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Abstract

The need to evaluate expressions of the form I(f) := trace(W T f(A)W ),
where the matrix A ∈ Rn×n is symmetric, W ∈ Rn×k with 1 ≤ k � n, and
f is a function defined on the convex hull of the spectrum of A, arises in
many applications including network analysis and machine learning. When
the matrix A is large, the evaluation of I(f) by first computing f(A) may
be prohibitively expensive. In this situation it is attractive to compute an
approximation of I(f) by first applying a few steps of a global Lanczos-type
method to reduce A to a small matrix and then evaluating f at this reduced
matrix. The computed approximation can be interpreted as a quadrature
rule. The present paper generalizes the extended global Lanczos method
introduced in [6] and discusses the computation of error-bounds and error
estimates. Numerical examples illustrate the performance of the techniques
described.
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1. Introduction

Let A ∈ Rn×n be a large symmetric matrix, f a function defined on the
convex hull of the spectrum of A, and w ∈ Rn a vector of unit Euclidean
norm. Application of m ≤ n steps of the (standard) Lanczos method to A
with initial vector w yields the partial Lanczos decomposition

AVm = VmTm + gme
T
m, (1.1)

where the matrix Vm ∈ Rn×m has orthonormal columns with initial column
w, Tm ∈ Rm×m is a symmetric tridiagonal matrix, and gm ∈ Rn satisfies
V T
mgm = 0; see, e.g., [24, 39] for details on the Lanczos algorithm. Through-

out this paper ei denotes the ith column of the identity matrix of suitable
order, and the superscript T stands for transposition. Generally, m � n
in applications of the Lanczos method. We assume that m is small enough
so that the Lanczos decomposition (1.1) with the stated properties exists.
This is the generic situation. Then

range(Vm) = Km(A,w), (1.2)

where the right-hand side denotes the Krylov subspace

Km(A,w) := span{w, Aw, . . . , Am−1w}. (1.3)

Introduce the spectral factorization

A = UΛUT , Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n (1.4)

with an orthogonal matrix U ∈ Rn×n. Substituting the spectral factorization
into

I(f) := wT f(A)w

gives

I(f) = wTUf(Λ)UTw =

m∑
j=1

f(λj)µ
2
j , (1.5)

where µj = eTj U
Tw. The right-hand side of (1.5) can be written as a Stielt-

jes integral determined by a piece-wise constant non-decreasing distribution
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function µ(λ) with jumps at the λj . Let dµ(λ) denote the measure associated
with µ(λ). Then

I(f) =

∫
f(λ)dµ(λ). (1.6)

We note for future reference that the measure dµ(λ) defines an inner product

(f, g) :=

∫
f(λ)g(λ)dµ(λ) (1.7)

for polynomials f and g of low enough degree.
Golub and Meurant [22, 23] observed that the nontrivial entries of the

symmetric tridiagonal matrix Tm in (1.1) are recursion coefficients for a se-
quence of orthonormal polynomials with respect to the inner product (1.7).
In particular, the eigenvalues of Tm are the zeros of the orthonormal poly-
nomial of degree m. This led Golub and Meurant [22, 23] to show that the
expression

Gm(f) := eT1 f(Tm)e1 (1.8)

is the m-point Gauss quadrature rule for approximating the Stieltjes integral
(1.6). Hence,

Gm(f) = I(f) ∀f ∈ P2m−1, (1.9)

where P2m−1 denotes the set of polynomials of degree at most 2m − 1.
Substituting the spectral factorization of Tm into (1.8) transforms the right-
hand side into a sum of m terms and shows that the eigenvalues of Tm are
the nodes and the square of the first component of normalized eigenvectors
are the weights of the quadrature rule. This observation forms the basis
for the Golub–Welsch algorithm [26] for the efficient computation of nodes
and weights of a Gauss quadrature rule from Tm. However, we remark that
it may not be necessary to first evaluate (1.8) by determining the nodes
and weights of the Gauss rule and then compute f at the nodes. For some
functions f , it may be more efficient to compute f(Tm) directly by one of
the methods discussed in [28]; see [15] for an illustration.

The quadrature rule (1.8) is obtained by applying m steps of the (stan-
dard) Lanczos method to A with initial vector w. An analogous rule can
be computed by applying the global Lanczos method to A with initial block
vector W ∈ Rn×k with block size 1 < k � n. The global Lanczos method
is a block Lanczos method with a particular inner product. It was first pro-
posed and investigated by Elbouyahyaoui et al. [13] and Jbilou et al. [34].
The global block Lanczos method uses the inner product between block
vectors

〈W1,W2〉 := trace(W T
1 W2), W1,W2 ∈ Rn×k, (1.10)
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and the induced Frobenius norm

‖W1‖F := 〈W1,W1〉1/2.

This method can be applied to approximate expressions of the form

I(f) := trace(W T f(A)W ), (1.11)

where W ∈ Rn×k with 1 ≤ k � n.
The problem of estimating the trace of a matrix f(A), without evaluating

f(A), is a classical problem in numerical linear algebra; see, e.g., [2, 3, 4, 5,
8, 9, 21, 25, 36]. The need to evaluate or approximate expressions of the type
(1.11) arises in various applications, including in network analysis and when
solving ill-posed problem; see, e.g., [5, 14, 16, 19, 25, 27] for discussions of
these applications. An approximation of the trace of f(A) can be computed
by approximating expressions (1.11) for several block vectors W := Em,
1 ≤ m ≤ n/k, where the

Em = [ek(m−1)+1, . . . , ekm] ∈ Rn×k (1.12)

are block axis vectors. For notational simplicity, we here assume that n is a
multiple of k; see [5] for details on the computations.

The method described in this paper for approximating expressions of
the form (1.11) is particularly well suited for problems with a matrix A that
allows efficient solution of linear systems of equations with this matrix. This
includes semiseparable matrices [44] and, in particular, symmetric positive
definite Toeplitz matrices [1].

This paper is organized as follows. Section 2 reviews the global Lanc-
zos method. This method gives approximations of integrals that are exact
when the integrand is a polynomial of low enough degree, analogously to
(1.9). However, the error in the computed approximation may be large if
the integrand cannot be well approximated by a polynomial of moderate
degree. The extended global Lanczos method determines approximations
of integrals that are exact when the integrand is a Laurent polynomial of
low enough order. The method described in this paper may determine ap-
proximations of an integral with much higher accuracy than the (standard)
global Lanczos method when the support of the measure includes points
close to the origin, and the integrand has a singularity there. The extended
global Lanczos method recently has been described in [6] for the special case
when the numerator and denominator degrees of the Laurent polynomials
that define the approximant are about the same. Section 3 extends this
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method to allow more general Laurent polynomials. The method is derived
by applying results in [31] for the extended Lanczos method. The computa-
tions with the method exploit that, analogously to computations with the
standard Lanczos method, short recursion relations can be applied in the
computations with the extended global Lanczos method. Section 4 is con-
cerned with bounding the quadrature error of Gauss–Laurent quadrature
rules associated with the extended global Lanczos method. These bounds
require that certain derivatives of the integrand do not change sign on the
convex hull of the support of the measure. A method that can be applied
to evaluate error estimates is described in Section 5. This technique has
been developed by Spalević [41, 42, 43] for estimating the error in Gauss
quadrature rules. We describe an extension that can be applied to estimate
the quadrature error in Gauss–Laurent rules. A few computed examples are
presented in Section 6 and concluding remarks can be found in Section 7.

2. The global Lanczos algorithm and Gauss quadrature

Let A ∈ Rn×n be a large symmetric matrix and W ∈ Rn×k be a block
vector with 1 ≤ k � n. Application of m steps of the global Lanczos
algorithm gives the global Lanczos decomposition

A[V1, V2, . . . , Vm] = [V1, V2, . . . , Vm]T̂mk + βm+1Vm+1E
T
m, (2.1)

where the block columns Vj ∈ Rn×k are orthonormal with respect to the
inner product (1.10), i.e.,

〈Vi, Vj〉 =

{
1, i = j,

0, i 6= j.

The global Lanczos method simplifies to the standard Lanczos method when
the block size k is one. Analogously to (1.2), the range of [V1, V2, . . . , Vm],

given by
{∑m

j=1 γjVj , γj ∈ R
}

, is the block Krylov subspace

Km(A,W ) = span{W,AW, . . . , Am−1W}.

The matrix T̂mk ∈ Rmk×mk in (2.1) can be expressed as

T̂mk = Tm ⊗ Ik, (2.2)
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where Ik ∈ Rk×k is the identity matrix, and the matrix

Tm =



α1 β2
β2 α2 β3

β3
. . .

. . .
. . .

. . .
. . .

. . . βm
βm αm


∈ Rm×m

is symmetric and tridiagonal. Its entries, as well as the block vectors in the
decomposition (2.1), are determined by Algorithm 2.1 below. The symbol
⊗ in (2.2) denotes the Kronecker product. Moreover, Em is the block axis
vector (1.12) and βm+1 > 0 in (2.1). We assume that m is small enough so
that the decomposition (2.1) with the stated properties exists.

Algorithm 2.1 (The global Lanczos method).
Input: symmetric matrix A ∈ Rn×n, initial block vector W ∈ Rn×k,

number of steps `.
Output: global Lanczos decomposition (2.1).
V0 = 0, β1 = ‖W‖F , V1 = W/β1
for j = 1 : ` do

Ṽ = AVj − βjVj−1, αj = 〈Vj , Ṽ 〉
Ṽ = Ṽ − αjVj
βj+1 = ‖Ṽ ‖F , Vj+1 = Ṽ /βj+1

end

The expression (1.11) can be written as

I(f) = ‖W‖2F trace(V T
1 f(A)V1) = ‖W‖2F trace(Ṽ T

1 f(Λ)Ṽ1),

where we assume that W ∈ Rn×k\{0}, V1 = W/‖W‖F , and Ṽ1 = UTV1; cf.
(1.4). We define analogously to (1.6) the Stieltjes integrals

Ii(f) := eTi Ṽ
T
1 f(Λ)Ṽ1ei =

∫
f(λ)dµi(λ), i = 1, 2, . . . , k,

where µi(λ) is a piece-wise constant non-decreasing distribution function
that has jumps at the eigenvalues λj of A and dµi(λ) is the associated
measure. Therefore,

I(f) = ‖W‖2F
k∑
i=1

Iif = ‖W‖2F
∫
f(λ)dµ(λ),
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where

µ(λ) :=

k∑
i=1

µi(λ) (2.3)

is a piece-wise constant non-decreasing distribution function with jumps at
the eigenvalues λj . The measure associated with µ(λ) defines the inner
product

(f, g) :=

∫
f(λ)g(λ)dµ(λ) (2.4)

for polynomials f and g of sufficiently small degree.
It is shown in [5] that the entries of the tridiagonal matrix Tm in (2.2) are

recursion coefficients for orthonormal polynomials associated with the inner
product (2.4). This provides the connection between the global Lanczos
method and Gauss quadrature. A proof of the following result is provided
in [5].

Proposition 2.1. Let the symmetric tridiagonal matrix Tm in (2.2) be de-
termined by Algorithm 2.1. Then

Gm(f) := ‖W‖2FeT1 f(Tm)e1 (2.5)

is an m-point Gauss quadrature rule associated with the inner product (2.4)
defined by the distribution function (2.3). In particular, Gm(f) = I(f) for
all f ∈ P2m−1, where I(f) is defined by (1.11). Substituting the spectral
factorization of Tm into (2.5) yields the quadrature rule in terms of its nodes
and weights.

Assume that the convex hull of the support of the measure dµ does not
contain the origin. Gauss quadrature rules are well suited to approximate
integrals with an integrand that allows accurate approximation by a polyno-
mial of fairly low degree. However, when the integrand is non-differentiable
on or close to the support of the measure, Gauss quadrature rules (2.5) may
yield low accuracy also for fairly large values of m. In this situation, it may
be beneficial to use quadrature rules that are exact for Laurent polynomials,
which are rational functions of the form p(x)/xk, where p is a polynomial
and k is a positive integer. Further, Druskin and Knizhnerman [12] have
shown that the approximation by Laurent polynomials may be beneficial,
compared with polynomial approximation, also when approximating entire
functions on an interval not containing the origin.
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3. The extended global Lanczos algorithm and Gauss–Laurent
rules

The extended global Lanczos method exploits that orthogonal Laurent
polynomials associated with a non-negative measure on the real axis satisfy
short recursion relations; see [10, 29, 30, 31, 35, 37, 40] for this and related
results.

3.1. Recursion relations for extended Krylov subspaces

This section first reviews results in [31] on recursion relations of orthonor-
mal bases for extended Krylov subspaces of the form

K`,m(A,w) = span{A−`+1w, . . . , A−1w,w, Aw, . . . , Am−1w}, (3.1)

and subsequently describes the extended global Lanczos process. We will in
this section assume A to be symmetric and positive definite. Generically,
K`,m(A,w) is of dimension m+ `−1. The space K1,m(A,w) is the standard
Krylov subspace (1.3).

Nj̊astad and Thron [37] showed that orthonormal bases for the sequence
of nested extended Krylov subspaces

K1,1(A,w) ⊂ K2,2(A,w) ⊂ · · · ⊂ Km,m(A,w) ⊂ Rn

satisfy a short recursion relation, i.e., the number of terms of the recursion
relation can be bounded independently of m. The derivation of the recursion
relations uses properties of orthogonal Laurent polynomials. A survey of
this and related results is provided by Jones and Nj̊astad [35]. We remark
that these references do not discuss Krylov subspaces; however, the results
presented can be applied to Krylov subspace computations.

Generation of an orthonormal basis for the subspace Km,m(A,w) requires
the evaluation of m− 1 matrix-vector products with the matrix A and the
solution of m− 1 linear systems of equations with A. For many matrices A,
the evaluation of matrix-vector products with A can be carried out faster
on modern computers than the solution of systems of equations with A, also
when A already is available in factored form. This suggests that it may
be interesting to choose m larger than ` in (3.1). In [31], short recursion
formulas are derived for generating an orthonormal basis for a sequence of
extended Krylov subspaces of the form

K1,i+1(A,w) ⊂ K2,2i+1(A,w) ⊂ . . . ⊂ Km,mi+1(A,w) ⊂ . . . ⊂ Rn,
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where i is a positive integer. The computation of this basis is based on the
use of orthogonal Laurent polynomials. The recursion formulas generate
orthogonal Laurent polynomials with respect to the inner product (1.7).
This is equivalent to determining the vectors, in order,

v0,v1, . . . ,vi,v−1,vi+1, . . . ,v2i, . . . ,v−m+1, . . . ,vim (3.2)

with v0 = w, which make up an orthonormal basis for the extended Krylov
subspace Km,im+1(A,w). The meaning of the subscripts in the sequence
(3.2) is that vj for j > 0 is determined by multiplying the most recently
generated vector by A and orthogonalizing the vector so obtained against
selected already available vectors, while v−j for j ≥ 1 is computed by mul-
tiplying the most recently generated vector by A−1 and orthogonalizing the
vector so obtained against selected already available vectors. Typically, the
matrix A−1 is not explicitly formed; instead a linear system of equations
with the matrix A is solved. The number of explicit orthogonalizations re-
quired for generating each vector vj , j ∈ Z, can be bounded independently
of the magnitude of j. Details are described in [31]. To facilitate the imple-
mentation, we describe an algorithm at the end of this section.

Introduce the matrix

Vτ := [v0,v1, . . . ,vi,v−1,vi+1, . . . ,v2i, . . . ,v−m+1, . . . ,vim] ∈ Rn×τ ,

where
τ := m(i+ 1). (3.3)

The recursion coefficients for generating the basis (3.2) as outlined determine
a pentadiagonal matrix Hτ = [hj,k] ∈ Rτ×τ such that

AVτ = VτHτ + zτe
T
τ , (3.4)

where
zτ = hτ+1,τv−m + hτ+2,τvim+1.

Thus,
Hτ = V T

τ AVτ (3.5)

is the orthogonal projection of A onto Km,im+1(A,w). Since A is symmetric
and positive definite, so isHτ . We remark that the matrixHτ is the analogue
of the tridiagonal matrix Tm in (1.1).

Example 2.1. Consider the matrix Hτ for i = 3 and m = 3. Then τ = 12.
The matrix H12 may have non-vanishing entries in the positions marked by
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“∗”:

H12 =



∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗



.

2

It is shown in [31] that the matrix (3.5) plays an analogous role for
Gauss–Laurent quadrature rules, which are designed for the exact integra-
tion of functions in suitable spaces of Laurent polynomials, as the matrix
Tm for Gauss rules.

Theorem 3.1. (Gauss–Laurent quadrature) Let τ be given by (3.3) and
define the quadrature rule

Hτ (f) = eT1 f(Hτ )e1. (3.6)

Then
I(f) = Hτ (f) ∀f ∈ L2m−2,2mi+1,

where

L2m−2,2mi+1 := span{x−2m+2, x−2m+3, . . . , 1, . . . , x2mi, x2mi+1}, (3.7)

is a space of Laurent polynomials equipped with the inner product (1.7). We
assume here that the dimension of the spaces (3.7) is small enough so that
(1.7) indeed is an inner product.

The quadrature rule (3.6) has τ nodes. Its nodes and weights can be
computed by a Golub–Welsch-type algorithm described in [31]. For some
integrands f , e.g., for f(t) = 1/t, it may suffice to compute the Cholesky
factorization of Hτ in order to evaluate the right-hand side of (3.6).

The discussion in this section has, so far, been concerned with the evalu-
ation of Gauss–Laurent quadrature rules associated with the inner product
(1.7), which is connected to the standard Lanczos algorithm. To instead
evaluate Gauss–Laurent rules associated with the inner product (2.4), which
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is connected to the extended global Lanczos algorithm, is straightforward:
only the inner product has to be replaced. In particular, the structure of the
matrix Hτ is the same for both inner products, but the value of the entries
may differ. An algorithm for the extended global Lanczos method therefore
can be based on the analysis presented in [31]. We conclude this section by
describing such an algorithm.

3.2. Recursion relations for extended global Krylov method

Analogous to the global Lanczos method, we consider an initial block
vector W ∈ Rn×k with block size 1 ≤ k � n and the inner product (2.4).
The orthogonal block vectors equivalent to the orthogonal sequence in (3.2)
are denoted by V ∈ Rn×k. The notation V ∈ Li,j signifies that V = ψ(A)V0
and that ψ(x) ∈ Li,j . The following discussion briefly describes the con-
struction of Hτ in (3.5). The first i+ 1 block vectors satisfy the three-term
recursion formulas for the Lanczos method,

AV0 = h1,1V0 + h2,1V1,

...

AVi−1 = hi−1,iVi−2 + hi,iVi−1 + hi+1,iVi,

where hj,k = 〈AVj , Vk〉. This concludes the computation of the first i + 1
block vectors. Assume that for some 1 ≤ j ≤ m− 1, the block vectors

V0, V1, . . . , Vi, V−1, Vi+1, . . . , V2i, V−2, . . . , Vij ,

have been computed. The following discusses the computation of the next
i + 1 block vectors beginning with V−j ; that is, with the incrementation of
the reciprocal power. Let ` = (i+ i)j. Then

A−1Vij = g`−i,`V−j+1 + g`−i+1,`Vij−i+1 + . . .+ g`,`Vij + g`+1,`V−j , (3.8)

where gj,k = 〈A−1Vj , Vk〉. Note that the computation of V−j involves an
expression with i+2 terms. (For i = 1, this reduces to a three-term recursion
formula). It is necessary to find the entries of the `th column ofHτ pertaining
to this step. The computation of h`,` and h`,`+2 is discussed below. The
(` + 1)st column is determined by the requirment that AV−j ∈ Lj−1,ij+1 ⊥
Lj−1,ij−1, Hence, it satisfies a three-term recursion

AV−j = h`,`+1Vij + h`+1,`+1V−j + h`+2,`+1Vij+1.

The (`+ 2)nd column of Hτ is determined by the requirement that AVij+1 ∈
Lj−1,ij+2 ⊥ Lj−1,ij−1. Observe that the numerator degree has increased
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from the previous expression, but the orthogonality condition has not changed.
This gives a four-term recursion,

AVij+1 = h`,`+2Vij + h`+1,`+2V−j + h`+2,`+2Vij+1 + h`+3,`+2Vij+2.

For i > 2, the entries in the next i − 1 block columns correspond to
AVij+2, . . . , AV`−1, which satisfy a standard three-term recursion formula

We return to the `th column of Hτ . It is determined by the requirement
that AVij ∈ Lj−2,ij+1 ⊥ Lj−1,ij−2 and satisfies a four-term recursion formula

AVij = h`−1,`Vij−1 + h`,`Vij + h`+1,`V−j + h`+2,lVij+1. (3.9)

The recursion coefficients are obtained by multiplying equation (3.8) by A,
which gives an equation in g`,`AVij . Specifically, the known expressions for

AV−j+1, AVij−i+1, . . . , AVij , AV−j

in terms of the Laurent orthogonal vectors are substituted into the modified
expression and comparisons of like terms in the two formulas yield the coeffi-
cients in (3.9). The off-diagonal entries have been determined by symmetry
for i > 1. The diagonal entry is given by

h`,` = (1− g`−1,`h`,`−1 − g`+1,`h`,`+1)/g`,`.

For i = 1, we have
h`,`+2 = −g`+1,`h`+2,`+1/g`,`.

These formulas are the basis for the following algorithm. We remark that
even though the algorithm is formulated with the matrices A and A−1,
storage and computation of these matrices are not explicitly required. The
algorithm needs functions for the evaluation of matrix-block-vector products
with A and for the solution of linear systems of equations with the matrix
A and k right-hand side vectors.
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Algorithm 3.1 (Orthogonalization process for Km,im+1(A,v)).
Input: m, i, W ∈ Rn×k\{0}, 1 ≤ k � n; functions for evaluating

matrix-block-vector products with A ∈ Rn×n, and for solving linear
systems of equations with A.

Output: orthogonal basis {Vk}im+1
k=−m+1 for Km,im+1(A,W ), nontrivial

entries hij of Hτ .
V−1 := 0 ∈ Rn×k;
h1,0 := ||W ||F ; V0 := W/h1,0; h0,1 := h1,0;
for j = 1 : i do

U := AVj−1 − hj−1,jVj−2;
hj,j := 〈Vj−1, U〉; U := U − hj,jVj−1;
hj+1,j := ||U ||F ; Vj := U/hj+1,j; hj,j+1 := hj+1,j;

end
for j = 1 : m− 1 do

` := (1 + i)j;

Ŵ := A−1Vij; g`−i,` := 〈V−j+1, Ŵ 〉; Ŵ := Ŵ − g`−i,`V−j+1;
for k = 1 : i do

g`−i+k,` := 〈Vij−i+k, Ŵ 〉; Ŵ := Ŵ − g`−i+k,`Vij−i+k;
end
g`+1,` := ||Ŵ ||F ; V−j := Ŵ/g`+1,`;
U := AV−j; h`,`+1 := 〈Vij , U〉; U := U − h`,`+1Vij;
h`+1,`+1 := 〈V−j , U〉; U := U − h`+1,`+1V−j;
h`+2,`+1 := ||U ||F ; Vij+1 := U/h`+2,`+1;
h`+1,` := h`,`+1; h`+1,`+2 := h`+2,`+1;
h`,` := (1− g`−1,`h`,`−1 − g`+1,`h`,`+1)/g`,`;
h`,`+2 := −g`+1,`h`+2,`+1/g`,`; h`+2,` := h`,`+2;
if i > 1 do

U := AVij+1; U := U − h`,`+2Vij − h`+1,`+2V−j;
h`+2,`+2 := 〈Vij+1, U〉; U := U − h`+2,`+2Vij+1;
h`+3,`+2 := ||U ||F ; Vij+2 := U/h`+3,`+2;
h`+2,`+3 := h`+3,`+2;

end
for k = 3 : i do

U := AVij+k−1 − h`+k−1,`+kVij+k−2;
h`+k,`+k := 〈Vij+k−1, U〉; U := U − h`+k,`+kVij+k−1;
h`+k+1,`+k := ||U ||F ; Vij+k := U/h`+k+1,`+k;
h`+k,`+k+1 := h`+k+1,`+k;

end
end
U := AV(i+1)m; h(i+1)m,(i+1)m := 〈V(i+1)m, U〉;

Analogous to (3.4), Algorithm 3.1 produces a matrix Vτ ∈ Rn×kτ and a
matrix of recursion coefficients Ĥτ ∈ Rkτ×kτ that satisfy the equation

AVτ = Vτ Ĥτ + Z̃τEτ , (3.10)
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where

Vτ = [V0, V1, . . . Vi, V−1, Vi+1, . . . , V2i, . . . , Vm+1, . . . , Vim] (3.11)

and

Ĥτ = Hτ ⊗ Ik,
Z̃τ = hτ+1,τV−m + hτ+2,τVim+1, (3.12)

Eτ = [0k×(τ−1)k Ik].

We also define the vector of orthonormal Laurent polynomials,

Φτ (x) := [φ0(x), . . . , φi(x), φ−1(x), . . . , φ−m+1(x), . . . , φim(x)]T , (3.13)

with respect to the measure dµ(x). We have

Vj = φj(A)V0, j = 0, 1, . . . , i,−1, i+ 1, i+ 2, . . . .

The block vector Z̃τ ∈ Rn×k in (3.10) is a linear combination of the or-
thonormal Laurent block vectors generated by Algorithm 3.1, but does not
belong to the generated sequence. We denote the normalized block vector
by Zτ = Z̃/h̃τ+1,τ . The normalization factor, h̃τ+1,τ = ‖Z̃‖, may be derived
from (3.12) and the orthogonality of the block vectors V−m and Vim+1:

h̃τ+1,τ =
√
h2τ+1,τ + h2τ+2,τ . (3.14)

We denote the polynomial associated with Z by ψτ ∈ Lm−1,im+1 in order
to distinguish it from the sequence of polynomials in (3.13) generated by
Algorithm 3.1. It satisfies

Zτ = ψτ (A)V0

and is orthogonal to Lm−1,im with respect to the inner product (2.4). This
leads to the polynomial vector equivalent of (3.10),

xΦτ (x) = HτΦτ (x) + h̃τ+1,τψτ (x)eτ , (3.15)

which we utilize in the next section when discussing Radau rules.

4. Bounds for Gauss–Laurent rules

The degree of ψτ ∈ Lm−1,im+1 ⊥ Lm−1,im along with its orthogonality
conditions guarantee that ψτ has τ distinct zeros, {xj}τj=1. These zeros are
eigenvalues of Hτ ; see [31, Theorem 5.1]. Assume that f is differentiable.
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Then the Laurent-Hermite interpolation polynomial, L̂ ∈ L2m−2,2im+1, that
interpolates f and its derivative at the nodes xj may be constructed. An
expression for the approximation error f − L̂ ∈ L2m−2,2im+1 shown in [31,
Theorem 5.4] can be used to derive the following error term for Gauss–
Laurent quadrature.

Theorem 4.1. Assume that f is 2τ times continuously differentiable in the
convex hull of the support of the measure dµ. Then the quadrature rule Hτ
defined in Theorem 3.1 satisfies

(I −Hτ )(f) =
d2τ

dt2τ
(
t2m−2f(t)

)
t=c

I(ψ2
τ )

a2τ (2τ)!

for some scalar c in the convex hull of the support of the measure dµ and
where aτ is the leading coefficient of ψτ .

Assume that f satisfies the conditions of Theorem 4.1 and that

d2τ

dx2τ

(
x2(m−1)f(x)

)
≥ 0, a < x < b,

in some open interval (a, b) containing the spectrum of A. Then Theorem
4.1 gives a lower bound for I(f). We have

Hτ (f) ≤ I(f). (4.1)

4.1. Bounds derived for Gauss–Laurent–Radau quadrature rules

A Gauss–Laurent–Radau rule can be implemented by using the following
modification of the pentadiagonal matrix Hτ in (3.10),

H̃a
τ+1 =

[
Hτ h̃τ+1,τeτ

h̃τ+1,τe
T
τ αa

]
∈ R(τ+1)×(τ+1). (4.2)

The superscript a of H̃a
τ+1 is a value a ≤ λ1 and αa denotes that the last

diagonal element is a function of a. We obtain

AVτ+1 = Vτ+1Ĥ
a
τ+1 + Ṽ aEτ+1,

where Vτ+1 = [Vτ Z] ∈ Rn×k(τ+1), and Vτ and Zτ are defined in (3.11) and
(3.12), respectively. The trailing block vector, Ṽ a, satisfies

Ṽ a = ψ̃aτ+1(A)V0
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for some Laurent polynomial ψ̃aτ+1 ∈ Lm−1,im+2. Here Ṽ a is not chosen to

satisfy an orthogonality condition, rather it is chosen so that ψ̃aτ+1(a) = 0.
This is the Radau condition. It guarantees that a is an eigenvalue of the
modified recursion matrix (4.2). To determine the matrix (4.2), it suffices
to consider the Radau modification of (3.15) with the partitioning

x

[
Φτ (x)
ψτ (x)

]
=

[
Hτ h̃τ+1,τeτ

h̃τ+1,τe
T
τ αa

] [
Φτ (x)
ψτ (x)

]
+

[
0

ψ̃aτ+1(x)

]
, 0 ∈ Rτ .

The Radau condition with x = a yields the linear system of equations

(Hτ − aI)Φ(a) = −h̃τ+1,τψτ (a)eτ ,

αaψτ (a) = aψτ (a)− h̃τ+1,τe
T
τ Φ(a).

Both equations are multiplied by −h̃τ+1,τ/ψτ (a). The equation

(Hτ − aI)Φ̂(a) = h̃2τ+1,τeτ

then is solved for the vector Φ̂(a), where Φ̂(a) = −h̃τ+1,τΦ(a)/ψτ (a). It now
follows from the second equation that

αa = a+ eTτ Φ̂(a);

see [17, 18, 20, 22, 23, 31] for more details.
The value a in the above argument may be replaced by a value b ≥ λn.

This results in a modified recursion matrix Hb
τ+1 with the trailing diagonal

entry given by
αb = b+ eTτ Φ̂(b).

In each case, the polynomials ψ̃aτ+1(x) and ψ̃bτ+1(x) have a zero at a and at
b, respectively. The remaining τ zeros are distinct and lie in the interval
(λ1, λn); see [31]. This yields the (τ + 1)-point Gauss–Laurent–Radau rules
eT1 f(Ĥa

τ+1)e1 and eT1 f(Ĥb
τ+1)e1 for the extended global Lanczos approxima-

tion of If defined by (1.11). The following bounds can be shown similarly
as [31, Theorem 7.1].

Corollary 4.1. Let f be a 2τ + 1 times continuously differentiable function
in the open interval (a, b). Assume that

d2τ+1

dx2τ+1

(
x2(m−1)f(x)

)
≥ 0

in this interval. Then

eT1 f(Ĥa
τ+1)e1 ≤ vT f(A)v ≤ eT1 f(Ĥb

τ+1)e1. (4.3)

The bounds will be illustrated in Section 6.
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5. Estimating the error in Gauss–Laurent rules

Spalević [41, 42, 43] describes an approach to estimate the error in Gauss
quadrature rules. Related results can be found in [11]. Extensions to Gauss–
Szegő quadrature rules are discussed in [33]. This section presents an ex-
tension to Gauss–Laurent rules.

The matrices that arise in Spalević’s approach to estimate the error in
Gauss quadrature rules have the structure

M̂ =

 M1 β1eτ O
β1e

T
τ α β2e

T
1

O β2e1 M2

 ∈ R(2τ+1)×(2τ+1), (5.1)

where M1,M2 ∈ Rτ×τ are symmetric tridiagonal matrices with the same
spectra and nonvanishing subdiagonal entries. Further, α, β1, β2 ∈ R with
β1β2 6= 0, and O ∈ Rτ×τ denotes the matrix of only zeros.

We will first discuss how the spectrum of the concatenated matrix M̂
relates to the spectrum of the matrix M1. In our discussion, we will only
require the matrices M1,M2 ∈ Rτ×τ to be symmetric and have the same
spectrum with distinct eigenvalues. To gain some insight into the spectrum
of M̂ , we apply a sequence of similarity transformations. Related transfor-
mations have been used by Borges and Gragg [7] in their development of a
divide-and-conquer method for the computation of eigenvalues of a general-
ized eigenvalue problem with symmetric tridiagonal matrices. Basic results
on arrowhead matrices, also referred to as bordered matrices, can be found
in [45, pp. 94 ff.].

Theorem 5.1. Let the matrix M̂ ∈ R(2τ+1)×(2τ+1) have the structure (5.1),
where the symmetric matrices M1,M2 ∈ Rτ×τ have the same spectra with
distinct eigenvalues. Under suitable conditions on the eigenvectors of M1

and M2, the eigenvalues of M1 are eigenvalues of M̂ , and the remaining
eigenvalues of M̂ interlace the eigenvalues of M1.

Proof. Introduce the spectral factorizations

M1 = W1ΛW
T
1 , M2 = W2ΛW

T
2

with Λ = diag[λ1, λ2, . . . , λτ ] ∈ Rτ×τ a diagonal matrix of eigenvalues and
W1,W2 ∈ Rτ×τ orthogonal matrices of eigenvectors. Define the block diag-
onal matrix

Ŵ =

 W1

1
W2

 ∈ R(2τ+1)×(2τ+1)
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and the vectors w1 = β1W
T
1 eτ and w2 = β2W

T
2 e1. Here and below we do

not explicitly mark zero-matrices. The matrix

Ŵ T M̂Ŵ =

 Λ w1

wT
1 α wT

2

w2 Λ

 (5.2)

is similar to (5.1) and has nontrivial entries only on the diagonal and in
column and row τ + 1. Clearly, if β1 = β2 = 0, then each eigenvalue of
M1 is an eigenvalue of M̂ of algebraic multiplicity two. In particular, the
interlacing of eigenvalues in the statement of the theorem does not hold.

We turn to the situation when β1 6= 0 and β2 = 0. Then, clearly,
the eigenvalues of M2 are eigenvalues of M̂ . To secure that the remaining
eigenvalues of M̂ interlace the eigenvalues of M1, it suffices to require that
all entries of the vector w1 are nonvanishing; see the discussion following
eq. (5.5) below with the vector w replaced by w1.

The case when β1 = 0 and β2 6= 0 can be treated similarly as above: we
apply the permutation matrix

P̂0 = [e2τ+1, e2τ , . . . , e2, e1] ∈ R(2τ+1)×(2τ+1)

from the right and from the left to the matrix (5.2) to obtain a matrix with

the structure just considered. To secure that the eigenvalues of M̂ interlace
the eigenvalues of M1, it suffices to require that no entry of the vector w2

vanishes.
We turn to the situation when β1β2 6= 0. Multiplication of the matrix

(5.2) by the permutation matrix

P̂ = [e1, e2, . . . , eτ , eτ+2, eτ+3, . . . , e2τ+1, eτ+1] ∈ R(2τ+1)×(2τ+1)

from the right and left gives the arrowhead matrix

P̂ T Ŵ T M̂Ŵ P̂ =

 Λ w1

Λ w2

wT
1 wT

2 α

 . (5.3)

We now apply τ Givens rotations from the right to the columns j and j + τ
of (5.3), for j = 1, 2, . . . , τ , to eliminate the vector w1 (and simultaneously
modify the vector w2). The product of these Givens rotations is denoted by
the matrix Ĝ ∈ R(2τ+1)×(2τ+1). We also multiply (5.3) by ĜT from the left.
This defines a similarity transformation. The new matrix obtained is of the
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form

ĜT P̂ T Ŵ T M̂Ŵ P̂ Ĝ =

 Λ 0
Λ w

0T wT α

 , (5.4)

which shows that the eigenvalues of the matrix M1 also are eigenvalues of
M̂ . The remaining τ + 1 eigenvalues of M̂ are the eigenvalues of the trailing
(τ + 1)× (τ + 1) submatrix of (5.4). Assume that λ differs from all diagonal
entries of Λ. Then[

Λ w
wT α

]
− λI =

[
I 0

wT (Λ− λI)−1 1

] [
Λ− λI w
0T −s(λ)

]
, (5.5)

where s(λ) is the spectral function

s(λ) = λ− α+

τ∑
j=1

w2
j

λj − λ
, w = [w1, w2, . . . , wτ ]T . (5.6)

The zeros of s(λ) are eigenvalues of the matrix (5.5). If all entries wj of
w are nonvanishing, then s(λ) has τ + 1 distinct zeros that interlace the
diagonal entries of Λ. 2

Borges and Gragg [7] considered the situation when the matrices M1 and
M2 are symmetric and tridiagonal.

Corollary 5.2. Let the matrices M1 and M2 be symmetric and tridiagonal
with all subdiagonal entries nonvanishing. Let β1β2 6= 0. Then the eigen-
values of M1 are eigenvalues of M̂ , and the remaining eigenvalues of M̂
interlace the eigenvalues of M1.

Proof. The eigenvectors of a symmetric tridiagonal matrix with non-
vanishing subdiagonal entries have non-vanishing first and last entries. This
secures that the function (5.6) has τ + 1 distinct zeros that interlace the
eigenvalues of M1. 2

Spalević [41] obtained Corollary 5.2 from results by Peherstorfer [38] on
orthogonal polynomials and quadrature. Theorem 5.1 is more general and
provides an algebraic proof of Corollary 5.2.

The Gauss–Laurent quadrature rules of Section 3 are associated with
pentadiagonal matrices Hτ , the entries of which are generated by Algorithm
3.1. The matrix associated with the generalized rule is

Ĥ2τ+1 :=

 Hτ β1eτ O
β1e

T
τ α β2e

T
1

O β2e1 PHτP

 , (5.7)
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where
P = [eτ , eτ−1, eτ−2, . . . , e2, e1].

It remains to determine the non-zero entries in the “cross” formed by the
(τ + 1)st row and column of Ĥ2τ+1.

We first examine the Lanczos case, i = 0, developed by Spalević, in which
Hτ is the tridiagonal Jacobi matrix. We denote the Lanczos polynomials by
pk, k = 0, 1, . . . , τ, τ + 1, where pk ∈ Pk ⊥ Pk−1. The entries in the cross are
determined by coefficients in the recursion formula for pτ+1(x),

hτ+1,τ+2pτ+1(x) = xpτ (x)− hτ+1,τpτ−1(x)− hτ+1,τ+1pτ (x).

This yields

α = hτ+1,τ+1, β1 = hτ+1,τ , β2 = hτ+1,τ+2. (5.8)

The matrix (5.7) contains the recursion coefficients for the polynomials

p0, p1, . . . , pτ+1, p̃τ+2, . . . , p̃2τ+1.

We refer to the polynomials p̃τ+2, p̃τ+3, . . . , p̃2τ+1 as Spalević polynomials.
Define the polynomial vector

P2τ+1(x) = [p0(x) . . . pτ+1(x), p̃τ+2(x), . . . , p̃2τ (x)]T .

Our interest is in the orthogonality conditions satisfied by the Spalević poly-
nomials. Consider the matrix formula

xP2τ+1(x) = Ĥ2τ+1P2τ+1(x) + p̃2τ+1(x)e2τ+1.

Equating the τ + 2, τ + 3, . . . , 2τ + 1 components on the left-hand side of
the equation with those on the right-hand side yields the following recursion
formulas:

hτ−1,τ p̃τ+2(x) = xpτ+1(x)− hτ+1,τ+2pτ (x)− hτ,τpτ+1(x), (5.9)

hτ−2,τ−1p̃τ+3(x) = xp̃τ+2(x)− hτ−1,τpτ+1(x)

−hτ−1,τ−1p̃τ+2(x), (5.10)

...

h1,2p̃2τ (x) = xp̃2τ−1(x)− h2,3p̃2τ−2(x)− h2,2p̃2τ−1(x),

p̃2τ+1(x) = xp̃2τ (x)− h1,2p̃2τ−1(x)− h1,1p̃2τ (x).
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Consider the recursion relation (5.9) for p̃τ+2(x):

hτ−1,τ p̃τ+2(x) = xpτ+1(x)− hτ+1,τ+2pτ (x)− hτ,τpτ+1(x)

= xpτ+1(x)− hτ+1,τ+2pτ (x)− hτ+2,τ+2pτ+1(x)

+(hτ+2,τ+2 − hτ,τ )pτ+1(x)

= hτ+1,τ+2pτ+2(x) + (hτ+2,τ+2 − hτ,τ )pτ+1(x),

where we have used the recursion formula for the polynomial pτ+2(x) ∈
Pτ+2 ⊥ Pτ+1 in the orthogonal Lanczos sequence. In other words, p̃τ+2(x) is
a linear combination of pτ+1(x) and pτ+2(x) and, hence, satisfies p̃τ+2(x) ∈
Pτ+2 ⊥ Pτ .

Consider now the recursion formula (5.10) for p̃τ+3(x). This polynomial
is a linear combination of xp̃τ+2(x), pτ+1(x), and p̃τ+2(x). Its degree and
orthogonality conditions depend on xp̃τ+2(x). Clearly, it is of degree τ + 2.
The orthogonality condition satisfied by p̃τ+2(x) is determined by

(q, xp̃τ+2(x)) = 0 q ∈ Pτ−1.

But (q, xp̃τ+2(x)) is not necessarily 0 if q ∈ Pτ . Hence, p̃τ+3(x) ∈ Pτ+3 ⊥
Pτ−1. The argument can be repeated with the remaining Spalević polyno-
mials,

p̃τ+k(x) ∈ Pτ+k ⊥ Pτ−k+2 k = 2, 3, . . . , τ + 1.

This yields the following result.

Lemma 5.3. The Spalević polynomial p̃2τ+1(x) has degree 2τ + 1 and is
orthogonal to linear functions with respect to the measure dµ(λ). Its zeros
are the eigenvalues of Ĥ2τ+1; by Theorem 5.1, they are distinct. Denote them
in increasing order by x1, x2, . . . , x2τ , x2τ+1. Then p̃2τ+1(x) = pτ (x)q(x) for
some q ∈ Pτ+1. The interlacing property stated in Theorem 5.1 guarantees
that the zeros of pτ are those with even index and the ones of q are those
with odd index.

We proceed analogously when i > 0. The eigenvalues of Hτ are the zeros
of ψτ ∈ Lm−1,im+1 ⊥ Lm−1,im in (3.15). We have

h̃τ+1,τψτ = hτ+1,τφ−m + hτ+2,τφim+1, (5.11)

where h̃τ+1,τ is given by (3.14). The next polynomial in the orthogonal
Laurent sequence is φ−m ∈ Lm,im ⊥ Lm−1,im, in which the denominator
power is incremented. However, if we proceed by analogy, it is necessary
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to determine the recursion coefficients used to compute a function ψτ+1 ∈
Lm−1,im+2 ⊥ Lm−1,im+1. It will satisfy a three-term recursion formula

h̃τ+2,τ+1ψτ+1 = xψτ − h̃τ+1,τφim − h̃τ+1,τ+1ψτ . (5.12)

The entries in the cross are the recursion coefficients

α = h̃τ+1,τ+1, β1 = h̃τ+1,τ , β2 = h̃τ+1,τ+2,

where β1 = h̃τ+1,τ is given by (3.14) and α = h̃τ+1,τ+1 equals (xψτ , ψτ ).
The latter can be determined by the orthogonality of the polynomials in the
recursion formula (5.12),

h̃τ+1,τ+1 = (h2τ+1,τhτ+1,τ+1+2hτ+1,τhτ+2,τhτ+1,τ+2+h
2
τ+2,τhτ+2,τ+2)/h̃

2
τ+1,τ .

Observe that these assignments are equivalent to β1 and α in (5.8) since
in the case of i = 0, hj,j+k = 0 for |k| ≥ 2. The last entry in the cross,
β2 = h̃τ+2,τ+1, is the norm of the monic polynomial ψτ+1. This too is
equivalent to the case i = 0, since hτ+2,τ+1 is the norm of the (τ + 1)st

monic orthogonal polynomial in the Lanczos sequence.
We denote the Laurent–Spalević polynomials by ψ̃τ+k, k = 2, . . . , τ + 1.

The denominator power of these polynomials remain a constant m− 1. The
numerator power increases by one at each step so that ψ̃τ+k ∈ Lm−1,im+k+1,
k = 2, . . . , τ + 1. The analysis of these polynomials follows from considering
the Lanczos polynomials p̆k(x), which are orthogonal with respect to the
positive measure dµ(x)/xm−1. They are of degree k and are orthogonal to
Lm−1,k−m with respect to the original measure dµ(x). The non-zero entries

of the tridiagonal Jacobi matrix, T̆τ , are the recursion coefficients for p̆k(x),
k = 0, 1, 2, . . . , τ−1. Its eigenvalues are the zeros of p̆τ (x). It is shown in [32]
that the spectra of T̆τ and Hτ are identical but differ for dimensions larger
than τ . This is because the Laurent process increments the denominator
power at the next step, whereas the denominator power remains constant
in the rational Lanczos scheme. However, the denominator power is not
incremented in the Spalević method. We conclude that the spectra of Ĥ2τ+1

and of the matrix M̂ of (5.1) are the same where M1 and M2 are constructed
from T̆τ and the cross entries are determined from the recursion coefficients
that generate p̆τ+1(x) as outlined in the case for i = 0. In particular, the
zeros of the Spalević polynomial ψ̃2τ+1 ∈ Lm−1,im+τ+2 are the eigenvalues

of Ĥ2τ+1 and retain one degree of orthogonality with respect to dµ(x). This
discussion yields the following theorem.
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Theorem 5.4. (Spalević–Laurent quadrature) Define the quadrature rule

Ĥ2τ+1(f) = eT1 f(Ĥ2τ+1)e1. (5.13)

Then
I(f) = Ĥ2τ+1(f) ∀f ∈ L2m−2,2mi+4, (5.14)

Proof. The last Spalević polynomial in the sequence satisfies

ψ̃2τ+1(x) =
P (x)

x2m−1
, P ∈ P2τ+1,

where the zeros of P are the eigenvalues of Ĥ2τ+1. By Theorem 5.1, it has
2τ + 1 distinct zeros and, hence, the rule (5.13) is interpolatory. By Lemma
5.3, it is orthogonal to P1. Invoking [18, Theorem 1.45], the rule is exact for
polynomials of degree 2τ + 1− 1 + 2 or 2τ + 2 with respect to the measure
dµ(x)/xm−1. This yields 2m−2 denominator plus 2mi+4 numerator degrees
of accuracy with respect to the original measure dµ(x). 2

Example 5.1. Consider the matrix Ĥ2τ+1 for i = 1 and m = 2. Then τ = 4

and the rule eT1 Ĥ9e1 will be exact for Laurent polynomials in L2,8. The

matrix Ĥ9 may have non-vanishing entries in the positions marked by “∗”.
The circled entries comprise the cross.

Ĥ9 =



∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗©

∗© ∗© ∗©
∗© ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗


.

2

6. Numerical examples

The computations in this section are performed using MATLAB with
about 15 significant decimal digits. The first two examples compare the
performance of the standard global Lanczos method (i = 0) with the global
rational Lanczos methods for the cases i = 1, 2, 3. In all computed examples,
we use Krylov subspaces of dimension τ = 12, 24, 36, 48, and 60. These
dimensions are divisible by 2, 3, and 4, and assure that the denominator
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degree of the rational Lanczos methods considered increases by at least one
in each step. We determine the actual value If , given by (1.11), as well as
approximationsHτf given by (3.6). The figures display the errors |If−Hτf |
in logarithmic scale for all methods. All matrix functions are computed by
means of the spectral decomposition of the matrix.

Example 6.1. LetA be the symmetric positive definite tridiagonal Toeplitz
matrix [−1, 2,−1] of order 3000 and f(x) = exp(−x)/

√
x. The block vector

W ∈ R3000×4 has normally distributed random entries with mean zero and
variance one. Figure 6.1 compares the errors in approximations of the differ-
ent methods applied to the function f(x) = exp(−x)/

√
x. The increase in

the denominator power for each of the rational Lanczos methods speeds up
the convergence, whereas the standard Lanczos method gives a much larger
approximation error in the allotted number of iterations. 2
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1

f (x) = exp(−x)/
√

x; A = [−1 2 − 1] of order 3000.

Figure 6.1: Example 6.1: Errors in approximations of f(x) = exp(−x)/
√
x for Lanczos

(◦−◦), i = 1(× · · ·×), i = 2(+ − −+),and i = 3(∗−·−∗) for subspaces of dimension
τ = 12, 24, 36, 48, 60.

Example 6.2. The matrix in this example is obtained by discretization
of the self-adjoint differential operator L(u) = 1

10uxx − 100uyy in the unit
square. Each derivative is approximated by the standard three-point stencil
with 60 equally spaced interior nodes in each space dimension. Homogeneous
boundary conditions are used. This yields a 3600×3600 symmetric positive
definite matrix A. The initial block vector W ∈ R3600×4 for the standard
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and rational Lanczos processes is chosen to be the unit vector with all entries
1/
√

60. Figure 6.2 compares the errors in approximations of the different
methods applied to the function f(x) = ln(x). As in the previous example,
the increase in the denominator power for each of the rational Lanczos meth-
ods speeds up the convergence. The errors in approximations determined
by the standard Lanczos method are decreasing, but much slower than the
errors in approximations determined by the rational methods. 2
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f(x)=ln(x), A is generated from L(u)

Figure 6.2: Example 6.2: Errors in approximations of f(x) = ln(x) for Lanczos (◦−◦), i =
1(× · · ·×), i = 2(+−−+),and i = 3(∗−·−∗) for subspaces of dimension τ = 12, 24, 36, 48, 60.

Example 6.3. The purpose of this example is to illustrate the bounds
(4.1) and (4.3). The function f(x) = exp(x) satisfies the conditions stated
in Theorem 4.1 and Corollary 4.1. We apply f to the symmetric positive
definite Toeplitz matrix A ∈ R3000×3000 with entries aj,k = 1/(1 + |j − k|).
The vector W ∈ R3000×4 has normally distributed random entries with mean
zero and variance one. We remark that fast direct solution methods are
available for linear systems of equations with this kind of matrix; see, e.g.,
[1, 44]. Table 6.1 displays the residuals

res(Hi) = If − eT1 f(Hi)e1 (6.1)

for τ = 4, 8, 12, and for i = 0 (Lanczos) and i = 1. The column headings
indicate the matrix used in the argument of res(·). The smallest eigenvalue
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of A is λ1 = 0.3863 and the largest one is λ3000 = 14.3174. We chose the
Radau parameters a = 0.3 and b = 14.5. The order of the Radau matrices,
Ha
i and Hb

i , is τ + 1. The signs of the residuals are in accordance with the
bounds of Section 4. 2

τ Hi=0 H̃a
i=0 H̃b

i=0 Hi=1 H̃a
i=1 H̃b

i=1

4 1 · 102 5 · 101 −3 · 101 5 · 102 3 · 102 −1 · 102

8 9 · 10−4 2 · 10−4 −2 · 100 3 · 100 8 · 10−1 −3 · 101

12 9 · 10−11 1 · 10−11 −3 · 10−11 2 · 10−3 5 · 10−4 −1 · 10−3

Table 6.1: Example 6.3: Residuals in Gauss–Laurent and Gauss–Radau rules. The Radau
nodes are fixed at a = 0.3 and b = 14.5. The matrix A is a positive definite Toeplitz
matrix and f(x) = exp(x).

Example 6.4. We consider the Toeplitz matrix and initial vector, W ,
of Example 6.3 with the prescribed Radau nodes. The function f(x) =
exp(x)/x has a pole at x = 0 and the derivatives change signs. Table 6.2
displays the residuals (6.1) in the approximations determined by the upper
and lower Radau rules for i = 0, i = 1 and i = 3. The denominator power
is the largest for i = 1, but i = 3 exhibits superior convergence properties
for this example. 2

τ H̃a
i=0 H̃b

i=0 H̃a
i=1 H̃b

i=1 H̃a
i=3 H̃b

i=3

8 −1 · 10−2 4 · 10−3 3 · 10−2 −7 · 10−2 1 · 10−4 −3 · 10−4

12 5 · 10−3 2 · 10−4 2 · 10−6 −4 · 10−5 7 · 10−10 −2 · 10−9

16 −2 · 10−5 9 · 10−6 2 · 10−9 −7 · 10−9 −2 · 10−12 1 · 10−12

Table 6.2: Example 6.4: Residuals in Gauss–Laurent and Gauss–Radau rules. The Radau
nodes are fixed at a = 0.3 and b = 14.5. The matrix A is a positive definite Toeplitz
matrix and f(x) = exp(x)/x.

Example 6.5. Table 6.3 compares the approximations of I(f) using the
Gauss-Laurent methods for i = 0, i = 2, and i = 5 along with those resulting
from the accompanying Spalević matrices for each case. The function f(x) =
1/
√
x is applied to the matrix A resulting from the discretization of the

L(u) operator along with the block vector W defined in Example 6.2. The
Gauss-Laurent matrices are denoted by Hi=j , j = 0, 2, 5, and the associated

Spalević matrices are denoted by Ĥi=j . The values of τ are chosen so that τ
is an integral multiple of six. This assures that the denominator degree of the
rational Lanczos methods considered increases by at least one in each step.
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The matrices Hi=0 and Hi=5 are identical for τ = 6 since the denominator
power is zero for the case i = 5 and for this value of τ . The Spalević rules
match an additional moment and consequently perform slightly better. 2

τ Hi=0 Ĥi=0 Hi=2 Ĥi=2 Hi=5 Ĥi=5

6 1 · 100 4 · 10−1 2 · 10−2 7 · 10−4 1 · 100 4 · 10−1

12 5 · 10−1 2 · 10−1 1 · 10−4 1 · 10−5 5 · 10−3 3 · 10−4

18 2 · 10−1 4 · 10−2 8 · 10−6 4 · 10−9 1 · 10−4 8 · 10−6

24 7 · 10−2 1 · 10−2 1 · 10−10 2 · 10−11 1 · 10−6 8 · 10−8

Table 6.3: Example 6.5: Residuals in Gauss–Laurent and Spalević rules. The matrix
A ∈ R3600×3600 is generated from the L(u) operator and f(x) = 1/

√
x.

Example 6.6. This example retains the same function and matrix used
in Example 6.5. Table 6.4 compares the difference

E i=kτ = eT1 Ĥ
i=k
2τ+1e1 − eT1H

i=k
τ+1e1

for i = 0, i = 2, and i = 5. The matrix H i=k
τ+1 is of order τ + 1 and its

eigenvalues are the roots of ψτ+1 ∈ Lm−1,im+2 ⊥ Lm−1,im+1 in (5.12). The
rule eT1H

i=k
τ+1e1 will be exact for f ∈ L2m−2,2mi+3. 2

τ E i=0
τ E i=2

τ E i=5
τ

6 1 · 100 1 · 10−2 1 · 100

12 5 · 10−1 1 · 10−4 3 · 10−3

18 2 · 10−1 1 · 10−7 5 · 10−5

24 4 · 10−2 1 · 10−10 6 · 10−7

Table 6.4: Example 6.6: Difference between rules eT1 Ĥ
i=k
2τ+1 and eT1H

i=k
τ+1e1. The matrix

A ∈ R3600×3600 is generated from the L(u) operator and f(x) = 1/
√
x.

7. Conclusion

Recurrence relations for extended global Lanczos methods with the nu-
merator degree roughly an arbitrary integer multiple of the denominator
degree are described. Error bounds determined by pairs of Gauss–Laurent
and Gauss–Laurent–Radau rules are discussed. These bounds apply to cer-
tain integrands. Error estimates for more general integrands are developed.
These estimates generalize error estimates for Gauss quadrature rules devel-
oped by Spalević.
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