
Noname manuscript No.
(will be inserted by the editor)

Estimating the error in matrix function approximations

Nasim Eshghi · Lothar Reichel

the date of receipt and acceptance should be inserted later

Abstract The need to compute matrix functions of the form f(A)v, where A ∈
RN×N is a large symmetric matrix, f is a function such that f(A) is well defined,
and v 6= 0 is a vector, arises in many applications. This paper is concerned with
the situation when A is so large that the evaluation of f(A) is prohibitively expen-
sive. Then an approximation of f(A)v often is computed by applying a few, say
1 ≤ n � N , steps of the symmetric Lanczos process to A with initial vector v to
determine a symmetric tridiagonal matrix Tn ∈ Rn×n and a matrix Vn ∈ RN×n,
whose orthonormal columns span a Krylov subspace. The expression Vnf(Tn)e1‖v‖
furnishes an approximation of f(A)v. The evaluation of f(Tn) is inexpensive, be-
cause the matrix Tn is small. It is important to be able to estimate the error in
the computed approximation. This paper describes a novel approach that is based
on a technique proposed by Spalević for estimating the error in Gauss quadrature
rules.

Keywords matrix function, symmetric Lanczos process, error estimation

1 Introduction

Many problems in science and engineering require the evaluation of expressions of
the form

f(A)v, (1)

where A ∈ RN×N is a large symmetric matrix, v ∈ RN\{0} is a vector, and f

is a function such that f(A) is well defined and continuous on the convex hull
of the spectrum of A. Applications arise, for instance, in the solution of partial
differential equations, ill-posed problems, and network analysis; see, e.g., [2–4,6,
12].
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One way to define f(A) is via the spectral factorization

A = UΛUT , Λ = diag[λ1, λ2, . . . , λN ], (2)

where the λj are eigenvalues of A, the columns of the matrix U ∈ RN×N are
suitably normalized orthogonal eigenvectors (see below for details about the nor-
malization), and the superscript T denotes transposition. Then

f(A) = Uf(Λ)UT , f(Λ) = diag[f(λ1), f(λ2), . . . , f(λN )]; (3)

see, e.g., Golub and Van Loan [22] or Higham [23] for several ways to define matrix
functions.

When the matrix A is of small to moderate size, we can easily compute the
spectral factorization (2) and evaluate f(A) according to (3). This and many other
techniques for evaluating functions of small to moderately sized matrices are de-
scribed by Higham [23]. When f(A) is known, it is straightforward to evaluate the
expression (1).

However, when the matrix A is large, the computation of the spectral factoriza-
tion (2) may be too expensive to be practical. Also other techniques that require
factorization of A to compute f(A) may be too expensive when A is large without
an exploitable structure. In this situation, the expression (1) commonly is approx-
imated by using a Lanczos decomposition. Application of a few, say 1 ≤ n � N ,
steps of the symmetric Lanczos process to A with initial vector v gives the Lanczos
decomposition

AVn = VnTn + βnvn+1e
T
n , (4)

where the columns of the matrix Vn = [v1, v2, . . . , vn] ∈ RN×n form an orthonormal
basis for the Krylov subspace

Kn(A, v) := span{v,Av, . . . , An−1v}

with v1 = v/‖v‖, the unit vector vn+1 ∈ RN is such that V Tn vn+1 = 0, and βn ≥ 0.
Throughout this paper en denotes the nth column of an identity matrix of suitable
order, ‖ · ‖ stands for the Euclidean vector norm, and the symmetric tridiagonal
matrix

Tn =


α0 β1 0
β1 α1 β2

. . .
. . .

. . .

βn−2 αn−2 βn−1

0 βn−1 αn−1

 ∈ Rn×n (5)

is an orthogonal section of A. We assume that the number of steps, n, of the
Lanczos process is small enough so that the decomposition (4) with the stated
properties exists; see, e.g., Golub and Van Loan [22], Golub and Meurant [21],
or Saad [31] for detailed discussions on the symmetric Lanczos process, which is
described by Algorithm 1.

The Lanczos decomposition (4) is used to approximate the expressions (1) by

Vnf(Tn)e1‖v‖; (6)

see, e.g., [2,18,24] for discussions and error bounds. Hence, the difficult problem
of evaluating f(A) for a large matrix A is replaced by the much simpler task of
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Algorithm 1 The symmetric Lanczos process.

1: Input: symmetric matrix A ∈ Rn×n, initial unit vector v ∈ Rn,
2: number of steps m.
3: v0 := 0 ∈ Rn, β0 := 0, v1 := v
4: for j = 1 to m
5: w := Avj − vj−1βj−1

6: αj := vTj w
7: w := w − vjαj

8: βj := ‖w‖; vj+1 := w/βj
9: end for

10: Output: Entries α1, α2, . . . , αm and β1, β2, . . . , βm of the matrix (5).

first applying n steps of the Lanczos process to A and then computing f(Tn). One
way to evaluate the latter expression is to compute the spectral factorization of
Tn and use a formula analogous to (3). The existence of f(Tn) is secured when f

is continuous on the convex hull of the spectrum of A.
We are interested in determining an easily computable estimate of the norm

of the approximation error

En(f) := ‖f(A)v − Vnf(Tn)e1‖v‖‖. (7)

An elegant recent paper by Frommer and Schweitzer [18] provides easily com-
putable error bounds when f is a Stieltjes function. However, for general functions
f error bounds for matrix function approximations are not available or impractical
to compute; see, e.g., [2,12,17,24] for discussions of a variety of error bounds.

It is the purpose of the present paper to describe a novel approach to esti-
mate the error norm (7). Our approach is based on a technique for estimating
the error in Gauss quadrature rules proposed by Spalević [32]. The symmetric
tridiagonal matrix (5) can be associated with an n-node Gauss quadrature rule
Gn with respect to a measure that is determined by the matrix A and vector v.
Since quadrature rules are important in what follows, we outline the connection.
A thorough discussion is provided by Golub and Meurant [21]. The representation
(3) yields

vT f(A)v = vTUf(Λ)UT v =
N∑
j=1

f(λj)µ
2
j =

∫
f(t)dµ(t), (8)

where UT v = [µ1, µ2, . . . , µN ]T . The above sum can be interpreted as a Stieltjes
integral associated with a measure dµ shown in the right-hand side of (8); the
distribution function affiliated with this measure can be chosen to be nondecreasing
and piece-wise constant with jumps µ2j at the eigenvalues λj . The Gauss rule Gn
mentioned above is associated with the measure dµ. Its nodes are the eigenvalues
of the matrix (5) and its weights are the square of the first components of suitably
normalized eigenvectors of this matrix. We recall that the eigenvectors of the
matrix (5) are orthogonal; they should be normalized so that their Euclidean
norm is ‖v‖. Since the matrix (5) is an orthogonal section of A, its eigenvalues are
contained in the convex hull of the eigenvalues of A. We refer to the difference

En(f) := vT f(A)v − Gn(f) (9)



4 Nasim Eshghi, Lothar Reichel

as the quadrature error in Gn(f). It vanishes for f ∈ P2n−1, where P2n−1 denotes
the set of all polynomials of degree at most 2n − 1. This property makes Gn a
Gaussian quadrature rule; see Golub and Meurant [21] for details.

We also will be interested in the (n− 1)-node Gauss rule, Gn−1, affiliated with
the measure dµ. Its nodes are the eigenvalues of the leading (n−1)×(n−1) principal
submatrix Tn−1 of (5), and its weights are the square of the first components of
eigenvectors of Tn−1, that are normalized to have Euclidean norm ‖v‖.

Spalević [32] described a (2n − 1)-node quadrature rule, which we denote by
S2n−1, for the estimation of the quadrature error En−1(f). We will refer to S2n−1 as
a (2n−1)-node Spalević rule. This rule is associated with a symmetric tridiagonal
matrix S2n−1 ∈ R(2n−1)×(2n−1), similarly as the Gauss rule Gn is associated with
the matrix (5). It is straightforward to determine the matrix S2n−1 from the matrix
(5) and the coefficient βn in (4). We describe in Section 2 how a leading principal
submatrix of S2n−1 can be applied to provide an estimate of the error (7). A few
computed examples are presented in Section 3 and concluding remarks can be
found in Section 4.

2 A new error estimation method

Assume for the moment that we apply n+q steps of the symmetric Lanczos process
to A with initial vector v for some q > 1. This gives the decomposition

AVn+q = Vn+qTn+q + βn+qvn+q+1e
T
n+q, (10)

which is analogous to (4). In particular, the matrix Vn+q = [v1, v2, . . . , vn+q] ∈
RN×(n+q) has orthonormal columns with v1 = v/‖v‖. Its first n columns agree with
those of the matrix Vn in (4). The unit vector vn+q+1 is such that V Tn+qvn+q+1 = 0,
and βn+q ≥ 0. The matrix Tn+q is symmetric and tridiagonal with the n×n leading
principal submatrix (5). We assume the decomposition (10) to exist and we can
use it to evaluate the expression

Vn+qf(Tn+q)e1‖v‖, (11)

which is analogous to (6).
We will need the matrix[

f(Tn) 0
0 0

]
∈ R(n+q)×(n+q),

which is obtained by zero-padding of f(Tn) ∈ Rn×n. Typically, the expression
(11) is a more accurate approximation of the matrix function (1) than (6). This
suggests that it may be possible to estimate the error norm (7) as

‖Vn+qf(Tn+q)e1‖v‖ − Vnf(Tn)e1‖v‖‖ (12)

=

∥∥∥∥Vn+qf(Tn+q)e1‖v‖ − Vn+q
[
f(Tn) 0

0 0

]
e1‖v‖

∥∥∥∥ ,
which simplifies to

Ẽn+q,q(f) :=

∥∥∥∥f(Tn+q)e1 −
[
f(Tn) 0

0 0

]
e1

∥∥∥∥ ‖v‖, (13)
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where we note that this expression does not require knowledge of the columns of
the matrix Vn+q in (10). However, the need to evaluate f(Tn+q) makes it necessary
to carry out n+ q > n steps of the Lanczos process to determine the entries of the
matrix Tn+q.

Estimates of the quadrature error (9) that are analogous to the error estimate
(13) have been applied by Golub and Meurant [20,26]. Specifically, they estimate
the error (9) by Gn+q(f)−Gn(f), and use this estimate to assess the error in iterates
determined by the conjugate gradient method. To determine an accurate estimate
of the error (9), the parameter q has to be sufficiently large. In computed examples
reported in [20], this parameter is chosen to be 2 ≤ q ≤ 20, while Meurant [26]
uses q = 5. It is known that q = 1 is not large enough; see Clenshaw and Curtis
[7] for a discussion on the estimation of the error (9) by Gn+1(f)− Gn(f).

We would like to determine an estimate of the expression (13) without having
to carry out more than the n steps of the Lanczos process required to evaluate
the expression (6). To describe our approach for achieving this, we first define the
truncated Spalević rules. These rules have been discussed and analyzed in [8,9,
29]. They are truncated versions of the Spalević rule presented in [32].

Introduce the symmetric tridiagonal matrix

T q =


αn−2 βn−2 0
βn−2 αn−3 βn−3

. . .
. . .

. . .

βn−q+1 αn−q βn−q
0 βn−q αn−q−1

 ∈ Rq×q (14)

for some 1 ≤ q < n. This matrix is obtained by first reversing the rows and columns
of the (n−1)×(n−1) leading principal submatrix of (5), and then retaining the first
q rows and columns of the matrix so obtained. Define the symmetric tridiagonal
matrix determined by concatenating the matrices (5) and (14), and including the
coefficient βn in (4),

T̃n+q,q =

[
Tn βnen
βne

T
n T q

]
∈ R(n+q)×(n+q). (15)

Note that all entries of this matrix can be determined from the Lanczos decom-
position (4).

If q = n − 1, then (15) is the symmetric tridiagonal matrix S2n−1 associated
with the (2n − 1)-node Spalević quadrature rule for estimating the error in the
Gauss rule Gn−1 commented on at the end of Section 1. The quadrature rule Gn−1

integrates all polynomials in P2n−3 exactly; see, e.g., [21]. The associated (2n−1)-
node Spalević rule is exact for all polynomials in P2n and is described in [32–34].
When 1 ≤ q < n− 1, the resulting matrix (15) is associated with an (n+ q)-node
truncated Spalević rule. These rules also are exact for all polynomials in P2n; see,
e.g., [29].

Our error estimate for (1) is based on replacing the matrix Tn+q in (13) by
(15). This yields the error estimate

En,q(f) :=

∥∥∥∥f(T̃n+q,q)e1 −
[
f(Tn) 0

0 0

]
e1

∥∥∥∥ ‖v‖. (16)
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We remark that other approaches to estimating the error in (1) based on
quadrature rules that are commonly used for error estimation also can be de-
veloped. For instance, a classical approach to estimate the error in the Gauss rule
Gn−1(f) is to use the associated (2n − 1)-node Gauss–Kronrod rule. The latter
rule corresponds to a real symmetric tridiagonal matrix of order 2n − 1 when
the Gauss–Kronrod rule has real nodes and the n − 1 Gauss nodes interlace the
n non-Gauss nodes; see Notaris [28] for a recent discussion on Gauss–Kronrod
quadrature. However, Gauss–Kronrod rules with nodes with this property are not
guaranteed to exist. Moreover, they are more complicated to compute than the
Spalević rules; see [1,5,25] for computational aspects.

The following results shed some light on the accuracy of the expressions in
(16).

Theorem 1 We have

f(A)v = Vnf(Tn)e1‖v‖ ∀f ∈ Pn−1, (17)

where the right-hand side is defined by (6), and

f(A)v = Vn+qf(T̃n+q,q)e1‖v‖ ∀f ∈ Pn, (18)

when 1 ≤ q ≤ n− 1, where the matrix T̃n+q,q is given by (15) and the matrix Vn+q is

defined in (11). It follows that the error estimate (16) satisfies

En,q(f) = ‖f(A)v − Vnf(Tn)e1‖v‖‖ ∀f ∈ Pn, (19)

i.e., the error estimate is exact for f ∈ Pn.

Proof The property (17) is well known. It can easily be shown for increasing powers
f(t) = tj , j = 0, 1, . . . , n − 1; see, e.g., [11,30]. We turn to (18) and obtain from
(10) that

AVn+q = Vn+qT̃n+q,q + Vn+q(Tn+q − T̃n+q,q) + βn+qvn+q+1e
T
n+q.

It follows that

Av1 = Vn+qT̃n+q,qe1 + Vn+q(Tn+q − T̃n+q,q)e1 + βn+qvn+q+1e
T
n+qe1.

If n ≥ 1 and n+ q > 1, then this expression simplifies to

Av1 = Vn+qT̃n+q,qe1, (20)

i.e., property (18) holds for f ∈ P1.
Multiplying (20) from the left by A and substituting (10) gives

A2v1 = AVn+qT̃n+q,qe1

= (Vn+qTn+q + βn+qvn+q+1e
T
n+q)T̃n+q,qe1

= Vn+qTn+qT̃n+q,qe1

= Vn+qT̃
2
n+q,qe1,
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where the last two equalities hold if n + q > 2 and n ≥ 2. Thus, under these
conditions equation (18) is valid for f ∈ P2. Similarly,

A3v1 = AVn+qT̃
2
n+q,qe1

= (Vn+qTn+q + βn+qvn+q+1e
T
n+q)T̃

2
n+q,qe1

= Vn+qTn+qT̃
2
n+q,qe1

= Vn+qT̃
3
n+q,qe1,

where the last two equalities hold if n + q > 3 and n ≥ 3. We can similarly show
that

Akv1 = Vn+qT̃
k
n+q,qe1,

provided that n+ q > k and n ≥ k. This shows (18).

The property (19) can be shown by expressing (16) in the form

En,q(f) =
∥∥∥Vn+qf(T̃n+q,q)e1‖v‖ − Vnf(Tn)e1‖v‖

∥∥∥ , (21)

which is obtained by replacing the matrix Tn+q in (12) by T̃n+q,q. Equation (19)
now follows from (18).

We remark that a special case of this result is stated in [16, Corollary 2.3].
Moreover, the expression (18) may hold for a larger set of polynomials when the
matrices Tn, n = 1, 2, . . . , in (4) have a special structure. For instance, if Tn+q is
a tridiagonal Toeplitz matrix, then T̃n+q,q = Tn+q, and it follows that

Vn+qf(T̃n+q,q)e1‖v‖ = Vn+qf(Tn+q)e1‖v‖ = f(A)v ∀f ∈ Pn+q−1,

where the last equality follows from (17). It follows that higher accuracy than
(18) also can be achieved if only a trailing principal submatrix of the matrix (5)
is Toeplitz. Measures dµ that give rise to orthogonal polynomials with recursion
coefficients that determine a symmetric tridiagonal matrix (5) of this kind are

said to belong to the class M(α,β)
` [a, b], which was introduced by Gautschi and

Notaris [19]. Subsequently, this kind of measures were used by Spalević [34] and
more recently by Djukić et al. [10] in their investigations of Spalević quadrature
rules.

Our error estimation technique is based on replacing the matrix Tn+q in the
Lanczos decomposition (10) by the matrix T̃n+q,q. It is natural to ask whether
there is a matrix Ã ∈ RN×N such that

ÃVn+q = Vn+qT̃n+q,q + βn+qvn+q+1e
T
n+q

is a Lanczos decomposition. Here the matrix Vn+q, vector vn+q+1, and scalar
βn+q are the same as in (10). The following result shows how a matrix Ã can be
determined from A if the matrix T̂n+q differs from Tn+q in one entry only. Such
rank-one modifications can be applied repeatedly to determine the matrix (15)
from Tn+q.
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Theorem 2 Assume that the Lanczos decomposition (10) exists and let T̂n+q = Tn+q+
αeie

T
j for some α ∈ R and 1 ≤ i, j ≤ n+ q. Then

ÃVn+q = Vn+qT̂n+q + βn+qvn+q+1e
T
n+q, (22)

with the matrix Vn+q = [v1, v2, . . . , vn+q], vector vn+q+1, and scalar βn+q the same

as in (10), is a Lanczos decomposition of the matrix

Ã = A+ αviv
T
j . (23)

Proof We obtain from (10) that

AVn+q = Vn+qT̂n+q − αvieTj + βn+qvn+q+1e
T
n+q,

which we express as

(A+ αviv
T
j )Vn+q = Vn+qT̂n+q + βn+qvn+q+1e

T
n+q.

Thus, the decomposition (22) holds for Ã given by (23).

The theorem shows that the matrix T̃n+q,q defined by (15) can be determined
by applying n + q steps of the Lanczos process to some matrix. However, we do
not use this fact in the computations.

3 Numerical examples

We present a few computed examples that illustrate the accuracy of the proposed
error estimates. All computations were carried out using MATLAB R2016b on a
64-bit Lenovo personal computer with approximately 15 significant decimal digits.

Table 1 Example 3.1: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric positive definite Toeplitz matrix, v =
[1, 1, . . . , 1]T ∈ RN , and f(t) = exp(t) when n = 5 and q ∈ {1, 2, 3}.

N ‖f(A)v‖ q = 1 q = 2 q = 3

200 2.74836 · 101
En(f)
‖f(A)‖ 2.90175 · 10−8 2.90175 · 10−8 2.90175 · 10−8

En,q(f)

‖f(A)‖ 2.90006 · 10−8 2.90175 · 10−8 2.90175 · 10−8

2000 8.70859 · 101
En(f)
‖f(A)‖ 9.25347 · 10−9 9.25347 · 10−9 9.25347 · 10−9

En,q(f)

‖f(A)‖ 9.24808 · 10−9 9.25347 · 10−9 9.25347 · 10−9

5000 1.37713 · 102
En(f)
‖f(A)‖ 5.85533 · 10−9 5.85533 · 10−9 5.85533 · 10−9

En,q(f)

‖f(A)‖ 5.85192 · 10−9 5.85533 · 10−9 5.85533 · 10−9

Example 3.1. Let A ∈ RN×N be the symmetric positive definite Toeplitz
matrix with first row [1/3, . . . , 1/3N ]. The initial vector is chosen to be v =
[1, 1, . . . , 1]T ∈ RN unless explicitly stated otherwise. We will letN ∈ {200, 2000, 5000}.
The matrices A ∈ RN×N so defined have the smallest eigenvalue about 1/6.

We first apply n = 5 steps of the symmetric Lanczos process to A. This yields
the Lanczos decomposition (4). Even though A is Toeplitz, the symmetric tridi-
agonal matrix Tn in the Lanczos decomposition is not. Define the matrix (15) for
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Table 2 Example 3.1: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric positive definite Toeplitz matrix, v ∈ RN is
a random vector, and f(t) = exp(t) when n = 5 and q ∈ {1, 2, 3}.

N ‖f(A)v‖ q = 1 q = 2 q = 3

200 2.00852 · 101
En(f)
‖f(A)‖ 3.08261 · 10−7 3.08261 · 10−7 3.08261 · 10−7

En,q(f)

‖f(A)‖ 3.08010 · 10−7 3.08261 · 10−7 3.08261 · 10−7

2000 6.63092 · 101
En(f)
‖f(A)‖ 3.56874 · 10−7 3.56874 · 10−7 3.56874 · 10−7

En,q(f)

‖f(A)‖ 3.56669 · 10−7 3.56874 · 10−7 3.56874 · 10−7

5000 1.02805 · 102
En(f)
‖f(A)‖ 3.61104 · 10−7 3.61104 · 10−7 3.61104 · 10−7

En,q(f)

‖f(A)‖ 3.60899 · 10−7 3.61104 · 10−7 3.61104 · 10−7

Table 3 Example 3.1: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric positive definite Toeplitz matrix, v =
[1, 1, . . . , 1]T ∈ RN , and f(t) = 1/t when n = 5 and q ∈ {1, 2, 3}.

N ‖f(A)v‖ q = 1 q = 2 q = 3

200 2.13454 · 101
En(f)
‖f(A)‖ 6.43076 · 10−4 6.43076 · 10−4 6.43076 · 10−4

En,q(f)

‖f(A)‖ 5.42303 · 10−4 6.26182 · 10−4 6.40509 · 10−4

2000 6.71240 · 101
En(f)
‖f(A)‖ 2.05517 · 10−4 2.05517 · 10−4 2.05517 · 10−4

En,q(f)

‖f(A)‖ 1.73306 · 10−4 2.00118 · 10−4 2.04698 · 10−4

5000 1.06092 · 102
En(f)
‖f(A)‖ 1.30069 · 10−4 1.30069 · 10−4 1.30069 · 10−4

En,q(f)

‖f(A)‖ 1.09683 · 10−4 1.26651 · 10−4 1.29550 · 10−4

Table 4 Example 3.1: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric positive definite Toeplitz matrix, v ∈ RN a
random vector, and f(t) = 1/t when n = 5 and q ∈ {1, 2, 3}.

N ‖f(A)v‖ q = 1 q = 2 q = 3

200 5.59057 · 101
En(f)
‖f(A)‖ 4.62715 · 10−3 4.62715 · 10−3 4.62715 · 10−4

En,q(f)

‖f(A)‖ 3.67313 · 10−3 4.46681 · 10−3 4.60622 · 10−3

2000 1.87581 · 101
En(f)
‖f(A)‖ 5.09331 · 10−3 5.09331 · 10−3 5.09331 · 10−3

En,q(f)

‖f(A)‖ 4.31285 · 10−3 4.96157 · 10−3 5.07309 · 10−3

5000 2.89799 · 102
En(f)
‖f(A)‖ 5.13185 · 10−3 5.13185 · 10−3 5.13185 · 10−3

En,q(f)

‖f(A)‖ 4.34610 · 10−3 4.99922 · 10−3 5.11160 · 10−3

Table 5 Example 3.1: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric positive definite Toeplitz matrix, v =
[1, 1, . . . , 1]T ∈ RN , and f(t) =

√
t− 0.1 when n = 5 and q ∈ {1, 2, 3}.

N ‖f(A)v‖ q = 1 q = 2 q = 3

2000 3.36576 · 101
En(f)
‖f(A)‖ 1.11024 · 10−5 1.11024 · 10−5 1.11024 · 10−5

En,q(f)

‖f(A)‖ 9.09738 · 10−6 1.06697 · 10−5 1.10102 · 10−5

q ∈ {1, 2, 3}. Table 1 shows the relative approximation errors En(f)/‖f(A)‖ defined
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Table 6 Example 3.1: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric positive definite Toeplitz matrix, v ∈ RN random
vector, and f(t) =

√
t− 0.1 when n = 5 and q ∈ {1, 2, 3}.

N ‖f(A)v‖ q = 1 q = 2 q = 3

2000 2.23382 · 101
En(f)
‖f(A)‖ 1.26399 · 10−3 1.26399 · 10−3 1.26399 · 10−3

En,q(f)

‖f(A)‖ 1.02055 · 10−3 1.20801 · 10−3 1.25135 · 10−3

by (7) and relative error estimates En,q(f)/‖f(A)‖ given by (16) for f(t) = exp(t).
The errors estimates are seen to be quite accurate for all values of N and q.

Table 2 differs from Table 1 only in that the initial vector v ∈ RN has normally
distributed random entries with mean zero and variance one. The value of f(A)v
differs for this table from that for Table 1, but the computed error estimates
En,q(f)/‖f(A)‖ for all values of N and q can be seen to be quite accurate.

Tables 3 and 5 are analogous to Table 1 and shows error estimates En,q(f)/‖f(A)‖
for f(t) = 1/t and f(t) =

√
t− 0.1, respectively; in the interest of brevity the latter

table only displays results for N = 2000. Tables 4 and 6 are analogous to Tables 3
and 5; they differ in the initial vector, which is of the same kind as in Table 2.

The error in the computed approximation of f(A)v can be expected to converge
to zero slower as n increases, the closer there is an eigenvalue of A to a singularity
of f . Slow convergence of the error to zero also may result in less accurate error
estimates than when convergence is fast. Since f(t) = exp(t) has no singularity in
the finite complex plane, we expect faster convergence of the error to zero with
increasing n for this function than for the other functions of this example. The
distance between the singularity of f and the closest eigenvalue of A is about 1/6
for f(t) = 1/t, and about 1/15 for f(t) =

√
t− 0.1 for all values of N in this

example. Nevertheless, Tables 1-6 show the error estimates to be quite accurate
for all functions and for both kinds of initial vectors v used. The accuracy of the
error estimates is seen to increase with q.

We conclude this example with a comparison of the accuracy of the error
estimates Ẽn+q,q(f) and En,q(f) defined by (13) and (16), respectively. Note that
the computation of Ẽn+q,q(f) demands that n+ q steps of the Lanczos process be
carried out, while the calculation of En,q(f) only requires n steps of the Lanczos
process. Table 7 displays the error estimates Ẽn+q,q(f) for n = 5 and q ∈ {1, 3} for
three functions f and initial vector v = [1, 1, . . . , 1]T . Table 8 differs from Table 7
only in the choice of initial vector v for the Lanczos process; it is a random vector
with normally distributed entries with mean zero and variance one in the latter
table.

Table 7 Example 3.1: Relative error estimates Ẽn+q,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric
positive definite Toeplitz matrix, v = [1, 1, . . . , 1]T ∈ RN , and several functions f for N = 2000,
n = 5, and q ∈ {1, 3}.

f(t)
Ẽ6,1(f)

‖f(A)‖
Ẽ8,3(f)

‖f(A)‖
exp(t) 9.24808 · 10−9 9.25347 · 10−9

1/t 1.73306 · 10−4 2.04698 · 10−4

√
t− 0.1 9.09738 · 10−6 1.10102 · 10−5
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Table 8 Example 3.1: Relative error estimates Ẽn+q,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric
positive definite Toeplitz matrix, v ∈ RN a random vector, and several functions f for N =
2000, n = 5, and q ∈ {1, 3}.

f(t)
Ẽ6,1(f)

‖f(A)‖
Ẽ8,3(f)

‖f(A)‖
exp(t) 3.56669 · 10−7 3.56874 · 10−7

1/t 4.13285 · 10−3 5.07309 · 10−3

√
t− 0.1 1.02055 · 10−3 1.25135 · 10−3

Comparing results for f(t) = exp(t) in Tables 1 and 7 shows the error estimate
E5,1(f) to be as accurate as Ẽ6,1(f), and the estimate E5,3(f) to be as accurate
as Ẽ8,3(f), but the estimates E5,1(f) and E5,3(f) only require the evaluation of
5 steps of the Lanczos process, while the estimates Ẽ6,1(f) and Ẽ8,3(f) demand
the execution of 6 and 8 Lanczos steps, respectively. Analogous conclusions can
be drawn for the other functions in Table 7. Tables 2 and 8 shows similar results.
In summary, the error estimates (16) are as accurate as the error estimates (13),
but require less computational effort to evaluate. 2

It is clear that executing more steps of the Lanczos process demands more
computing time. For instance, for the matrices in Table 7 the execution time
increases by 24% when increasing the number of steps of the Lanczos process from
5 to 10, but the total CPU time is small, less than 0.1 second for both 5 or 10
steps. However, the CPU time grows quickly with the matrix size. An example
that employs hierarchical compression of H2-matrices is described in [15, Example
1.1]. The evaluation of one matrix-vector product with an H2-matrix of order
N = 262146 required 26.6 minutes of CPU time on a laptop computer; see [15]
for details. Here it suffices to point out that there are problems for which it is
important to keep the number of matrix-vector product evaluations as small as
possible. For those problems, the evaluation of the estimates (13) is more attractive
than the evaluation of the estimates (16). Unfortunately, we cannot evaluate the
exact error (7) for problems of very large size and, thus, cannot assess the accuracy
of the estimates (21). We therefore in the following restrict ourselves to problems
that are small enough to allow the evaluation of (7) in moderate time.

Table 9 Example 3.2: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for A ∈ RN×N a symmetric positive semidefinite matrix, v = [1, 1, . . . , 1]T ,
and f(t) = exp(t), when n = 5 and q = n− 1.

N ‖f(A)v‖

200 1.812147 · 101
En(f)
‖f(A)‖ 1.66291 · 10−9

En,q(f)

‖f(A)‖ 1.66265 · 10−9

2000 5.74098 · 101
En(f)
‖f(A)‖ 5.32845 · 10−10

En,q(f)

‖f(A)‖ 5.32759 · 10−10

5000 9.07839 · 101
En(f)
‖f(A)‖ 3.37257 · 10−10

En,q(f)

‖f(A)‖ 3.37202 · 10−10
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Table 10 Example 3.2: Relative errors En(f)/‖f(A)‖ and relative error estimates En,q(f) for
A ∈ RN×N a symmetric positive semidefinite matrix, v = [1, 1, . . . , 1]T , and f(t) = 1/(t+0.1),
when n = 5 and q = n− 1.

N ‖f(A)v‖

200 4.09089 · 101
En(f)
‖f(A)‖ 7.93734 · 10−4

En,q(f)

‖f(A)‖ 8.07596 · 10−4

2000 1.27946 · 102
En(f)
‖f(A)‖ 2.55772 · 10−4

En,q(f)

‖f(A)‖ 2.60275 · 10−4

5000 2.02150 · 102
En(f)
‖f(A)‖ 1.61959 · 10−4

En,q(f)

‖f(A)‖ 1.64812 · 10−4

Example 3.2. Let A ∈ RN×N be a symmetric positive semidefinite matrix. It
is defined by A = (B − λ1I)2, where B ∈ RN×N is a symmetric Toeplitz matrix
with first row [1/3, . . . , 1/3N ] and largest eigenvalue λ1. We apply n = 5 steps
of the symmetric Lanczos process to A with initial vector v = [1, 1, . . . , 1]T ∈
RN and compute the relative errors E5(f)/‖f(A)‖ and relative error estimates
E5,4(f)/‖f(A)‖ for the functions f(t) = exp(t) and f(t) = 1/(t + 0.1). Thus, we
choose q to be as large as possible, i.e., n− 1.

Tables 9 and 10 display the relative errors and relative error estimates for
N ∈ {200, 2000, 5000}. The tables show the relative errors in the approximation
(6) to be larger for f(t) = 1/(t + 0.1) than for the exponential function, but the
relative error estimates are seen to be quite accurate for both functions. 2

Table 11 Example 3.3: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,q(f)/‖f(A)‖ for symmetric positive definite Toeplitz matrices A ∈ RN×N , v =
[1, 1, . . . , 1]T ∈ RN , for n = {5, 10} and f(t) = exp(t).

N ‖f(A)v‖ n = 5 n = 10

200 2.80339 · 102
En(f)
‖f(A)‖ 6.72185 · 10−5 2.54432 · 10−10

En,q(f)

‖f(A)‖ 6.72198 · 10−5 2.54436 · 10−10

2000 8.97085 · 102
En(f)
‖f(A)‖ 2.14220 · 10−5 8.12756 · 10−11

En,q(f)

‖f(A)‖ 2.14220 · 10−5 8.12755 · 10−11

5000 1.41952 · 103
En(f)
‖f(A)‖ 1.35532 · 10−5 5.14173 · 10−11

En,q(f)

‖f(A)‖ 1.35532 · 10−5 5.14173 · 10−11

Example 3.3. We let A ∈ RN×N with N ∈ {200, 2000, 5000} be symmetric
positive definite Toeplitz matrices with first row [1, 1/2, . . . , 1/2(N−1)]. The aim
of this example is to illustrate how the error in the function approximation (6)
decreases when increasing the number of Lanczos steps n. Note that the symmetric
tridiagonal matrices Tn determined by the Lanczos process are not Toeplitz.

Table 11 shows results for the exponential function f(t) = exp(t) and n ∈
{5, 10}. The parameter q is chosen as large as possible, i.e., q = n − 1. The error
in the function approximation (6) is seen to be much smaller for n = 10 than
for n = 5; the error estimates (16) are accurate for both values of n. Table 12 is
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Table 12 Example 3.3: Relative error of errors En(f) and error estimates En,q(f) for sym-
metric positive definite Toeplitz matrices A ∈ RN×N , v = [1, 1, . . . , 1]T ∈ RN , for n = {5, 10}
and f(t) =

√
t.

N ‖f(A)v‖ n = 5 n = 10

200 2.44131 · 101
En(f)
‖f(A)‖ 4.65712 · 10−5 4.42032 · 10−7

En,q(f)

‖f(A)‖ 4.61394 · 10−5 4.41994 · 10−7

2000 7.74338 · 101
En(f)
‖f(A)‖ 1.47928 · 10−5 1.40452 · 10−7

En,q(f)

‖f(A)‖ 1.46549 · 10−5 1.40450 · 10−7

5000 1.22458 · 102
En(f)
‖f(A)‖ 9.35800 · 10−6 8.88454 · 10−8

En,q(f)

‖f(A)‖ 9.27069 · 10−6 8.88441 · 10−8

analogous to Table 11 and shows results for f(t) =
√
t. The errors are larger in

this table than in Table 11, but the error estimates are quite accurate. 2

Our last example is concerned with the analysis of large networks. A network
is represented by a graph G = {V, E} that is defined by a set of vertices V and
a set of edges E. We assume G to be a simple connected graph with N nodes,
i.e., G is undirected, unweighted, and without self-loops and multiple edges. The
adjacency matrix A = [aij ]

N
i,j=1 associated with G has the entry aij = 1 if there is

an edge between node i and node j, and aij = 0 otherwise. The adjacency matrix
is symmetric. Typically, the number of edges in a graph is much smaller than
N2. Therefore, adjacency matrices generally are sparse; see, e.g., [13,27] for more
details.

A walk of length k in an undirected graph is a sequence of k + 1 vertices
v1, v2, . . . , vk+1 such that there is an edge between vertex vi and vertex vi+1 for

i = 1, 2, . . . , k. Vertices and edges in a walk may be repeated. The entry a
(`)
ij of the

matrix A` = [a
(`)
ij ]Ni,j=1 is equal to the number of walks of length ` between node i

and node j.

Consider a function

f(A) =
∞∑
`=0

c`A
` (24)

with positive coefficients c` chosen to guarantee convergence. The entry [f(A)]ij
of f(A) can be interpreted as a measure of the ease of traveling between nodes i
and j. The term c0I has no specific meaning and is introduced for convenience.
The coefficients c` are generally chosen to be strictly decreasing functions of `,
since this models that short walks are more important than long walks. A popular
choice is c` = 1/`! for all ` ≥ 0, which yields f(A) = exp(A); see, e.g., Estrada
and Higham [14] for a nice introduction to the application of matrix functions
in network analysis. The expression f(A)v with v = [1, 1, . . . , 1]T can be used to
measure the relative importance of nodes in a network. If the entry [f(A)v]i is
relatively large, when compared to the other entries of the vector f(A)v, then this
indicates that node i is important in the network; see, e.g., Benzi and Klymko
[4]. A nice recent discussion on the use of matrix functions in network analysis is
provided by Benzi and Boito [3]. The following example determines error estimates
for approximations of f(A)v.
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Table 13 Example 3.4: Relative errors En(f)/‖f(A)‖ and relative error estimates
En,n−1(f)/‖f(A)‖ for an adjacency matrix A ∈ RN×N defined by a network and v =
[1, 1, . . . , 1]T ∈ RN , for n = {5, 10, 15} and f(t) = exp(t).

N ‖f(A)v‖ n = 5 n = 10 n = 15

2114 2.53067 · 104
En(f)
‖f(A)‖ 1.33460 · 10−1 1.06073 · 10−3 9.30448 · 10−7

En,n−1(f)

‖f(A)‖ 1.39036 · 10−1 1.10350 · 10−3 9.43031 · 10−7

Example 3.4. Consider the network yeast, which is represented by an undi-
rected graph with 2114 vertices and 4480 edges. It describes the protein-protein
interaction of yeast. Each node represents a protein and each edge represents an
interaction between two proteins. The adjacency matrix A ∈ R2114×2114 for this
graph is symmetric and is available at [35].

Table 13 shows the relative error of the function approximations (6) and relative
error estimates obtained from (16) for the exponential function f(t) = exp(t) when
q = n−1 and n ∈ {5, 10, 15}. The relative error in the function approximations (6)
can be seen to decrease rapidly as n increases. The relative error estimates (16)
are quite accurate for all values of n. 2

4 Conclusion

A new method for estimating the error in approximations of functions of symmetric
matrices is presented. Tables 1-13 show the proposed error estimates to be quite
accurate. For large matrices A, the dominating computational effort for computing
the matrix function approximation (6) is the evaluation of n steps of the symmetric
Lanczos process. An attraction of the error estimates (16) is that their computation
does not require that additional Lanczos steps be carried out.
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