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Abstract

Complex systems that consist of diverse kinds of entities that interact in differ-
ent ways can be modeled by multilayer networks. This paper uses the tensor
formalism with the Einstein product to model this type of networks. Several
centrality measures, that are well known for single-layer networks, are extended
to multilayer networks using tensors and their properties are investigated. In
particular, subgraph centrality based on the exponential and resolvent of a ten-
sor are considered. Krylov subspace methods based on the tensor format are
introduced for computing approximations of different measures for large multi-
layer networks.
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1. Introduction

A network is a set of objects that are connected to each other in some fashion.
Mathematically, a single-layer network is represented by a graph G = {V,E},
where the elements of the set V = {vi}ni=1, referred to as vertices or nodes,
represent the objects, and the elements of the set E ⊆ V × V , designated as
edges, represent the connections between the nodes. We denote an edge from
node vi to node vj by vi → vj .

Some real world examples require the modeling of more than one kind of
nodes or of more than one type of edges. This holds, for instance, for the trans-
portation network in a country when considering different means of transporta-
tion. The train and bus routes are different types of connections and should in
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some models be represented by different kinds of edges. Moreover, train and
bus stations may make up nodes with diverse properties. The connections be-
tween a train station and an adjacent bus station give rise to yet another kind of
edges connecting different kinds of nodes, along which travelers typically walk.
This kind of objects and connections can be modeled by multilayer networks,
which emphasize different kinds or connections, known as layers, between pos-
sibly different kinds of elements of a network. Each layer is represented by a
single graph that contains the elements, or some of the elements, of the network
and the connections between them in this layer. Edges connecting nodes from
different layers model the interactions between different layers. Therefore, the
nodes in a multilayer network require two indices, e.g., v`i , where the superscript
` denotes the layer, and the subscript i determines the node in this layer. The
set VL = V × L represents all possible combinations of node-layers, where the
set V is made up of all nodes of the network considered. Each layer may be
made up of V or some elements of V , and L is the set of layers. The set of
edges E ⊆ VL × VL represents all edges of the network. The special case when
the set of nodes is the same in all layers, and edges that connect nodes in dif-
ferent layers are only allowed between a node and its copy in another layer, is
known as a multiplex network. A nice recent paper by Bergermann and Stoll
[7] studies multiplex networks and generalized matrix function-based centrality
measures to this kind of networks. The authors use supra-adjacency matrices to
represent multiplex networks. Recently, a global measure of communicability in
a multiplex network, computed by means of the Perron root, and the right and
left Perron vectors of the supra-adjacency matrix associated with this kind of
network was introduced in [16]. We are interested in using tensors for network
analysis, because they arise naturally when modeling multilayer networks.

The model mentioned above can be generalized to represent not only net-
works with multiple layers but also different aspects. To allow for the modeling
of more than one aspect, we define a sequence {Lj}dj=1 of sets of elementary
layers with d being the number of aspects that we would like to model; Lj is the
set of layers for aspect j. Then the total number of layers is |L1|×|L2|×. . .×|Ld|
and we have VL = V × L1 × . . . × Ld. The nodes now are identified by using
d+1 indices v`1,...,`di , where the subscript i indicates the number of the node and
the superscript `1, . . . , `d shows the specific layer. For more details on this kind
of generalization, we refer to [12, 30] and the references therein, where general
frameworks for multilayer network are discussed together with their mathemati-
cal formulation. Figure 1 illustrates a simple multilayer network with 2 aspects;
this figure can also be found in [9]. An example of a real multilayer network
with multiple aspects in biology is provided in [32], where the first aspect is
the type of data (genomic, metabolomic, or proteomic), and the second aspect
models different biological pathways; see Figure 2 in [32].

Single-layer networks are often represented by an adjacency matrix, which
is helpful for extracting information about the network, e.g, by evaluating func-
tions of the the adjacency matrix or by computing certain eigenvectors of this
matrix. For instance, Estrada and Higham [20] describe how the matrix ex-
ponential and resolvent can be used to determine how easy it is to communi-

2



Figure 1: An example of a multilayer network with a set of four nodes V = {1, 2, 3, 4} and two
aspects, the corresponding elementary layer sets L1 = {A,B} and L2 = {X,Y }. The total
number of layers is four and they are (A,X), (A, Y ), (B,X) and (B, Y ). Each layer includes
some of the elements of V .

cate between nodes in a single-layer network, and which nodes are the most
important ones; see also Estrada [18] and references therein. For multilayer
networks, we use tensors, i.e., a multidimensional generalization of matrices,
and represent the network by a 2(d + 1)-order adjacency tensor A of size
(|V | × |L1| × . . .× |Ld|)× (|V | × |L1| × . . .× |Ld|), where |V | denotes the total
number of nodes, and |Lj | designates the number of layers for property j, for
j = 1, 2, . . . , d. The entry A(i, `1, . . . , `d, j, k1, . . . , kd) of the tensor A for an
unweighted multilayer network with sets of layers Lj , j = 1, 2, . . . , d, is one if

there is an edge v`1,...,`di → vk1,...,kdj ; otherwise the tensor entry is zero. For a
weighted network a tensor entry 1 may be replaced by a real, generally positive,
number. In a directed network some of the edges represent “one-way streets”.
Note that some nodes may not be present in all layers. Therefore, considering
empty nodes is necessary to allow the tensorial representation. For instance,
the network illustrated in Figure 1 can be represented by a 6th order tensor of
size 4× 2× 2× 4× 2× 2 by adding empty nodes so that every layer is made up
of 4 nodes.

Adjacency tensors allow us to capture the structure and complexity of rela-
tionships between the nodes of a multilayer network. We are interested in in-
vestigating and generalizing some centrality measures that are well established
for single-layer networks to multilayer networks by using the tensor formalism
and applying tensor tools, such as the Einstein product and tensor functions.
Several centrality measures have been studied for multilayer networks using the
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tensor formalism in [13]. Eigenvector multicentrality has been investigated for
multilayer networks via a tensor-based framework in [35]; see also [11]. In addi-
tion to generalizing centrality measures that are commonly used for single-layer
networks to multilayer networks, we describe practical and efficient ways to
compute these measures by using Krylov subspace methods based on the tensor
format.

This paper is organized as follows. Tensor notation, definitions, and proper-
ties used throughout this paper are described in Section 2. Section 3 discusses
the extension of matrix functions to tensor functions using the Einstein tensor
product. We define centrality measures for multilayer networks based on the
tensor representation and tensor functions. Section 4 describes Krylov subspace
methods based on the tensor format using the Einstein product, and discusses
their application to the approximation of tensor functions. Section 5 presents a
few computed examples and Section 6 contains concluding remarks.

2. Preliminaries

This section presents notation and properties of tensors that will be used
throughout this paper. We start with a generalization of the matrix-matrix
product to tensors that is referred to as the Einstein product.

Definition 1 (Einstein Product). Let A ∈ RI1×...×IN×J1×...×JM and B ∈
RJ1×...×JM×K1×...×KL be tensors of orders N+M and M+L, respectively. The
product C = A∗M B ∈ RI1×...×IN×K1×...×KL of the tensors A and B is a tensor
of order N + L with entries

Ci1,...,iN ,k1,...,kL =
∑

j1,...,jM

Ai1,...,iN ,j1,...,jMBj1,...,jM ,k1,...,kL .

It is commonly referred to as the Einstein product; see [8, 10, 15]. The subscript
M in ∗M indicates the last and first M dimensions of A and B, respectively,
over which the sum is evaluated.

The identity tensor I = [Ii1,...,iN ,j1,...,jN ] ∈ RI1×...×IN×I1×...×IN under the
Einstein product has the entries

Ii1,...,iN ,j1,...,jN =

{
1, if ik = jk, for k = 1, 2, . . . , N,
0, otherwise.

Remark 1. A tensor of even order A ∈ RI1×···×IN×J1×···×JN is said to be
square if the first set of dimensions equals the second set, i.e., if Ik = Jk for
k = 1, 2, . . . , N ; see, e.g., [33]. The adjacency tensor of a multilayer network is
of even order and square, however, for some computations tensors of different
orders are required. This is possible when using the Einstein product by choosing
a suitable number of dimensions over which we carry out the summation.
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Remark 2. The transpose of a tensor A ∈ RI1×...×IN×J1×...×JM is a tensor
B ∈ RJ1×...×JM×I1×...×IN such that Ai1,...,iN ,j1,...,jM = Bj1,...,jM ,i1,...,iN ; see,
e.g., [33].

The n-mode product is a well-known tensor-matrix product; see [29]. For
an N th order tensor A ∈ RI1×...×IN and a matrix A ∈ RIn×J , their n-mode
product is an N th order tensor A×n A ∈ RI1×...In−1×J×In+1×...IN .

If A ∈ RI1×...×IN×J is an (N + 1)th order tensor and A ∈ RJ×I , then the
n-mode product of A and A over mode N+1 is the same as the Einstein product
when summing over the last mode of the tensor. In other words, we have

A ∗1 A = A×N+1 A
T .

We can reorganize the entries of a tensor in different ways to obtain a 2D
array, i.e., a matrix. This transformation is known as matricization or flattening.
We flatten a tensor by using lexicographical ordering of the indices.

Definition 2 (Tensor flattening). Let A ∈ RI1×...×IN×J1×...×JM be a tensor
of order N + M . The elements of the matrix A ∈ RI1...IN×J1...JM obtained by
flattening the tensor A are given by

Ai,j = Ai1,...,iN ,j1,...,jM ,

where

i = i1 +

N∑
p=2

(ip − 1)

p−1∏
q=1

Iq,

j = j1 +

M∑
p=2

(jp − 1)

p−1∏
q=1

Jq.

Here and below the indices ip and jp live in their domains, i.e., 1 ≤ ip ≤ Ip
for 1 ≤ p ≤ N , and 1 ≤ jq ≤ Jp for 1 ≤ q ≤ M . We define A = mat(A) and
A = mat−1(A).

Remark 3. For a multiplex network, mat(A) is the supra-adjacency matrix
defined in [7].

Proposition 1. Let A ∈ RI1×...×IN×J1×...×JM and B ∈ RJ1×...×JM×K1×...×KL

be tensors of orders N +M and M + L, respectively. Then

mat(A ∗M B) = mat(A) ·mat(B),

where · denotes the usual matrix product.

Proof: The result follows by direct computations; see [10] for details. �

Definition 3. The following definitions can be found in, e.g., [10, 28, 33].
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1. The trace of a square tensor, A ∈ RI1×...×IN×I1×...×IN , is given by

tr(A) =
∑

i1,...,iN

Ai1,...,iN ,i1,...,iN .

2. The inner product of two tensors of the same size X ,Y ∈ RI1×...×IN×J1×...×JM
is defined as

〈X ,Y〉 =
∑

i1,...,iN ,j1,...,jM

Xi1,...,iN ,j1,...,jMYi1,...,iN ,j1,...,jM .

For square tensors, we have

〈X ,Y〉 = tr(X T ∗N Y).

3. The Frobenius norm of a tensor is given by

||X ||F =
√
〈X ,X〉.

If X is a square tensor, then

||X ||F =
√

tr(X T ∗N X ).

4. For a positive integer p, we define the pth power of a square tensor A ∈
RI1×...×IN×I1×...×IN by using the Einstein product recursively as

Ap = A ∗N Ap−1,

where A0 = I is the identity tensor.

Proposition 2. One has

||A||F = ||mat(A)||F (1)

and, if A is a square tensor, then

||Ap||F ≤ ||A||
p
F . (2)

Proof: Let A ∈ RI1×...×IN×J1×...×JM be a tensor of order N +M . One has

||A||F =
√
〈A,A〉 =

√ ∑
i1,...,iN ,j1,...,jM

A2
i1,...,iN ,j1,...,jM

=

√√√√ N∑
i=1

M∑
j=1

A2
i,j = ||A||F ,

with A = mat(A) given in Definition 2. This shows (1). Assume now that
M = N . According to Definition 3(4.), by applying Proposition 1 p − 1 times,
one has mat(Ap) = (mat(A))p, so that ||mat(Ap)||F ≤ ||mat(A)||pF , where the
inequality is due to the submultiplicativity of the Frobenius matrix norm. Thus,
thanks to (1), one has inequality (2). �
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Remark 4. The eigenvalue problem for 4th-order tensors is discussed in [12].
We can express this problem for any square tensor by using the Einstein product;
we have

A ∗N X = λX ,
where A ∈ RI1×...×IN×I1×...×IN , X ∈ RI1×...×IN and λ ∈ C. This eigen-
value problem is equivalent to the matrix eigenvalue problem mat(A) · vec(X ) =
λvec(X ), where vec is the vectorization operator that takes a tensor and rear-
ranges it into a single column vector by concatenating its elements, i.e., it stacks
the elements X to form a column vector.

3. Tensor functions and centrality measures for multilayer networks

Centrality measures have been thoroughly studied for single-layer networks.
These measures include Katz centrality, subgraph centrality, and total com-
municability with respect to a node; see, e.g., [5, 14, 18, 19, 20, 21]. In this
section, we introduce analogues of these measures for multilayer networks using
the adjacency tensor and the Einstein product.

We recall that, for single-layer networks, a walk from node vi1 to node vij is
defined as a sequence of edges

vi1 → vi2 , vi2 → vi3 , . . . , vij−1
→ vij

that can be traversed to reach node vij from node vi1 . The length of the walk is
the number of edges, j−1. Nodes and edges may be repeated in a walk. A walk
is said to be short if j − 1 is fairly small. There may be an edge from node i in
layer (`1, `2, . . . , `d) to node j in layer (k1, k2, . . . , kd) in a multilayer network.

We denote this edge by v`1,`2,...,`di → vk1,k2,...,kdj . A walk in a multilayer network

from node v
`k1 ,...,`kd
i1

to node v
`k1+j ,...,`kd+j
ij

is defined as a sequence of edges such
as

v
`k1 ,...,`kd
i1

→ v
`k1+1,...,`kd+1

i2
, v

`k1+1,...,`kd+1

i2
→ v

`k1+2,...,`kd+2

i3
, . . . ,

v
`k1+j−1,...,`kd+j−1

i
j−1

→ v
`k1+j ,...,`kd+j
ij

that can be traversed to reach node v
`k1+j ,...,`kd+j
ij

from node v
`k1 ,...,`kd
i1

. The
length of the walk is the number of edges, j − 1, and nodes and edges may be
repeated in a walk. A closed multilayer walk is a multilayer walk for which
the starting and ending nodes are the same, i.e., i1 = ij and `kn = `kn+j , for
n = 1, 2, . . . , d. Estrada [17] has defined a walk in a multiplex network in an
analogous fashion.

The entries of the adjacency tensor A ∈ RN×K1×...Kd×N×K1×...Kd of an
unweighted undirected multilayer network tell us whether there is an edge be-
tween any pair of nodes (between the same or different layers). The entries of
the Einstein product of the adjacency tensor A with itself,

Bi,`1,`2,...,`d,j,k1,k2,...,kd = A ∗d+1 A

=
∑

p,q1,...,qd

Ai,`1,`2,...,`d,p,q1,...,qdAp,q1,...,qd,j,k1,k2,...,kd ,
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where 1 ≤ i, j ≤ N, 1 ≤ `s, ks ≤ L, 1 ≤ s ≤ d, show the number of multilayer
walks of length 2 between pairs of nodes v`1,`2,...,`di and vk1,k2,...,kdj . Similarly, let

p be a positive integer. Then the entries of the tensor Ap = A∗d+1Ap−1 display
the number of multilayer walks of length p between pairs of nodes v`1,`2,...,`di and

vk1,k2,...,kdj . In addition, the entry Api,`1,`2,...,`d,i,`1,`2,...,`d provides the number of

closed multilayer walks of length p that start at node v`1,`2,...,`di . This suggests,
in order to take into account walks of all possible lengths p ≥ 0, the introduction
of the tensor function

f(A) =

∞∑
p=0

cpAp, (3)

where the coefficients cp generally are real and nonnegative, and are chosen so
that the series converges.

Let the tensor Es,t1,...,td ∈ RN×K1×...×Kd with all entries equal to zero except
for the (s, t1, . . . , td)

th entry, which is one. We refer to the entry

f(A)i,`1,`2,...,`d,j,k1,k2,...,kd = Ei,`1,`2,...,`d ∗d+1 f(A) ∗d+1 Ej,k1,k2,...,kd (4)

as the communicability from node v`1,`2,...,`di to node vk1,k2,...,kdj ; a relatively

large value indicates that it is easy to send information from node v`1,`2,...,`di to

node vk1,k2,...,kdj . Moreover, we refer to the entry

f(A)i,`1,`2,...,`d,i,`1,`2,...,`d = Ei,`1,`2,...,`d ∗d+1 f(A) ∗d+1 Ei,`1,`2,...,`d (5)

as the subgraph centrality of node v`1,`2,...,`di ; a relatively large value indicates
that this node is important because much information may pass through it.
These notions of communicability and subgraph centrality for nodes in multi-
layer graphs generalize the analogous definitions introduced and explored by
Estrada and his collaborators, as well as others, in [1, 14, 19, 20, 21] for single-
layer networks. In these references A in (3) is replaced by the adjacency matrix
for the single-layer graph and, hence, f is a matrix function.

In many network applications short walks are more important than long
walks, because it is easier to transmit information via a few edges than via
many edges. This suggests that the coefficients cp should satisfy 0 ≤ cp+1 ≤ cp
for large p-values. One of the most commonly used matrix functions for single-
layer networks is the matrix exponential. For multilayer networks, we therefore
introduce the tensor exponential

exp(βA) =

∞∑
p=0

βpAp

p!
.

It follows from Propositions 1 and 2 that this series converges for any fixed β in
the interval 0 ≤ β <∞. Since the first term I has no natural interpretation in
the context of network modeling, we will use the modified tensor exponential

exp0(βA) := exp(βA)− I, (6)
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where I denotes the identity tensor.
We introduce the δ-effective diameter of the network determined by the

tensor function (3). It is defined as the smallest integer k such that

max`>k |c`|
max1≤j≤k |cj |

≤ δ, (7)

for some small δ > 0. Roughly, this diameter is k if the tensor function (3) can
be approximated well by a polynomial of degree k. This means that walks of
length larger than k do not significantly affect the properties of the network.
for some small δ > 0. Its importance for the communicability in single-layer
networks is explored in [1]. The definition of the effective diameter in [1] differs
slightly from (7) and is for matrix functions.

Proposition 3. Let the tensor function (3) be the modified tensor exponential
(6) for some β > 0. Then the left-hand side of (7) decreases to zero as k
increases.

Proof: Assume that β > 1 and let kβ denote the integer part of β. Then

max
`>k

c` =


βkβ

kβ !
if k < kβ ,

βk+1

(k + 1)!
if k ≥ kβ ,

and

max
1≤j≤k

cj =


βkβ

kβ !
if k ≥ kβ ,

βk

k!
if k < kβ .

It follows that

max`>k c`
max1≤j≤k cj

=


βkβ

kβ !
· k!

βk
if k < kβ ,

βk+1

(k + 1)!
· kβ !

βkβ
if k ≥ kβ .

Therefore this quotient converges to zero as k increases.
We turn to the situation when 0 < β ≤ 1. Then max1≤j≤k cj = c1 and

max
`>k

c` = ck+1 =
βk+1

(k + 1)!
→ 0 as k →∞,

and the proposition follows. �
Resolvents of the adjacency matrix also are commonly used to determine

properties of nodes in a single-layer network; see, e.g., Estrada and Higham [20]
and Katz [27]. We define the modified tensor resolvent,

res0(A, α) = (I − αA)−1 − I =

∞∑
p=1

αpAp, (8)
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which is convergent for 0 < α < 1/|λmax|, where λmax denotes an eigenvalue of
largest magnitude of A. For many adjacency tensors of interest, λmax is real
and positive. Conditions under which this is the case are discussed by Qi and
Luo [33]. The eigenvalue λmax can be computed as an eigenvalue of a matrix
using the relation of Remark 4. The choice of α affects the δ-effective diameter
of the tensor function (8). This is discussed for the matrix resolvent in [1].

We also define the multilayer total communicability of node v`1,`2,...,`di by

Ei,`1,`2,...,`d ∗d+1 f(A) ∗d+1 E , (9)

where E ∈ RN×K1×...×Kd is a tensor with all entries equal to one, and the
multilayer total communicability by

E ∗d+1 f(A) ∗d+1 E . (10)

The latter definitions generalize analogous notions introduced for single-layer
networks by Benzi and Klymko [5] and Katz [27] for f being the matrix expo-
nential or a matrix resolvent. We refer to the quantity defined in (9) as the
multilayer Katz centrality when f is the tensor resolvent.

For small networks, we can evaluate the tensor functions discussed above
by applying the flattening operator mat, its inverse mat−1, Proposition 1, and
using the following result.

Proposition 4. Let the tensor function f be defined by (3) with a power series
that converges sufficiently rapidly. Then

f(A) = mat−1(f(mat(A))).

Proof: By Proposition 1, mat(Ap) = (mat(A))p. Hence,
∑n
p=1 mat(cpAp) =∑n

p=1 cp(mat(A))p and we have

f(mat(A)) = lim
n→∞

n∑
p=1

cp(mat(A))p = lim
n→∞

mat(

n∑
p=1

cpAp),

and by the definition of mat, we can write

lim
n→∞

mat(

n∑
p=1

cpAp) = mat( lim
n→∞

n∑
p=1

cpAp).

Thus, one has
mat(f(A)) = f(mat(A)).

Applying the inverse operator mat−1 to both sides concludes the proof. �
The evaluation of tensor functions using the above proposition is feasible for

tensors that represent small to medium-sized multilayer networks. However, the
computations are very demanding for large-scale multilayer networks. Approx-
imations of tensor functions for the latter kind of networks can be computed
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fairly inexpensively by applying Krylov subspace methods to the flattened ad-
jacency tensor, i.e., supra-adjacency matrix, as in [7]. However, our main goal
is to contribute to the development of a formalism where tensors are used.
Therefore, we suggest computing communicability and centrality measures us-
ing Krylov subspace methods based on the tensor format. This is discussed in
the following section.

4. Krylov subspace methods

Krylov subspace methods are well suited to approximate many matrix func-
tions; see, e.g., [2, 23] for illustrations. They also have been applied successfully
to the approximation of tensor functions and the solution of tensor systems of
equations; see [3, 4, 15, 24, 31] and references therein. It is therefore natural
to seek to approximate the tensor functions mentioned in the previous section
by Krylov subspace methods. We first discuss the application of the global ten-
sor Arnoldi process to the approximation of multilayer centrality measures, and
subsequently consider the tensor block Arnoldi process.

4.1. A global tensor Arnoldi process based on the Einstein product

The global matrix Arnoldi process is a Krylov subspace method that was
introduced by Jbilou et al. [25, 26] for the reduction of a large matrix to a
small one. A global tensor Arnoldi process for the reduction of a large ten-
sor to a small matrix using the Einstein product is described by El Guide
et al. [15]. The application of m steps of the latter process to the tensor
A ∈ RN×K1×...×Kd×N×K1×...×Kd with initial tensor V ∈ RN×K1×...×Kd deter-
mines, when no breakdown occurs, an orthonormal basis for the tensor Krylov
subspace

Km+1(A,V) = span{V,A∗d+1V, . . . ,Am∗d+1V} :=

{
m∑
i=0

ωiAi ∗d+1 V, ωi ∈ R

}
.

(11)
This definition of the subspace is analogous to the definition of the solution
subspace for global matrix methods used in [26].

The computations are described by Algorithm 1. The algorithm is said to
break down at step j if hi+1,i > 0 for 1 ≤ i < j and hj+1,j = 0. In the absence of
breakdown, the algorithm determines the tensor Vm+1 = [V1,V2, . . . ,Vm+1] ∈
RN×K1×...×Kd×(m+1) with orthonormal block columns, i.e.,

〈Vi,Vj〉 := Vi ∗d+1 Vj =

{
1, i = j,
0, i 6= j,

that span the tensor Krylov subspace Km+1(A,V). In line 5 of Algorithm 1, we
have

A ∗d+1 Vj = [A ∗d+1 V1,A ∗d+1 V2, . . . ,A ∗d+1 Vj ] ∈ RN×K1×...×Kd×j .
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Algorithm 1 Global tensor Arnoldi process

1: Input: Adjacency tensor A ∈ RN×K1×...×Kd×N×K1×...×Kd , initial tensor
V ∈ RN×K1×...×Kd , and number of steps m.

2: Output: Orthonormal basis Vm+1 = {V1,V2, . . . ,Vm+1} for the tensor
Krylov subspace (11) and nontrivial entries of the upper Hessenberg matrix
Hm+1,m = [hij ] ∈ R(m+1)×m.

3: V1 = V/‖V‖F
4: for j = 1, . . . ,m do

5: W = A ∗d+1 Vj
6: for i = 1, . . . , j do

7: hi,j = 〈Vi,W〉
8: W =W − hijVj
9: end for

10: hj+1,j = ||W||F
11: if hj+1,j = 0, then stop

12: else Vj+1 =W/hj+1,j

13: end if

14: end for

It follows from the recursion relation of Algorithm 1 that

A ∗d+1 Vm = Vm+1 ∗1 Hm+1,m, (12)

where Hm+1,m = [hij ] ∈ R(m+1)×m is an upper Hessenberg matrix made up of
the coefficients hij generated in lines 7 and 10 of Algorithm 1; all entries below
the subdiagonal of Hm+1,m vanish.

Let the matrix Hm ∈ Rm×m be obtained by deleting the last row of Hm+1,m.
Then

VTm ∗d+1 A ∗d+1 Vm = Hm,

where Vm = [V1,V2, . . . ,Vm] ∈ RN×K1×...×Kd×m and VTm = [V1,V2, . . . ,Vm]T ∈
Rm×N×K1×...×Kd . Hence, Hm is the orthogonal projection of A onto the sub-
space Km(A,V) with respect the basis Vm. This suggest to use the approxima-
tion

Vm ∗1 f(Hm) ∗1 E1‖V‖F (13)

of f(A) ∗d+1 V, where ‖V‖F =
√
V ∗d+1 V and E1 ∈ Rm is the first vector from

the canonical basis, analogously to the approach used when A is a square matrix
and V is a vector; see [2, 15, 24].

This approach to approximate f(A) ∗d+1 V works well when V = E and
can be applied to determine accurate approximations of the multilayer total
communicability (10) and the multilayer total communicability of node v`1,...,`di

defined by (9). The former is approximated by

E ∗d+1 Vm ∗1 f(Hm) ∗1 E1‖V‖F
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and the latter by

Ei,`1,...,`d ∗d+1 Vm ∗1 f(Hm) ∗1 E1‖V‖F . (14)

In particular, the evaluation of (14) does not require any arithmetic work when
the expression (13) is available. This makes the evaluation of the multilayer

total communicability of all nodes v`1,...,`di , 1 ≤ i ≤ N and 1 ≤ `s ≤ Ks, , 1 ≤
s ≤ d, inexpensive when the expression (13) is known. We use this fact when
determining nodes for which this measure is large in Section 5.

However, Algorithm 1 often suffers from breakdown when seeking to approx-
imate an expression of the form f(A) ∗d+1 V when the tensor V is sparse, i.e.,
when V has many vanishing entries. This is the case when seeking to approxi-
mate the subgraph centrality (5) by

Ei,`1,...,`d ∗d+1 Vm ∗1 f(Hm) ∗1 E1‖Ei,`1,...,`d‖F ,

or the communicability (4) between the node v`1,...,`di and node vk1,...,kdj by

Ei,`1,...,`d ∗d+1 Vm ∗1 f(Hm) ∗1 E1‖Ej,k1,...,kd‖F .

When computing these approximations, the initial block tensor is V = Ei,`1,...,`d ,
which is very sparse. Since the tensor A typically also is sparse, this often
results in that the scalar hj+1,j in line 10 of Algorithm 1 vanishes for some
1 ≤ j ≤ m. The computations with the algorithm then cannot be continued,
and the available expression at breakdown,

Vj ∗1 f(Hj) ∗1 E1‖V‖F ,

might not furnish an approximation of desired accuracy. Moreover, even when
all the multilayer subgraph centralities can be computed to determine the node
with the largest subgraph centrality, this is quite expensive for large multilayer
networks. We describe in the following subsection how these difficulties can be
reduced by replacing the initial tensor V in Algorithm 1 by a block of tensors.

4.2. A block Arnoldi process based on the Einstein product

We describe a block Arnoldi process that uses the Einstein product. It differs
from Algorithm 1 in that the initial tensor V is extended to a block tensor. The
application of m steps of the block Arnoldi process to A with initial tensor W
determines, in the absence of breakdown, an orthonormal basis for the block
tensor Krylov subspace

Kblock
m+1 (A,W) = range{W,A ∗d+1W, . . . ,Am ∗d+1W} (15)

=

{
m∑
i=0

Ai ∗d+1W ∗1 Ωi, Ωi ∈ RP×P
}
,

where W ∈ RN×K1×...×Kd×P . We will refer to the integer P as the block size.
This definition of the subspace is analogous to the definition of the solution
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subspace for block matrix methods used in [26]. The block Arnoldi process of
this subsection has the advantage of typically requiring fewer accesses to the
adjacency tensor than when applying Algorithm 1. Moreover, choosing suitable
auxiliary columns in the initial tensor W, the occurrences of breakdowns can
be reduced in comparison with Algorithm 1. The block Arnoldi process is
summarized by Algorithm 2.

Algorithm 2 Block tensor Arnoldi process

1: Input: Adjacency tensor A ∈ RN×K1×...×Kd×N×K1×...×Kd , initial tensor
W ∈ RN×K1×...×Kd×P , and number of steps m.

2: Output: Orthonormal basis Wm+1 = {W1,W2, . . . ,Wm+1} for the block
Krylov subspace (15), and nontrivial entries Hi,j ∈ RP×P of the upper block
Hessenberg matrix Hm+1,m = [Hi,j ] ∈ RP (m+1)×Pm.

3: Compute the QR factorization W = Q ∗1 R, where the tensor Q ∈
RN×K1×...×Kd×P satisfies QT ∗1 Q = I and the matrix R ∈ RP×P is upper
triangular. Set W1 = Q and H1,0 = R.

4: for j = 1, . . . ,m do

5: U = A ∗d+1Wj

6: for i = 1, . . . , j do

7: Hi,j =WT
i ∗d+1 U ,

8: U = U −Wi ∗1 Hi,j

9: end for

10: Compute the QR factorization U = Q∗1R, where Q ∈ RN×K1×...×Kd×P

satisfies QT ∗1 Q = I and the matrix R ∈ RP×P is upper triangular. Set
Wj+1 = Q and Hj+1,j = R.

11: end for

Algorithm 2 determines an orthonormal basis

Wm+1 = [W1, . . . ,Wm+1] ∈ RN×K1×...×Kd×P (m+1)

for the block Krylov subspace (15) and the upper block Hessenberg matrix

Hm+1,m =



H1,1 H1,2 H1,3 · · · H1,m−1 H1,m

H2,1 H2,2 H2,3 · · · H2,m−1 H2,m

H3,2 H3,3 · · · H3,m−1 H3,m

. . .
...

...
Hm,m−1 Hm,m

Hm+1,m


∈ RP (m+1)×Pm.

Its leading Pm×Pm submatrix is denoted by Hm. We have the following result:

Proposition 5. Suppose that m steps of Algorithm 2 have been carried out.
Then

A ∗d+1 Wm = Wm+1 ∗1 Hm+1,m (16)
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and
A ∗d+1 Wm = Wm ∗1 Hm +Wm+1 ∗1 Hm+1,m ∗1 ETm, (17)

where Wm = [W1, . . . ,Wm] ∈ RN×K1×...×Kd×Pm is made up of the first m
tensor columns of Wm+1 and ETm = [0, 0, . . . , IP ] ∈ RP×Pm. Moreover,

Ap ∗d+1W = Wm ∗1 Hpm ∗1 E1χ0, (18)

where χ0 is obtained from the QR factorization ofW, such thatW = Wm∗1E1χ0

holds for all p ≤ 0.

Proof: For 1 ≤ j ≤ m, one has

[Wm+1 ∗1 Hm+1,m]:,...,:,1+P (j−1):Pj

=

j+1∑
i=1

(Wm+1):,...,:,1+P (i−1):Pi ∗1 (Hm+1,m)1+P (i−1):Pi,1+P (j−1):Pj

= [A ∗d+1 Wm]:,...,:,1+P (j−1):Pj .

This leads to equation (16); equation (17) can be shown similarly. The last
claim can be proved by induction. In fact, if p = 0, then one has A0 ∗d+1W =
W = Wm ∗1 E1χ0 and, by assuming that (18) holds for p ≥ 0, one obtains

Ap+1 ∗d+1W = A ∗d+1 Ap ∗d+1W = A ∗d+1 Wm ∗1 Hpm ∗1 E1χ0,

so that, using equation (17), we have

Ap+1 ∗d+1W = (Wm ∗1 Hm +Wm+1 ∗1 Hm+1,m ∗1 ETm) ∗1 Hpm ∗1 E1χ0

= Wm ∗1 Hm ∗1 Hpm ∗1 E1χ0

+Wm+1 ∗1 Hm+1,m ∗1 ETm ∗1 Hpm ∗1 E1χ0,

where the second term vanishes due to the fact that Hm is a block Hessenberg
matrix. This concludes the proof. �

Thanks to equation (18), f(A) ∗d+1W can be approximated by

Wm ∗d+1 f(Hm) ∗1 E1χ0, (19)

where χ0 is such that W = Wm ∗1 E1χ0. The advantage of this approach is
that we can compute the multilayer subgraph centrality and the resolvent-based
subgraph centrality of P nodes at once, and we also can determine approx-
imations of the multilayer communicabilities of these P nodes essentially for
free. This is because we are approximating the quantity f(A) ∗d+1W by (19),
and then can evaluate the approximation WT ∗d+1 Wm ∗d+1 f(Hm) ∗1 E1χ0 of
WT ∗d+1 f(A) ∗d+1W inexpensively. Moreover, we can circumvent the numeri-
cal stability issue related to the sparsity of the adjacency tensor and the initial
block by adding a dense tensor in the initial block tensor. This technique has
been discussed for matrix functions case in [22]. Notice that if we include E , i.e.,
the tensor of all ones, in the initial block tensor, then Algorithm 2 will produce
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the same quantities of interest as one would compute with Algorithm 1 when
applied with the initial tensor V = E , as well as the multilayer total network
communicability. This is because once we approximate

f(A) ∗d+1W := [f(A) ∗d+1W1, . . . , f(A) ∗d+1WP , f(A) ∗d+1WP+1],

where WP+1 = E , we only need to compute the following Einstein product
M :=WT ∗d+1 f(A) ∗d+1W ∈ RP+1×P+1. Then for 1 ≤ i, j ≤ P and i 6= j the
quantities Mi,j are the communicabilities between different nodes, for 1 ≤ i ≤ P
the quantities Mi,i are the multilayer subgraph centralities, for 1 ≤ i ≤ P the
quantities Mi,P+1 are the same obtained by Algorithm 1, and MP+1,P+1 is the
multilayer total network communicability of the whole network.

5. Computed examples

This section presents some examples to illustrate the performance of the
methods discussed above. The computations were carried out using MATLAB
R2015b. We use the Matlab library, tensor toolbox [28], to perform operations
on tensors. For the examples in Sections 5.2 and 5.3, we choose the minimum
number of steps, m, with the Krylov subspace method needed to obtain the
same ranking of the first 10 nodes as the ranking obtained when evaluating the
exact tensor function. We will see that the number of steps required is quite
small. Due to the size of the networks in the examples in Sections 5.4 and
5.5, it is expensive to evaluate the exact tensor function. In these examples,
we therefore increase the number of steps, m, of the Krylov subspace until
the ranking does not change, and consider the ranking so obtained the exact
one. Knowledge of the nodes for which we are interest in computing multilayer
subgraph centrality is needed for Algorithm 2. We choose these nodes as the
top central ones obtained by Algorithm 1.
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Figure 2: Example 1: Layers are presented from left to right in the order L = 1 and L = 2.
The edges connecting nodes from same layer are marked in black. The edges connecting nodes
from different layers are marked in red.

5.1. Example 1: A small synthetic multilayer network

Consider a small synthetic unweighted and undirected multilayer network
with d = 1, K1 = 2, and N = 5. It consists of 10 edges as shown by the
graph of Figure 2. Let A be the adjacency tensor. We compute the different
multilayer centrality measures discussed using the Einstein product. The results
are summarized in Table 1 for β = 1 and α = 0.5/λmax. We can see that node
v22 has the largest centrality measures and, therefore, is the most important
node. This node is followed by node v11 . Node v24 is the least important node.
All centrality measures perform as can be expected.

5.2. Example 2: A synthetic multilayer network

We consider an example of a weighted multilayer network with d = 1 aspect,
K1 = 32 layers, N = 20 nodes, and 674 edges. The network can be downloaded
from https://github.com/wjj0301/Multiplex-Networks. We compute ap-
proximations of the multilayer total communicability of the nodes v`i and mul-
tilayer Katz centrality using Algorithm 1, as well as the exact multilayer total
communicability of the nodes v`i and multilayer Katz centrality, i.e., the sub-
graph centrality determined with the function (8), by flattening the adjacency
tensor and using the MATLAB function expm and the MATLAB backslash op-
erator when using the function (8). The errors in the computed approximations
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Table 1: Multilayer total communicability of the nodes v`i (MTC), multilayer Katz central-
ity (MKC), multilayer subgraph centrality with the modified tensor exponential (MSCexp0

),
multilayer subgraph centrality with the modified tensor resolvent (MSCres0 ) for the nodes of
Example 1.

MTC(i, `) MKC(i, `)
v`i ` = 1 ` = 2 ` = 1 ` = 2
i = 1 12.2520 7.7379 2.1131 1.7044
i = 2 9.6537 17.2450 1.8145 2.5454
i = 3 8.9474 11.7351 1.7645 1.9484
i = 4 10.8250 4.2550 1.8876 1.3470
i = 5 10.6175 10.6175 1.8774 1.8774

MSCexp0
(i, `) MSCres0(i, `)

v`i ` = 1 ` = 2 ` = 1 ` = 2
i = 1 3.1001 2.2834 1.1507 1.0952
i = 2 2.3582 4.1313 1.0987 1.2165
i = 3 2.3946 2.4698 1.1003 1.1039
i = 4 2.4174 1.5922 1.1016 1.0454
i = 5 2.5001 2.5001 1.1051 1.1051

are determined by the vector infinity norm, that is, the exact multilayer total
communicability of the nodes, multilayer Katz centrality, and their approxi-
mations are stored in vectors and the infinity norm is applied to measure the
distance between the vectors with the exact entries and the vectors with the
corresponding entries determined by Krylov subspace methods. Figure 3 dis-
plays the errors as a function of the Krylov subspace dimension m. Table 2 lists
the top 10 central nodes according to the multilayer total communicability with
respect to a node and multilayer Katz centrality. We notice that the multilayer
Katz centrality is approximated accurately when the same number of steps, m,
of Algorithm 1 are carried out. The multilayer total communicability of the
nodes is approximated less accurately with the same number of steps, but still
gives the same ranking of nodes as when the exact communicability is used.

We also set the weight of all edges to one to obtain an unweighted multi-
layer network and compute the multilayer total communicability of the nodes
and multilayer Katz centrality. We notice that the multilayer total communica-
bility of the nodes is approximated accurately when m = 6 steps of Algorithm
1 are carried out also for larger values of β. However, the multilayer Katz cen-
trality is not approximated accurately for m = 6 steps when α > 0.66/λmax.
Figure 3 depicts the influence of the values of α and β on the dimension of
Krylov subspace needed to obtain accurate approximations for both weighted
and unweighted graphs.

Finally, we turn to the computation of multilayer subgraph centralities of
some nodes. We apply Algorithm 2 to our adjacency tensor with the first block
V ∈ RN×K1×P with P frontal slices of the form Ei,`. We let P = 10 and choose
the indices {i, `} randomly. The results obtained are summarized in Table 3,
which also shows communicabilities that we obtain for free since we use a block
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Table 2: Top 10 central nodes determined by Algorithm 1 with m = 6 using the (approximate)
multilayer total communicability of the nodes (MTC) and (approximate) multilayer Katz
centrality (MKC) so obtained for the weighted multilayer network in Example 2, with α =
0.4/λmax and β = 0.4. These computed values are compared to the exact ones obtained by
flattening and using matrix functions.

{i, `} MTC{i, `} MTCexact{i, `} {i, `} MKC{i, `} MKCexact{i, `}
{18, 24} 99.4969 97.1435 {18, 24} 3.6474 3.6407
{17, 26} 70.0610 72.6593 {19, 19} 3.0148 3.0191
{13, 19} 64.5009 67.7357 {14, 23} 2.8966 2.8956
{8, 26} 62.8084 67.1222 {13, 19} 2.6318 2.6407
{19, 19} 62.1558 63.7426 {17, 26} 2.6242 2.6313
{6, 24} 59.3319 60.2469 {6, 29} 2.5999 2.5990
{19, 4} 58.9334 59.4300 {2, 29} 2.5497 2.5477
{14, 24} 56.5841 56.4157 {1, 32} 2.5371 2.5425
{1, 32} 52.8265 54.7537 {1, 3} 2.5251 2.5240
{2, 24} 51.6585 54.3109 {14, 24} 2.5150 2.5146

Table 3: Multilayer subgraph centrality obtained with the modified tensor exponential
(MSCexp0

) and multilayer subgraph centrality with the modified tensor resolvent (MSCres0 )
for some nodes for the unweighted multilayer network in Example 2, as well as free multilayer
communicabilities of the nodes (MC) with α = 0.5/λmax, β = 1, and m = 5.

{i, `} MSCexp0
{i, `} MSCres0{i, `} {i, `, j, k} MC{i, `, j, k}

{4, 1} 1.1683 1.0358
{5, 1} 1.2116 1.0488
{12, 1} 1.5878 1.1321
{1, 3} 1.1766 1.0395 {5, 1, 4, 1} 1.0505
{19, 4} 1.0084 1.0038 {12, 1, 4, 1} 0.1768
{2, 11} 1.0592 1.0193 {12, 1, 5, 1} 0.5531
{13, 18} 1.1681 1.0354 {13, 18, 19, 18} 0.0502
{19, 18} 1.0097 1.0048
{14, 22} 1.2537 1.0611
{8, 25} 1.5431 1.1176

method.

5.3. Example 3: Multiplex network (Scotland Yard transportation data)

This example considers the Scotland Yard transportation network created
by the authors of [7], which is a multiplex network. A multiplex network is a
special case of a multilayer network. The network can be downloaded from [6]
as a weighted or unweighted multiplex network. It consists of 3324 edges and
N = 199 nodes that represent public transport stops in the city of London. The
network has K1 = 4 layers that represent different modes of transportation:
Boat, underground, bus, and taxi. The weights are determined so that the
edges in the layer that represent travel by taxi all have weight one. A taxi ride
is defined as a trip by taxi between two adjacent nodes in the taxi layer; a taxi
ride along k edges is considered k taxi rides. The weights of edges in the boat,
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(a) (b)

(c) (d)

Figure 3: Infinity norm error for multilayer total communicability of the nodes and multi-
layer Katz centrality as functions of the Krylov subspace dimension m for Example 2 with
α ∈ { 0.2

λmax
, 0.3
λmax

, 0.5
λmax

, 0.7
λmax

}, and β ∈ {0.3, 0.5, 1, 1.5} ({blue, red, yellow, green}). (a) mul-

tilayer Katz centrality for weighted edges, (b) multilayer total communicability of the nodes
for weighted edges, (c) multilayer Katz centrality for unweighted edges, and (d) multilayer
total communicability of the nodes for unweighted edges.

20



(a) (b)

Figure 4: Infinity norm error for multilayer total communicability of the nodes (blue) and
multilayer Katz centrality (orange) as functions of the Krylov subspace dimension m for
Example 3. (a) when edges are unweighted and α = 0.4/λmax and β = 0.4, (b) when edges
are weighted and α = 0.3/λmax and β = 0.1.

Table 4: Multilayer subgraph centrality obtained with the modified tensor exponential
(MSCexp0

) and multilayer subgraph centrality with the modified tensor resolvent (MSCres0 )
for some nodes of the network in Example 3, with α = 0.3/λmax, β = 0.3, P = 11 and m = 10.

{i, `} MSCexp0
{i, `} MSCres0{i, `}

{142,4} 1.6080 1.0345
{140,4} 1.5004 1.0295
{58,4} 1.5182 1.0301
{128,4} 1.4583 1.0267
{67,3} 1.4442 1.0262
{153,4} 1.4457 1.0263
{143,4} 1.4754 1.0273
{114,4} 1.4933 1.0293
{129,4} 1.4647 1.0269
{128,3} 1.4519 1.0265

underground, and bus layers are chosen to be equal to the minimal number of
taxi rides required to travel between the same nodes. We compute the multilayer
Katz centrality and multilayer total communicability of the nodes by applying
Algorithm 1 to the adjacency tensor of the given multiplex network, as well
as to the adjacency tensor of the associated unweighted network; in the latter
adjacency tensor all edges have weight one. We compute the exact multilayer
Katz centrality and multilayer total communicability of the nodes in the same
way as in the previous example and evaluate the infinity norm error as well.
Figure 4 displays the errors as a function of the Krylov subspace dimension.
This illustrates the accuracy of Algorithm 1 when applied to multiplex networks.

We also compute the multilayer subgraph centrality (MSC) measures for the
top 10 nodes using Algorithm 2; see Table 4. The total network communicability
obtained is 3.904 ·103. Multilayer communicabilities between some of the nodes
considered are listed in Table 5.
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Table 5: Multilayer communicabilities obtained with the modified tensor exponential
(MCexp0

) and with the modified tensor resolvent (MCres0 ) for some nodes of the network
in Example 3, with α = 0.3/λmax, β = 0.3, P = 11 and m = 10.

{i, `, j, k} MCexp0
MCres0

{128,4,142,4} 0.4666 0.0614
{153,4,140,4} 0.1267 0.0070
{142,4,143,4} 0.5192 0.0646
{128,3,128,4} 0.5010 0.0640
{67,3,153,4} 7.0328 · 10−4 1.8124 · 10−4

5.4. Example 4: Multiplex network (European airlines data set)

The European airlines data set consists of N = 450 nodes that represent Eu-
ropean airports and hasK1 = 37 layers that represent different airlines operating
in Europe. There are 3588 edges, which represent available routes. This network
can be represented by a fourth-order adjacency tensor A ∈ RN×K1×N×K1 such
that A(i, `, j, `) = 1 if there is a flight connecting airports i and j with airline `.
Moreover, A(i, `, i, k) = 1 for every 1 ≤ `, k ≤ K1 to reflect the effort required to
change airlines for connecting flights. The network can be downloaded from [6].
Similarly as Taylor et al. [34], we only include N = 417 nodes from the largest
connected component of the network. We compute the multilayer total commu-
nicability of the nodes and the multilayer Katz centrality using Algorithm 1 to
approximate the tensor exponential and the tensor resolvent functions. Table
6 lists the top 10 central nodes. We obtained similar ranking as reported in
[7], where the authors applied Krylov subspace methods to the supra-adjacency
matrix of the network in order to compute matrix function-based centrality
measures such as the Katz centrality.

We apply Algorithm 2 to our adjacency tensor in order to compute the
multilayer subgraph centrality (MSC) for the top 10 nodes determined earlier.
This algorithm determines the multilayer subgraph centrality for the different
nodes at once, the results are reported in Table 7. Table 8 shows the multilayer
communicabilities between the considered nodes determined by the algorithm.
The multilayer total network communicability is 2.4163.107.

5.5. Example 5: Wikispeedia network

This data set contains human navigation paths in Wikipedia, collected through
the human-computation game Wikispeedia. Wikispeedia users are asked to
navigate from a given source to a given target article, being allowed to click
on links only. Nodes are articles of the English Wikipedia and edges repre-
sent clicks. The data is provided by the Stanford Network Analysis Project
http://snap.stanford.edu/index.html. It contains 4604 articles and 119882
links. We classified the articles into 16 different subjects (Countries, Science,
Geography, . . . ) and then built a multilayer network with N = 4604 nodes and
K1 = 16 layers. Each layer contains the edges connecting the nodes that are
considered to be classified in this layer. We have used the files that contain node
identifiers and all edges from https://github.com/franloza/Wikispeedia-Network.
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Table 6: Top 10 central nodes according to multilayer total communicability of the nodes
(MTC) and multilayer Katz centrality (MKC) for the European airlines network in Example
4, with α = 0.5/λmax and β = 0.2. The MTC and MKC values are computed with Algorithm
1 with m = 20.

{i, `} MTC{i, `} {i, `} MKC{i, `}
{Stansted, Ryanair} 8.2164 · 103 {Stansted, Ryanair} 4.4228
{Munich, Lufthansa} 7.5209 · 103 {Munich, Lufthansa} 4.0937
{Frankfurt, Lufthansa} 7.4541 · 103 {Frankfurt, Lufthansa} 4.0650
{Dublin, Ryanair} 6.8942 · 103 {Ataturk, Turkish} 4.0486
{Gatwick, EasyJet} 6.5714 · 103 {Gatwick, EasyJet} 3.7925
{Ataturk, Turkish} 6.4399 · 103 {Dublin, Ryanair} 3.6479
{Amsterdam, KLM} 6.0994 · 103 {Vienna, Austrian} 3.5939
{Vienna, Austrian} 5.8057 · 103 {Amsterdam, KLM} 3.5661
{Caravaggio, Ryanair} 5.7104 · 103 {Caravaggio, Ryanair} 3.3244
{Adolfo, Ryanair} 5.5765 · 103 {Charles de Gaulle, Air France} 3.2444

Table 7: Multilayer subgraph centrality obtained with the modified tensor exponential
(MSCexp0

) and multilayer subgraph centrality with the modified tensor resolvent (MSCres0 )
for some nodes of the European airlines network in Example 4, with α = 0.5/λmax, β = 0.2,
P = 11, and m = 10.

{i, `} MSCexp0
{i, `} MSCres0{i, `}

{Stansted, Ryanair} 53.6833 1.0282
{Munich, Lufthansa} 49.9200 1.0261
{Frankfurt, Lufthansa} 49.7844 1.0259
{Dublin, Ryanair} 49.0779 1.0225
{Gatwick, EasyJet} 47.2554 1.0239
{Ataturk, Turkish} 47.4633 1.0261
{Amsterdam, KLM} 45.1513 1.0224
{Vienna, Austrian} 45.2302 1.0228
{Caravaggio, Ryanair} 46.4080 1.0203
{Adolfo, Ryanair} 43.4764 1.0171

Table 8: Multilayer communicabilities obtained with the modified tensor exponential
(MCexp0

) and with the modified tensor resolvent (MCres0 ) for some nodes of the European
airlines network in Example 4, with α = 0.5/λmax, β = 0.2, P = 11, and m = 10.

{i, `, j, k} MCexp0
MCres0

{Dublin, Ryanair, Stansted, Ryanair} 1.33 · 101 2.17 · 10−2

{Vienna, Austrian, Stansted, Ryanair,} 6.56 · 10−1 4.37 · 10−5

{Frankfurt, Lufthansa, Munich, Lufthansa} 1.31 · 101 2.46 · 10−1

{Amsterdam, KLM, Frankfurt, Lufthansa} 5.58 · 100 8.96 · 10−4

{Caravaggio, Ryanair, Dublin, Ryanair} 1.01 · 101 1.87 · 10−2

{Stansted, Ryanair, Ataturk, Turkish} 7.42 · 10−1 4.88 · 10−5

{Munich, Lufthansa, Gatwick, EasyJet} 3.53 · 100 2.24 · 10−4

{Caravaggio, Ryanair, Adolfo, Ryanair} 7.94 · 100 1.72 · 10−2

{Ataturk, Turkish, Caravaggio, Ryanair} 5.06 · 10−1 3.20 · 10−5

{Stansted, Ryanair, Adolfo, Ryanair} 9.41 · 100 1.82 · 10−2
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Table 9: Top 10 central nodes according to the multilayer total communicability (MTC) and
the multilayer Katz centrality (MKC) for the Wikispeedia network in Example 5, with β = 0.2,
α = 0.5/λmax. The MTC and MKC values are approximations determined by Algorithm 1
with m = 20.

{i, `} MTC{i, `}
{Fauna of Australia, Science} 2.3711 · 1027

{Africa, Countries} 2.1895 · 1027

{Periodic table, Science} 1.7854 · 1027

{List of elements by name, Science} 1.7241 · 1027

{Periodic table (large version), Science} 1.7162 · 1027

{Bird, Science} 1.5887 · 1027

{Bird, Animals} 1.5887 · 1027

{President of the United States, Politics} 1.5476 · 1027

{Star, Science} 1.5465 · 1027

{Star, Space} 1.5465 · 1027

{i, `} MKC{i, `}
{Lebanon, Geography} 4.7019
{Armenia, Countries} 4.5967
{Armenia, Geography} 4.5967
{Georgia, Countries} 4.5712
{Georgia, Geography} 4.5712
{Turkey, Countries} 4.4296
{Turkey, Geography} 4.4296
{Djibouti, Countries} 4.2680
{Djibouti, Geography} 4.2680
{Mozambique, Countries} 4.1781

We compute the multilayer Katz centrality and multilayer total communicabil-
ity of the nodes by applying Algorithm 1 to the adjacency tensor of the given
multilayer network. Table 9 lists the top 10 central nodes for this network.

5.6. Example 6: Synthetic multilayer network with 2 aspects

In this last example, we consider a weighted undirected multilayer network
with d = 2 aspects, K1 = 3, K2 = 2 and N = 180 nodes. The data can
be download from https://github.com/wjj0301/Multiplex-Networks, in the
form of 6 layers then, transformed to a multilayer network with 2 aspects, it
contains 148 edges in total. We compute the multilayer Katz centrality and
multilayer total communicability of the nodes by applying Algorithm 1 to the
6th order adjacency tensor A ∈ R180×3×2×180×3×2. Table 10 displays the top 10
central nodes. We apply Algorithm 2 to approximate the multilayer subgraph
centrality measures for the top 10 central nodes determined by Algorithm 1
and the total network communicability which is 1.6088 · 103. Table 11 displays
multilayer subgraph centrality measures obtained by Algorithm 2.
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Table 10: Top 10 central nodes according to multilayer total communicability of the nodes
(MTC) and multilayer Katz centrality (MKC) for the network in Example 6, with α =
0.5/λmax and β = 0.2. The MTC and MKC values are computed with Algorithm 1 with
m = 10.

{i, `1, `2} MTC{i, `1, `2} {i, `1, `2} MKC{i, `1, `2}
{2,4,1} 21.9603 {100,1,2} 1.0495
{26, 1, 1} 18.7547 {55,2,1} 0.9638
{100,1,2} 18.3988 {24,1,1} 0.9383
{115,1,2} 16.9789 {26,1,1} 0.8261
{27,1,1} 16.3683 {98,1,2} 0.8062
{6,1,1} 15.1006 {131,2,2} 0.7439
{99,1,2} 13.8501 {48,2,1} 0.7243
{172,3,2} 12.7657 {176,3,2} 0.6906
{176,3,2} 12.7579 {162,3,2} 0.6773
{13,1,1} 12.6350 {155,3,2} 0.6752

Table 11: Multilayer subgraph centrality obtained with the modified tensor exponential
(MSCexp0

) and multilayer subgraph centrality with the modified tensor resolvent (MSCres0 )
for some nodes of the network in Example 6, with α = 0.3/λmax, β = 0.3, P = 11, and m = 5.

{i, `1, `2} MSCexp0
{i, `1, `2} MSCres0{i, `1, `2}

{2,4,1} 2.5074 1.0082
{26, 1, 1} 2.5074 1.0082
{100,1,2} 1.0000 1.0000
{115,1,2} 1.0000 1.0000
{27,1,1} 2.5074 1.0082
{6,1,1} 2.5074 1.0082
{99,1,2} 1.0000 1.0000
{172,3,2} 1.0000 1.0000
{176,3,2} 1.0914 1.0027
{13,1,1} 1.0000 1.0000
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6. Conclusion

This paper investigates centrality measures for multilayer networks by in-
troducing the exponential and the resolvent of the adjacency tensor associated
with this network using the Einstein product. We showed how to approximate
these tensor functions via Krylov subspace methods based on the tensor format.
Numerical tests gave satisfactory results. The paper illustrates the tensors are
useful for modeling multilayer networks and can be used to evaluate small to
quite large networks. However, the computations for very large networks and
may require the use of parallel computers with many processors. This will be
explored in future work.
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