = [0, 1] x(t) = t
y(s) = 1

3
(1 + s2)

3
2 − s3

Gravity Ω1 = [0, 1] �(s, t) = (1 + (s − t)2)−
3
2 27 p. 17

Ω2 = [0, 1] x(t) = sin(t�) + 1
2
sin(2� t)

Shaw Ω1 = [− �
2
, �
2
] �(s, t) = (cos(s) + cos(t))

(

sin(u)
u

)2
25 p. 97

Ω2 = [− �
2
, �
2
] u = �(sin(s) + sin(t))

x(t) = 2e−6(t−0.8)2 + e−2(t+0.5)2

We generate the perturbed operator ℎ associated with the operator  according to

(ℎx)(s) = ∫
Ω1

��(s, t) x(t)dt,

where

��(s, t) = �(s, t) + �
‖�(s, t)‖Ω1,2

‖F (s, t)‖Ω1,2

F (s, t).

Here, F (s, t) is a smooth Chebfun function in two space-dimensions, generated by the Chebfun command randnfun2(#,Ω1 ×
Ω2), with maximum frequency about 2�∕# and standard normal distributionN(0, 1) at each point. The parameter � > 0 specifies
the noise level.

The right-hand side function y(s) in (1.1) is assumed not to be known, but the error-contaminated function y�(s), defined by

y�(s) = y(s) + �
‖y(s)‖Ω2

‖F (s)‖Ω2

F (s),

is available. The function F (s) is a smooth Chebfun function, generated with the Chebfun command randnfun(#,Ω2), with
maximum frequency about 2�∕# and standard normal distribution N(0, 1) at each point. The parameter � > 0 specifies the
noise level. In the computed examples, we let # = 10−2.

Application of m + 1 steps of the continuous Golub–Kahan bidiagonalization process to the operator ℎ with initial func-
tion u1 = ℎ∗

ℎy
�∕‖ℎ∗

ℎy
�
‖ yields the decomposition (2.1), as well as the low-rank operator ℎ,m+1 as defined by (3.6).

Tikhonov regularization is applied to determine an approximate solution of the operator equation

ℎ,m+1x = y�

as described in Section 3. In particular, the regularized solution xℎ,��,m+1 is computed by using (3.4).
Figures 3 to 6 show some graphs obtained by applying Golub–Kahan bidiagonalization with Tikhonov regularization to the test

problems Baart, Foxgood, Gravity, and Shaw. The exact kernels �(s, t) and the added errors are illustrated in subfigures (a) and
(b), respectively, of all the figures. Subfigures (c) of the figures display the right-hand side functions y(s) and the corresponding
error-contaminated functions y�(s). The subfigures (d) show the exact solutions xexact(t) and the computed approximate solutions
xℎ,��,m+1(t) determined by applying Golub–Kahan bidiagonalization with Tikhonov regularization form = 20. The latter subfigures
show Golub–Kahan bidiagonalization with Tikhonov regularization to yield quite accurate approximations of the exact solution
for all the test problems. We let � = � ∈

{

10−4, 10−2
}

in all experiments.
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FIGURE 3 Example –“Baart”, � = � =1.00 e−4.

The second and fourth columns of Table 2 display results for m ∈ {20, 30, 40}. The approximation error in the operator  is
evaluated by

ℎ = ‖(x)(s) − (ℎx)(s)‖Ω2
,

which is listed in the third column of Table 2. The fifth column of the table reports the error incurred by replacing the operator
ℎ by ℎ,m+1,


m+1 = ‖(ℎx)(s) − (ℎ,m+1x)(s)‖Ω2
.

The sixth column displays the value of the regularization parameter �, which is determined by solving (3.29) with E = ‖xexact‖Ω1

and L = 1 as suggested in the previous section. The desired value of � is computed by Newton’s method with � = ‖y − y�‖Ω2
.

We measure the accuracy of the computed approximate solution xℎ,��,m+1 by the relative error

RE =
‖xexact − xℎ,��,m+1‖Ω1

‖xexact‖Ω1

; (4.2)

this error is tabulated in the last column of Table 2.
A few observations about Table 2 are in order. The relative error (4.2) depends on the error in the right-hand side function

y�(s), the error in the approximate operator ℎ, and the approximation error 
m+1. We notice that the error 
m+1 decreases
as the number of bidiagonalization steps m increases, as can be expected from Lemma 2. As a result, when the noise level �
decreases, and the number of bidiagonalization steps m increases, the quality of the computed solutions improves. The results in
Table 2 show Golub–Kahan bidiagonalization with Tikhonov regularization using Chebfun to perform well for all test problems
considered.
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FIGURE 4 Example –“Foxgood”, � = � =1.00 e−2.

We turn to the discrete approach. Thus, we apply the discrete Golub–Kahan bidiagonalization method with Tikhonov
regularization to linear systems of equations

Ax = y� , A ∈ ℝn×n, x, y� ∈ ℝn,

that result from the discretization of the operator equation (4.1). In this approach, ‖ ⋅ ‖2 denotes the Euclidean vector norm or
the associated induced matrix norm. We define the perturbed matrix Aℎ ∈ ℝn×n by

Aℎ = A + �
‖A‖2
‖F̃‖2

F̃ ,

where F̃ ∈ ℝn×n is a random matrix whose entries are from a normal distribution with mean zero and variance one, and � is a
chosen error level. We generate the error-contaminated vector y� ∈ ℝn according to

y� = y + �
‖y‖2
‖e‖2

e,

where e ∈ ℝn is a random vector whose entries are from a normal distribution with mean zero and variance one. Application
of a discrete analogue of Algorithm 1 to the matrix Aℎ with initial vector u1 = AA∗y�∕‖AA∗y�

‖2 yields the decompositions

AℎṼm = Ũm+1C̃m+1,m, A∗
ℎŨm = ṼmC̃

∗
m,m,
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FIGURE 5 Example –“Gravity”, � = � =1.00 e−2.

where the matrices Ṽm = [v1, v2,… , vm] ∈ ℝn×m and Ũm+1 = [u1, u2,… , um+1] ∈ ℝn×(m+1) have orthonormal columns.
Moreover,

C̃m+1,m =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1
�2 �2

⋱ ⋱
�m �m

�m+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ(m+1)×m (4.3)

is a lower bidiagonal matrix. The algorithm also determines the lower bidiagonal matrix C̃m+1,m+1 ∈ ℝ(m+1)×(m+1) with leading
principal submatrix (4.3) and the matrix Ṽm+1 = [v1, v2,… , vm+1] ∈ ℝn×(m+1). Define the low-rank approximation Aℎ,m+1 of
the matrix Aℎ by

Aℎ,m+1 = Ũm+1C̃m+1,m+1Ṽ
∗
m+1.

We compute an approximate solution of the linear system of equations

Aℎ,m+1x = y�

with the aid of Tikhonov regularization. The computed regularized solution xℎ,�
�,m+1 is given by

xℎ,�
�,m+1 =

(

A∗
ℎ,m+1Aℎ,m+1 + �I

)−1
A∗

ℎ,m+1y
� .

Tables 3 to 6 report results obtained when applying m steps of discrete Golub–Kahan bidiagonalization with Tikhonov regular-
ization to the Baart, Foxgood, Gravity, and Shaw test problems, respectively. In our experiments, we let � = � ∈

{

10−4, 10−2
}

,
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FIGURE 6 Example –“Shaw”, � = � =1.00 e−4.

n ∈ {1000, 2000, 4000}, andm ∈ {20, 30, 40}, which are listed in the first, second, and fourth columns of the tables, respectively.
The approximation error of the matrix Aℎ is evaluated by

ℎ = ‖A − Aℎ‖2.

These errors are displayed in the third column of the tables. The fifth column shows the approximation error that is incurred by
approximating the matrix Aℎ by the low-rank matrix Aℎ,m+1; it is computed by


m+1 = ‖Aℎ − Aℎ,m+1‖2.

The accuracy of the computed approximation xℎ,�
�,m+1 of xexact is measured by the relative error

RE =
‖xexact − xℎ,�

�,m+1‖2

‖xexact‖2
, (4.4)

and is shown in the last column of the tables.
We make the following observations about the results in Tables 3 to 6. The relative error (4.4) in the computed solution

depends on the error in the right-hand side function y�(s), the error in the operator Aℎ, and on the approximation error 
m+1. We
notice that the relative error decreases as the number of bidiagonalization steps m is increased for fixed n.

Tables 2 to 6 show the computed approximate solutions determined by the continuous GKB-Tikhonov method with Chebfun
to give more accurate approximations of the exact solutions xexact than the approximate solutions determined by the discrete
GKB-Tikhonov method.
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TABLE 2 Results obtained by applying the GKB-Tikhonov method with Chebfun to the Baart, Foxgood, Gravity, and Shaw
test problems.

Example Noise level ℎ m 
m+1 � RE

Baart

10−4 1.8691 ⋅ 10−5
20 9.1879 ⋅ 10−7 2.3465 ⋅ 10−6 1.1331 ⋅ 10−1

30 8.9538 ⋅ 10−7 2.1411 ⋅ 10−6 1.1308 ⋅ 10−1

40 8.5346 ⋅ 10−7 2.0492 ⋅ 10−6 1.1296 ⋅ 10−1

10−2 1.8447 ⋅ 10−3
20 1.9810 ⋅ 10−4 2.3562 ⋅ 10−3 1.9569 ⋅ 10−1

30 1.8898 ⋅ 10−4 2.2540 ⋅ 10−3 1.9423 ⋅ 10−1

40 1.8170 ⋅ 10−4 2.2034 ⋅ 10−3 1.9350 ⋅ 10−1

Foxgood

10−4 3.5548 ⋅ 10−6
20 5.7627 ⋅ 10−10 1.7781 ⋅ 10−5 1.0782 ⋅ 10−2

30 5.3919 ⋅ 10−10 1.5371 ⋅ 10−5 1.0110 ⋅ 10−2

40 5.0299 ⋅ 10−10 1.3521 ⋅ 10−5 9.5829 ⋅ 10−3

10−2 3.8030 ⋅ 10−4
20 1.7885 ⋅ 10−6 1.8357 ⋅ 10−3 5.9800 ⋅ 10−2

30 1.7111 ⋅ 10−6 1.4946 ⋅ 10−3 5.3485 ⋅ 10−2

40 1.5477 ⋅ 10−6 1.2965 ⋅ 10−3 4.9877 ⋅ 10−2

Gravity

10−4 4.9568 ⋅ 10−5
20 2.8666 ⋅ 10−8 2.1567 ⋅ 10−3 1.3043 ⋅ 10−2

30 2.6213 ⋅ 10−8 1.2988 ⋅ 10−3 1.1397 ⋅ 10−2

40 2.4565 ⋅ 10−8 1.1183 ⋅ 10−3 1.0966 ⋅ 10−2

10−2 5.6748 ⋅ 10−3
20 2.9287 ⋅ 10−5 2.7345 ⋅ 10−1 5.8208 ⋅ 10−2

30 2.7037 ⋅ 10−5 1.9778 ⋅ 10−1 5.2284 ⋅ 10−2

40 2.5929 ⋅ 10−5 1.4755 ⋅ 10−1 4.7811 ⋅ 10−2

Shaw

10−4 2.4056 ⋅ 10−5
20 1.8517 ⋅ 10−7 3.8155 ⋅ 10−5 4.6667 ⋅ 10−2

30 1.7918 ⋅ 10−7 2.1163 ⋅ 10−5 4.5770 ⋅ 10−2

40 1.7575 ⋅ 10−7 9.0756 ⋅ 10−6 4.4066 ⋅ 10−2

10−2 2.5578 ⋅ 10−3
20 1.2229 ⋅ 10−4 6.4269 ⋅ 10−3 1.1138 ⋅ 10−1

30 1.1798 ⋅ 10−4 5.1209 ⋅ 10−3 1.0453 ⋅ 10−1

40 1.1348 ⋅ 10−4 4.3765 ⋅ 10−3 1.0052 ⋅ 10−1

Our last example is concerned with solving an inverse linear PDE problem. We select the inverse diffusion problem from
the IR TOOLS package11. The partial differential equation

u̇ = ut1,t1 + ut2,t2 , for all (t1, t2) ∈ Ω1 = [0, 1] × [0, 1],

describes a diffusion process, where u(t1, t2, �) is the concentration at the point (t1, t2) in Ω1 at time �. The time derivative of u
is denoted by u̇, and uti,ti stands for the second derivative in direction ti. We assume that u satisfies the initial condition

u(t1, t2, 0) = u0(t1, t2),

for some given function u0, and Neumann boundary conditions for all time � ≥ 0,

ut1(t1, t2, �) = 0, for all (t1, t2) ∈ )Ω1,

where )Ω1 denotes the boundary of Ω1. After T seconds, the solution of the system is

uT (t1, t2) = u(t1, t2, T ).

Our task is to recover the initial condition u0 from a given noisy version of uT for T = 0.01. To generate data for this problem,
we use the MATLAB function

[A, y, x, ProbInfo] = PRdiffusion(n)
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TABLE 3 Results obtained by applying the discrete GKB-Tikhonov method to the Baart test problem.

Noise level n ℎ m 
m+1 � RE

10−4

1000 4.5674 ⋅ 10−4
20 4.5322 ⋅ 10−4 3.0481 ⋅ 10−4 1.5531 ⋅ 10−1

30 4.4930 ⋅ 10−4 2.9385 ⋅ 10−4 1.5495 ⋅ 10−1

40 4.4895 ⋅ 10−4 2.9285 ⋅ 10−4 1.5492 ⋅ 10−1

2000 4.5667 ⋅ 10−4
20 4.5342 ⋅ 10−4 3.2164 ⋅ 10−4 1.5607 ⋅ 10−1

30 4.5297 ⋅ 10−4 3.2030 ⋅ 10−4 1.5603 ⋅ 10−1

40 4.5120 ⋅ 10−4 3.1571 ⋅ 10−4 1.5589 ⋅ 10−1

4000 4.5664 ⋅ 10−4
20 4.5584 ⋅ 10−4 3.1806 ⋅ 10−4 1.5588 ⋅ 10−1

30 4.5571 ⋅ 10−4 3.1748 ⋅ 10−4 1.5586 ⋅ 10−1

40 4.5454 ⋅ 10−4 3.1413 ⋅ 10−4 1.5576 ⋅ 10−1

10−2

1000 4.5674 ⋅ 10−2
20 4.5196 ⋅ 10−2 2.4122 ⋅ 10−1 3.6483 ⋅ 10−1

30 4.4930 ⋅ 10−2 2.3934 ⋅ 10−1 3.6442 ⋅ 10−1

40 4.4685 ⋅ 10−2 2.3795 ⋅ 10−1 3.6411 ⋅ 10−1

2000 4.5667 ⋅ 10−2
20 4.5355 ⋅ 10−2 2.3986 ⋅ 10−1 3.6337 ⋅ 10−1

30 4.5278 ⋅ 10−2 2.3891 ⋅ 10−1 3.6317 ⋅ 10−1

40 4.5134 ⋅ 10−2 2.3801 ⋅ 10−1 3.6297 ⋅ 10−1

4000 4.5664 ⋅ 10−2
20 4.5589 ⋅ 10−2 2.4358 ⋅ 10−1 3.6510 ⋅ 10−1

30 4.5536 ⋅ 10−2 2.4252 ⋅ 10−1 3.6487 ⋅ 10−1

40 4.5397 ⋅ 10−2 2.4158 ⋅ 10−1 3.6466 ⋅ 10−1

TABLE 4 Results obtained by applying the discrete GKB-Tikhonov method to the Foxgood test problem.

Noise level n ℎ m 
m+1 � RE

10−4

1000 8.1109 ⋅ 10−5
20 8.0417 ⋅ 10−5 1.2294 ⋅ 10−4 3.5932 ⋅ 10−2

30 7.9794 ⋅ 10−5 1.2046 ⋅ 10−4 3.5852 ⋅ 10−2

40 7.9706 ⋅ 10−5 1.1998 ⋅ 10−4 3.5836 ⋅ 10−2

2000 8.1097 ⋅ 10−5
20 8.0532 ⋅ 10−5 1.2350 ⋅ 10−4 3.0527 ⋅ 10−2

30 8.0480 ⋅ 10−5 1.2290 ⋅ 10−4 3.0504 ⋅ 10−2

40 8.0359 ⋅ 10−5 1.2261 ⋅ 10−4 3.0493 ⋅ 10−2

4000 8.1091 ⋅ 10−5
20 8.0936 ⋅ 10−5 1.2405 ⋅ 10−4 2.7372 ⋅ 10−2

30 8.0885 ⋅ 10−5 1.2352 ⋅ 10−4 2.7349 ⋅ 10−2

40 8.0612 ⋅ 10−5 1.2291 ⋅ 10−4 2.7323 ⋅ 10−2

10−2

1000 8.1109 ⋅ 10−3
20 8.0400 ⋅ 10−3 1.3862 ⋅ 10−2 1.8441 ⋅ 10−1

30 8.0396 ⋅ 10−3 1.3776 ⋅ 10−2 1.8397 ⋅ 10−1

40 8.0068 ⋅ 10−3 1.3674 ⋅ 10−2 1.8346 ⋅ 10−1

2000 8.1097 ⋅ 10−3
20 8.0567 ⋅ 10−3 1.3537 ⋅ 10−2 1.7979 ⋅ 10−1

30 8.0510 ⋅ 10−3 1.3459 ⋅ 10−2 1.7937 ⋅ 10−1

40 8.0130 ⋅ 10−3 1.3355 ⋅ 10−2 1.7882 ⋅ 10−1

4000 8.1091 ⋅ 10−3
20 8.0955 ⋅ 10−3 1.4008 ⋅ 10−2 1.8266 ⋅ 10−1

30 8.0848 ⋅ 10−3 1.3897 ⋅ 10−2 1.8209 ⋅ 10−1

40 8.0599 ⋅ 10−3 1.3807 ⋅ 10−2 1.8164 ⋅ 10−1
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TABLE 5 Results obtained by applying the discrete GKB-Tikhonov method to the Gravity test problem.

Noise level n ℎ m 
m+1 � RE

10−4

1000 6.4596 ⋅ 10−4
20 6.3987 ⋅ 10−4 1.0176 ⋅ 10−2 1.9575 ⋅ 10−2

30 6.3314 ⋅ 10−4 9.8998 ⋅ 10−3 1.9420 ⋅ 10−2

40 6.2825 ⋅ 10−4 9.8053 ⋅ 10−3 1.9367 ⋅ 10−2

2000 6.4594 ⋅ 10−4
20 6.4155 ⋅ 10−4 1.0223 ⋅ 10−2 1.9787 ⋅ 10−2

30 6.3831 ⋅ 10−4 9.9587 ⋅ 10−3 1.9640 ⋅ 10−2

40 6.3766 ⋅ 10−4 9.9348 ⋅ 10−3 1.9627 ⋅ 10−2

4000 6.4593 ⋅ 10−4
20 7.0373 ⋅ 10−4 1.1048 ⋅ 10−2 2.0246 ⋅ 10−2

30 6.4430 ⋅ 10−4 1.0062 ⋅ 10−2 1.9716 ⋅ 10−2

40 6.4294 ⋅ 10−4 1.0037 ⋅ 10−2 1.9702 ⋅ 10−2

10−2

1000 6.4596 ⋅ 10−2
20 6.3992 ⋅ 10−2 1.6496 ⋅ 100 1.1784 ⋅ 10−1

30 6.3290 ⋅ 10−2 1.6271 ⋅ 100 1.1707 ⋅ 10−1

40 6.3064 ⋅ 10−2 1.6186 ⋅ 100 1.1678 ⋅ 10−1

2000 6.4594 ⋅ 10−2
20 6.4444 ⋅ 10−2 1.6543 ⋅ 100 1.1831 ⋅ 10−1

30 6.4212 ⋅ 10−2 1.6390 ⋅ 100 1.1779 ⋅ 10−1

40 6.4000 ⋅ 10−2 1.6305 ⋅ 100 1.1750 ⋅ 10−1

4000 6.4593 ⋅ 10−2
20 6.4492 ⋅ 10−2 1.6574 ⋅ 100 1.1870 ⋅ 10−1

30 6.4152 ⋅ 10−2 1.6391 ⋅ 100 1.1808 ⋅ 10−1

40 6.4096 ⋅ 10−2 1.6332 ⋅ 100 1.1788 ⋅ 10−1

TABLE 6 Results obtained by applying the discrete GKB-Tikhonov method to the Shaw test problem.

Noise level n ℎ m 
m+1 � RE

10−4

1000 2.9988 ⋅ 10−4
20 1.2597 ⋅ 10−2 4.7310 ⋅ 10−2 1.7496 ⋅ 10−1

30 1.2596 ⋅ 10−2 4.7306 ⋅ 10−2 1.7496 ⋅ 10−1

40 1.2595 ⋅ 10−2 4.7301 ⋅ 10−2 1.7496 ⋅ 10−1

2000 2.9960 ⋅ 10−4
20 6.3179 ⋅ 10−3 1.9000 ⋅ 10−2 1.6057 ⋅ 10−1

30 6.3179 ⋅ 10−3 1.8996 ⋅ 10−2 1.6057 ⋅ 10−1

40 6.3179 ⋅ 10−3 1.8993 ⋅ 10−2 1.6057 ⋅ 10−1

4000 2.9947 ⋅ 10−4
20 3.1883 ⋅ 10−3 3.5123 ⋅ 10−3 1.2861 ⋅ 10−1

30 3.1881 ⋅ 10−3 3.5085 ⋅ 10−3 1.2858 ⋅ 10−1

40 3.1874 ⋅ 10−3 3.5054 ⋅ 10−3 1.2856 ⋅ 10−1

10−2

1000 2.9988 ⋅ 10−2
20 3.1927 ⋅ 10−2 1.8204 ⋅ 10−1 2.2556 ⋅ 10−1

30 3.1747 ⋅ 10−2 1.8034 ⋅ 10−1 2.2502 ⋅ 10−1

40 3.1535 ⋅ 10−2 1.7892 ⋅ 10−1 2.2456 ⋅ 10−1

2000 2.9960 ⋅ 10−2
20 3.0428 ⋅ 10−2 1.7314 ⋅ 10−1 2.2136 ⋅ 10−1

30 3.0360 ⋅ 10−2 1.7223 ⋅ 10−1 2.2106 ⋅ 10−1

40 3.0324 ⋅ 10−2 1.7179 ⋅ 10−1 2.2091 ⋅ 10−1

4000 2.9947 ⋅ 10−2
20 3.0019 ⋅ 10−2 1.7299 ⋅ 10−1 2.2168 ⋅ 10−1

30 3.0013 ⋅ 10−2 1.7224 ⋅ 10−1 2.2144 ⋅ 10−1

40 3.0001 ⋅ 10−2 1.7190 ⋅ 10−1 2.2133 ⋅ 10−1
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from IR TOOLS, where A is a function handle for the forward and adjoint problem, y ∈ ℝN is a vector that represents the
solution uT , and x ∈ ℝN is a vector that represents the initial condition u0. In this example, we let N = n2 = 4096 and the noise
level to be 10−4.

The true solution xexact corresponding to the initial condition to u0 and the noisy data y� corresponding to the function uT are
displayed in subfigures (a) and (b), respectively, of Figure 7. Subfigures (c) and (d) of Figure 7 display values of the regularization
parameter �, the error 
m+1, and the relative error as a function of the number of the iterations m + 1 for m ∈ {30, 40, 50, 60}.
The remaining subfigures illustrate the reconstructed solutions obtained by applying the GKB-Tikhonov method with different
values of m. In our experience, m = 50 or m = 60 seems to produce better results.

5 CONCLUSION

This paper describes an application of a continuous version of Golub–Kahan bidiagonalization to integral operators of the first
kind to determine a low-rank approximation. The effect of this approximation error, as well as of errors in the available integral
operator and right-hand side functions on the approximate solution determined by Tikhonov regularization is investigated. Our
analysis applies results by Neubauer21. Computed results illustrate the theory. The computations are carried out both in the
standard way of first discretizing and then solving the discretized problem, and by applying Chebfun which works with functions.
The computations with Chebfun are closer to the theory for ill-posed problems described in, e.g.,7, than the discretize first
approach.
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