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Informatique, Marrakech, Morocco.
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50 rue F. Buisson, F-62280 Calais Cedex, France.

cUniversity UM6P, Benguerir, Morocco.
dDepartment of Mathematical Sciences, Kent State University, Kent, OH 44242, USA.

Abstract

This paper describes methods based on the extended symmetric block Lanczos

process for computing element-wise estimates of upper and lower bounds for

matrix functions of the form V T f(A)V , where the matrix A ∈ Rn×n is large,

symmetric, and nonsingular, V ∈ Rn×s is a block vector with 1 ≤ s � n or-

thonormal columns, and f is a function that is defined on the convex hull of

the spectrum of A. Pairs of block Gauss–Laurent and block anti-Gauss–Laurent

quadrature rules are defined and applied to determine the desired estimates. The

methods presented generalize methods discussed by Fenu et al. [8], which use

(standard) block Krylov subspaces, to allow the application of extended block

Krylov subspaces. The latter spaces are the union of a (standard) block Krylov

subspace determined by positive powers of A and a block Krylov subspace de-

fined by negative powers of A. Computed examples illustrate the effectiveness

of the proposed method.
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1. Introduction

We are concerned with the approximation of expressions of the form

I(f) := V T f(A)V, (1)

where A ∈ Rn×n is a large symmetric nonsingular matrix and V ∈ Rn×s is a

“block vector” with 1 ≤ s� n orthonormal columns. The function f is assumed

to be continuous on the convex hull of the spectrum of A. Then the matrix

function f(A) can be defined by the spectral factorization of A; see below. Here5

and throughout this paper the superscript T denotes transposition. The need

to evaluate expressions of the form (1) arises in various applications including

machine learning (f(t) = log(t)) [11], quantum chromodynamics (f(t) = t1/2)

[13], and electronic structure computation [3, 5, 22].

When the matrix A is of small to moderate size, the expression (1) can be

evaluated by first computing the spectral factorization

A = UΛUT , Λ = diag[λ1, λ2, . . . , λn], (2)

where λ1 ≤ λ2 ≤ . . . ≤ λn denote the eigenvalues of A, and the matrix U ∈ Rn×n

is orthogonal; its columns are eigenvectors of A. Then

f(A) = Uf(Λ)UT , f(Λ) = diag[f(λ1), f(λ2), . . . , f(λn)],

and the expression (1) easily can be calculated by using this factorization.10

We are interested in computing inexpensive approximations of (1) when A

is too large to make the evaluation of the spectral factorization (2) feasible or

attractive. In the following, we will use (2) to describe properties of the methods

discussed, but the application of these methods does not require the evaluation

of the spectral factorization.15

Golub and Meurant [9] observed that the expression (1) can be written as

a Stieltjes-type integral with a matrix-valued measure. This suggests that (1)

can be approximated by a quadrature rule. We have

I(f) = V T f(A)V = V̂ f(Λ)V̂ T =

n∑
i=1

f(λi)V̂iV̂
T
i =

∫
f(λ)dα(λ), (3)
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where V̂ = [V̂1, . . . , V̂n] = V TU ∈ Rs×n and α : R −→ Rs×s is a piece-wise

constant matrix-valued function with a jump of size V̂iV̂
T
i at the eigenvalue λi

of A; dα(λ) is the associated measure. Application of a few, say 1 ≤ m� n/s,

steps of the symmetric block Lanczos process to A with initial block vector V

generically gives the block Lanczos decomposition [8, 9]

AVm = VmTm +GmẼ
T
m. (4)

Here the matrix Vm = [V1, V2, . . . , Vm] ∈ Rn×ms consists of orthonormal block

vectors Vj ∈ Rn×s, i.e.,

V T
i Vj =

 Is i = j,

Os i 6= j,

where Is ∈ Rs×s denotes the identity matrix and Os ∈ Rs×s the zero matrix.

Moreover, V1 = V and the block vectors V1, V2, . . . , Vm span the block Krylov

subspace

Km(A, V ) := range{V,AV, . . . , Am−1V } ⊂ Rn×s. (5)

Further, the block vector Gm ∈ Rn×s in (4) satisfies VT
mGm = O ∈ Rms×s, and

Ẽm = [Os, . . . , Os, Is]
T ∈ Rms×s. We assume for notational simplicity that n/s

is an integer. The matrix Tm ∈ Rms×ms is symmetric and block tridiagonal

with blocks of order s; see, e.g., [8, 9] for details. It is shown by Golub and

Meurant [9] as well as by Fenu et al. [8] that the matrix Tm defines a block

Gauss quadrature rule,

Gm(f) = ẼT
1 f(Tm)Ẽ1,

with ms nodes (the eigenvalues of Tm) associated with the measure dα(λ). Here

Ẽ1 = [Is, Os, . . . , Os]
T ∈ Rms×s. This quadrature rule satisfies

Gm(f) = I(f), ∀f ∈ P2m−1,

where P2m−1 denotes the set of all polynomials of degree at most 2m − 1; see

[8, 9] for proofs. Block Gauss quadrature rules are fairly inexpensive to compute;

the dominating computational cost for large problems is the evaluation of m

matrix-block-vector products with the matrix A.
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It is important to be able to determine how accurately a block Gauss quadra-20

ture rule approximates (1), because this makes it possible to choose an appro-

priate number of steps, m, of the block Lanczos process. Fenu et al. [8] describe

how estimates of the element-wise error can be determined quite inexpensively

by evaluating a block anti-Gauss quadrature rule associated with the block

Gauss rule used. These block anti-Gauss rules generalize the anti-Gauss rules25

proposed by Laurie [19], who considered the situation when the measure dα is

real-valued and nonnegative. Further extensions of Laurie’s anti-Gauss rules

have recently been described in [1].

If the function f cannot be approximated accurately by a polynomial of low

to moderate degree, then block Gauss quadrature rules with moderately many

nodes will not furnish accurate approximations of the expression (1). This situ-

ation occurs, for instance, when the function f or one of its low-order derivatives

has a singularity at or close to some eigenvalue of A. Then it may be beneficial

to approximate f by a rational function with a pole at or close to a singularity

of f or of one of its derivatives. In fact, Druskin and Knizhnerman [6] showed

that it also may be beneficial to approximate entire functions f by rational

functions with a pole in the finite complex plane, compared with polynomial

approximation. The analysis of Druskin and Knizhnerman [6] suggests that the

expression f(A)V be approximated by an element in an extended block Krylov

subspace of the form

Ke
m(A, V ) := range{V,A−1V,AV,A−2V, . . . , Am−1V,A−mV } ⊂ Rn×s, (6)

where the matrix A is assumed to be nonsingular; see also [4, 12, 16, 17, 18,

20] for discussions on properties and applications of extended Krylov subspace30

methods and some generalizations.

A block Gauss–Laurent quadrature rule, which is based on a Krylov sub-

space of the form (6), may yield a more accurate approximation of (1) than a

(standard) block Gauss quadrature rule, which is based on a standard Krylov

subspace of the form (5), with the same number of nodes. This is illustrated by35

computed examples in Section 5. The present paper therefore develops block
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Gauss–Laurent and block anti-Gauss–Laurent quadrature rules. This work ex-

tends results by Fenu et al. [8] for (standard) block Gauss and block anti-Gauss

rules to analogous Gauss–Laurent-type quadrature rules.

The remainder of this paper is organized as follows. Section 2 introduces40

the extended block Lanczos process for generating a basis of orthonormal block

vectors for the extended block Krylov subspace (6). This process generalizes

the extended Krylov process (with block size one) described in [16]. We express

a basis for the extended block Krylov subspace with the aid of orthogonal s× s

matrix Laurent polynomials, analogously as in [14, 16]. Section 3 is concerned45

with the computation of block Gauss–Laurent quadrature rules associated with

the subspace (6). Block anti-Gauss–Laurent quadrature are described in Section

4, and numerical experiments are presented in Section 5 to illustrate the quality

of the computed approximations. Concluding remarks can be found in Section

6.50

2. The extended symmetric block Lanczos process

We describe the extended block Lanczos process for generating an orthonor-

mal basis {Vj}2mj=1 of block vectors Vj ∈ Rn×s for the extended block Krylov

subspace (6). This block Lanczos process is a special case of block rational

Krylov subspace methods, which recently have received considerable attention;55

see, e.g., [7, 10, 15, 20]. The derivation of the proposed method uses short

recursion relations which are based on recursion formulas that are satisfied by

orthogonal matrix Laurent polynomials. The derivation of this paper general-

izes the derivation of the extended symmetric Lanczos process for vectors (with

block size one) described in [16]. Related but different recursion formulas form60

the basis for the extended global Lanczos method presented in [4]. The present

paper discusses extended Krylov subspaces, for which the highest positive and

negative powers of the matrix A are about the same; cf. (6). The derivation

can be extended to the situation when the highest positive and negative powers

differ significantly. This case is addressed in [17] when the block size is one. In65
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the interest of brevity, we do not discuss this situation in the present paper.

Assume that the block vector V ∈ Rn×s has orthonormal columns. Then we

initialize the computations with the extended symmetric block Lanczos process

by

V1 = V, V̂2 = A−1V1 − V1Γ1,2, V̂2 = V2Γ2,2, (7)

where Γ1,2 = V T
1 A

−1V1 ∈ Rs×s and Γ2,2 ∈ Rs×s is the upper triangular matrix

in the skinny QR factorization of V̂2; the matrix V2 ∈ Rn×s has orthonormal

columns. We will show that the extended symmetric block Lanczos process

satisfies recursion relations of the form

Ṽ2j+1 = AV2j−1 −
2j∑

i=2j−3

ViHi,2j−1,

Ṽ2j+2 = A−1V2j −
2j+1∑

i=2j−2

ViHi,2j ,

j = 1, 2, . . . ,m, (8)

where terms with an index i < 1 are ignored. Computing the skinny QR

factorizations of the matrices Ṽ2j+1 and Ṽ2j+2, we obtain

Ṽ2j+1 = V2j+1H2j+1,2j−1 and Ṽ2j+2 = V2j+2H2j+2,2j ,

where the matrices V2j+1, V2j+2 ∈ Rn×s have orthonormal columns and the

matrices H2j+1,2j−1, H2j+2,2j ∈ Rs×s are upper triangular. The remaining ma-

trices Hi,j ∈ Rs×s in (8) are determined so that the block vectors Ṽ2j+1 and

Ṽ2j+2 are orthogonal to all already available block vectors Ṽi. This leads to the

expressions

Hi,2j−1 = V T
i AV2j−1, Hi,2j = V T

i A
−1V2j . (9)

The following proposition provides recursion formulas that can be used to com-

pute the matrices Hi,j ∈ Rs×s.

Proposition 1. The matrices Γi,j , Hi,j ∈ Rs×s defined by (7) and (9) can be

computed as follows:

H1,2 = ΓT
2,2,

H2,1 = (Γ−1
2,2)T (Is − Γ1,2H1,1),

H2,3 = −(Γ−1
2,2)T Γ1,2H1,3,
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and for j = 2, 3, . . . ,m, we have

H2j−3,2j−1 = HT
2j−1,2j−3,

H2j−2,2j−1 = −(H−1
2j−2,2j−4)THT

2j−3,2j−4H2j−3,2j−1,

H2j,2j−1 = −(H−1
2j,2j−2)T

2j−1∑
i=2j−3

HT
i,2j−2Hi,2j−1,

H2j−2,2j = HT
2j,2j−2,

H2j−1,2j = −(H−1
2j−1,2j−3)THT

2j−2,2j−3H2j−2,2j ,

H2j+1,2j = −(H−1
2j+1,2j−1)T

2j∑
i=2j−2

HT
i,2j−1Hi,2j .

In actual computations, we do not form inverses of matrices, but instead solve

systems of equations. These systems are assumed to be uniquely solvable.70

Proof. The relations (7) and (9), and using the orthonormality of the block

vectors {Vi}2m+2
i=1 , give

H1,2 = V T
1 A

−1V2 = [V T
2 A

−1V1]T = [V T
2 (V1Γ1,2 + V2Γ2,2)]T = ΓT

2,2.

We obtain from (7) that

AV2Γ2,2 = V1 −AV1Γ1,2,

and it follows that

H2,1 = [V T
1 AV2]T = [V T

1 (V1 −AV1Γ1,2)Γ−1
2,2]T = [(Is −H1,1Γ1,2)Γ−1

2,2]T

= (Γ−1
2,2)T (Is − Γ1,2H1,1)

and

H2,3 = [V T
3 AV2]T = [V T

3 (V1 −AV1Γ1,2)Γ−1
2,2]T = [−H3,1Γ1,2Γ−1

2,2]T

= −(Γ−1
2,2)T Γ1,2H1,3.

We also have

H2j−3,2j−1 = V T
2j−3AV2j−1 = [V T

2j−1AV2j−3]T = HT
2j−1,2j−3.
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The matrices H2j−2,2j−1 and H2j,2j−1 are obtained from the expressions for

AV2j+2. Multiplying the second equation in (8) by A from the left-hand side

gives

AV2j+2H2j+2,2j = V2j −
2j+1∑

i=2j−2

AViHi,2j ,

and assuming that the matrix H2j+2,2j is invertible, we get

AV2j+2 = V2jH
−1
2j+2,2j −

2j+1∑
i=2j−2

AViHi,2jH
−1
2j+2,2j . (10)

It follows that

H2j−2,2j−1 = V T
2j−2AV2j−1 = [V T

2j−1AV2j−2]T .

Using (10), we obtain

H2j−2,2j−1 =

[
V T
2j−1

[
V2j−4 −

2j−3∑
i=2j−6

AViHi,2j−4

]
H−1

2j−2,2j−4

]T

= −
[ 2j−3∑
i=2j−6

V T
2j−1AViHi,2j−4H

−1
2j−2,2j−4

]T

= −
[ 2j−3∑
i=2j−6

HT
i,2j−1Hi,2j−4H

−1
2j−2,2j−4

]T
.

Since Hi,2j−1 = Os for i = 1, 2, . . . , 2j − 4, we have

H2j−2,2j−1 = −[HT
2j−3,2j−1H2j−3,2j−4H

−1
2j−2,2j−4]T

= −(H−1
2j−2,2j−4)THT

2j−3,2j−4H2j−3,2j−1.

For the matrix H2j,2j−1, we have

H2j,2j−1 = V T
2jAV2j−1 = [V T

2j−1AV2j ]
T .

Applying an analogue of (10) to the expression AV2j , and similar manipulations

as above, yield

H2j,2j−1 = −(H−1
2j,2j−2)T

2j−1∑
i=2j−3

HT
i,2j−2Hi,2j−1,
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as well as

H2j−2,2j = V T
2j−2A

−1V2j = [V T
2jA

−1V2j−2]T = HT
2j,2j−2.

The matricesH2j−1,2j andH2j+1,2j are obtained from the expressions forA−1V2j+1

as follows. Multiplying the first equation in (8) by A−1 from the left, and as-

suming that the matrix H2j+1,2j−1 is invertible, we obtain

A−1V2j+1 =

[
V2j−1 −

2j∑
i=2j−3

A−1ViHi,2j−1

]
H−1

2j+1,2j−1. (11)

The matrix H2j−1,2j is defined by

H2j−1,2j = V T
2j−1A

−1V2j = [V T
2jA

−1V2j−1]T .

Using (11) yields

H2j−1,2j =

[
V T
2j

[
V2j−3 −

2j−2∑
i=2j−5

A−1ViHi,2j−3

]
H−1

2j−1,2j−3

]T

= −
[ 2j−2∑
i=2j−5

V T
2jA

−1ViHi,2j−3H
−1
2j−1,2j−3

]T

= −
[ 2j−2∑
i=2j−5

HT
i,2jHi,2j−3H

−1
2j−1,2j−3

]T
.

In view of that Hi,2j = Os for i = 1, 2, . . . , 2j − 1, we obtain

H2j−1,2j = −(H−1
2j−1,2j−3)THT

2j−2,2j−3H2j−2,2j .

For the matrix H2j+1,2j , we have

H2j+1,2j = V T
2j+1AV2j = [V T

2jAV2j+1]T .

The expression (11) and similar manipulations as above give

H2j+1,2j = −(H−1
2j+1,2j−1)T

2j∑
i=2j−2

HT
i,2j−1Hi,2j .

This completes the proof. 2

We next discuss some useful properties of extended block Krylov subspaces.

Here and below we will tacitly assume that the number of steps of the extended
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symmetric block Lanczos process is small enough to avoid breakdown, i.e., that

all required inverses in Proposition 1 exist. This is the generic situation; break-75

down is very rare.

Application of 1 ≤ m� n/s steps of the extended symmetric block Lanczos

process to the matrix A with initial block vector V with orthonormal columns

yields the decomposition

AV2m = V2m+1T̃2m,

= V2mT2m + V2m+1

[
T2m+1,2m−1, T2m+1,2m

]
ET

m,
(12)

where the matrix Em = [e2s(m−1)+1, . . . , e2ms] ∈ R2ms×2s is made up of the last

2s columns of the identity matrix I2ms ∈ R2ms×2ms and

T2m = VT
2mAV2m ∈ R2ms×2ms, T̃2m = VT

2m+1AV2m ∈ R(2m+1)s×2ms (13)

are block pentadiagonal matrices with s × s blocks of the form Ti,j = V T
i AVj ,

i, j = 1, 2, . . . . The matrices

V2m = [V1, V2, . . . , V2m] ∈ Rn×2ms, V2m+1 = [V1, V2, . . . , V2m+1] ∈ Rn×(2m+1)s,

are made up of orthonormal block vectors Vj ∈ Rn×s.

The block entries of T2m and T̃2m can be expressed in terms of recursion

coefficients for the extended block symmetric Lanczos process as shown below.

This makes them easy to compute.80

Proposition 2. Let the matrices Γi,j and Hi,j be defined by (7) and (9). Then

the nontrivial entries of the matrices T2m = [Ti,j ] and T̃2m = [Ti,j ] in (13) can

be expressed as

Ti,2j−1 = Hi,2j−1 for i = 2j − 3, . . . , 2j + 1, j = 1, 2, . . . ,m,

T1,2 = TT
2,1,

T2,2 = −T2,1Γ1,2Γ−1
2,2,

T3,2 = −T3,1Γ1,2Γ−1
2,2.
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Moreover, for j = 1, 2, . . . ,m− 1, we have

T2j+1,2j+2 = TT
2j+2,2j+1,

T2j+2,2j+2 = −T2j+2,2j+1H2j+1,2jH
−1
2j+2,2j ,

T2j+3,2j+2 = −T2j+3,2j+1H2j+1,2jH
−1
2j+2,2j .

Proof. We have Ti,j = V T
i AVj for all i and j. The definition of Hi,2j−1 in (9)

yields Ti,2j−1 = Hi,2j−1. Using (7), we obtain

V1Γ1,2 + V2Γ2,2 = A−1V1.

Multiplying this equation by A from the left gives

AV1Γ1,2 +AV2Γ2,2 = V1,

from which we obtain

AV2 =
[
V1 −AV1Γ1,2

]
Γ−1
2,2.

It follows that

T1,2 = V T
1 AV2 = [V T

2 AV1]T = TT
2,1,

T2,2 = V T
2 AV2 = −T2,1Γ1,2Γ−1

2,2,

T3,2 = V T
3 AV2 − T3,1Γ1,2Γ−1

2,2.

For i = 4, 5, . . . , 2m+ 1, we get

Ti,2 = V T
i AV2 = −Ti,1Γ1,2Γ−1

2,2 = Os.

The following formulas are obtained from the expressions of AV2j+2 for j =

1, 2, . . . ,m− 1. Multiplying the second equation in (8) by A from the left gives

AV2j+2 =
[
V2j −

∑2j+1
i=1 AViHi,2j

]
H−1

2j+2,2j .

We obtain from (8) that the s× s matrices

T2j+1,1, . . . , T2j+1,2j−2, T2j+2,1, . . . , T2j+2,2j , and T2j+3,1, . . . , T2j+3,2j
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vanish. Hence,

T2j+1,2j+2 = V T
2j+1AV2j+2 = [V T

2j+2AV2j+1]T = TT
2j+2,2j+1,

T2j+2,2j+2 = V T
2j+2AV2j+2 = −

[
2j+1∑
i=1

T2j+2,iHi,2j

]
H−1

2j+2,2j

= −T2j+2,2j+1H2j+1,2jH
−1
2j+2,2j ,

T2j+3,2j+2 = V T
2j+3AV2j+2 = −

2j+1∑
i=1

T2j+3,iHi,2jH
−1
2j+2,2j

= −T2j+3,2j+1H2j+1,2jH
−1
2j+2,2j .

This completes the proof. 2

It follows from the recursion formulas (7) and (8) that the orthonormal block

vector basis {Vj}2m+1
j=1 can be expressed in the form

V2j =

j−1∑
k=−j

AkV C
(2j−1)
k and V2j+1 =

j∑
k=−j

AkV C
(2j)
k ,

where C
(2j−1)
k , C

(2j)
k ∈ Rs×s. Introduce for λ ∈ R the matrix-valued Laurent

polynomials

R2j−1(λ) :=

j−1∑
k=−j

λkC
(2j−1)
k and R2j(λ) :=

j∑
k=−j

λkC
(2j)
k , (14)

and define

R2j−1(A) ◦ V =

j−1∑
k=−j

AkV C
(2j−1)
k and R2j(A) ◦ V =

j∑
k=−j

AkV C
(2j)
k . (15)

Then

V2j = R2j−1(A) ◦ V, j = 1, 2, . . . ,m,

V2j+1 = R2j(A) ◦ V, j = 0, 1, . . . ,m.
(16)

By construction, the Laurent polynomials (15) are orthonormal with respect

to the bilinear form

〈P,Q〉 = (P (A) ◦ V )T (Q(A) ◦ V ) =
∑n

i=1 P
T (λi)V̂iV̂

T
i Q(λi)

=
∫
PT (λ)dα(λ)Q(λ),

(17)

where P and Q are real (s × s)-matrix-valued functions and α : R −→ Rs×s

is a piece-wise constant matrix-valued function with jumps at the eigenvalues
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λi of A, and with V̂ = [V̂1, V̂2, . . . , V̂n] ∈ Rs×n defined in (2). Substituting

Vi = Ri−1(A) ◦ V into (8) shows that the Laurent polynomials satisfy a pair of

five-term recurrence relations of the form

R2j(λ)H2j+1,2j−1 = λR2j−2(λ)−
∑2j

i=2j−3Ri−1(λ)Hi,2j−1,

R2j+1(λ)H2j+2,2j = λ−1R2j−1(λ)−
∑2j+1

i=2j−2Ri−1(λ)Hi,2j ,

for j = 1, 2, . . . ,m, where

R0(λ) = Is, R1(λ) = (λ−1Is − Γ1,2)Γ−1
2,2, R−2(λ) = R−1(λ) = Os.

3. Block Gauss–Laurent quadrature rules

Application of m steps of the extended symmetric block Lanczos process to

A with initial block vector V gives the approximation

Ge
2m(f) := ET

1 f(T2m)E1, (18)

of the Stieltjes integral (3), where the block vector E1 ∈ R2ms×s is made up of

the first s columns of the identity matrix I2ms. Introduce the spectral factor-

ization T2m = Y2mΘ2mY
T
2m with

Y2m := [y
(m)
1 , y

(m)
2 , . . . , y

(m)
2ms] ∈ R2ms×2ms,

Θ2m := diag[θ
(m)
1 , θ

(m)
2 , . . . , θ

(m)
2ms] ∈ R2ms×2ms.

(19)

The columns of the orthogonal matrix Y2m are eigenvectors and the diagonal

entries of the matrix Θ2m are eigenvalues of T2m. We order the eigenvalues

according to θ
(m)
1 ≤ θ

(m)
2 ≤ . . . ≤ θ

(m)
2ms. The quadrature rule (18) can be

written as

Ge
2m(f) =

2ms∑
i=1

f(θ
(m)
i )u

(m)
i (u

(m)
i )T ,

where the vector u
(m)
i ∈ Rs is made up of the first s elements of y

(m)
i for

1 ≤ i ≤ 2ms. This shows that (18) is an 2ms-node quadrature formula.

Theorem 1. Consider the block vector of Laurent polynomial,

−→
R 2m(λ) := [R0(λ), R1(λ), . . . , R2m−1(λ)] ∈ Rs×2ms,

13



where the Laurent polynomials R0, R1, . . . , R2m−1 are determined by (16). The85

2ms eigenvalues of T2m are the zeros of det(R2m(λ)). Moreover, the unit right

eigenvector y
(m)
i of T2m corresponding to the eigenvalue θ

(m)
i is given by y

(m)
i =

−→
RT

2m(θ
(m)
i )u

(m)
i , and RT

2m(θ
(m)
i )u

(m)
i = 0.

Proof. The recurrence relation (12) together with (16) give

λ
−→
R 2m(λ) =

−→
R 2m(λ)T2m +R2m(λ)[T2m+1,2m−1, T2m+1,2m]ET

m. (20)

Let θ be a zero of det(R2m(λ)). Then the rows of R2m(θ) are linearly dependent.

It follows that there is a vector u ∈ Rs\{0} such that

uTR2m(θ) = 0.

Hence,

θuT
−→
R 2m(θ) = uT

−→
R 2m(θ)T2m. (21)

Therefore θ is an eigenvalue of T2m.

This shows that θ → det(R2m(θ)) has 2ms zeros, because the determinant of

R2m(θ)θm is a polynomial of degree 2ms in θ. This implies that all eigenvalues

θ
(m)
i are zeros of det(R2m(θ)). It follows from equation (21) that the vector
−→
RT

2m(θ
(m)
i )u

(m)
i is a right eigenvector of T2m associated with the eigenvalue

θ
(m)
i . Substituting (21) into (20) yields

(u
(m)
i )TR2m(θ

(m)
i )[T2m+1,2m−1, T2m+1,2m]ET

m = Os.

Using the fact that the s×s matrices T2m+1,2m−1 and T2m+1,2m are nonsingular,90

we obtain RT
2m(θ

(m)
i )u

(m)
i = 0. This completes the proof. 2

We next show that the quadrature rule (18) for the approximation of (1) is

exact for all Laurent polynomials in

∆−2m,2m−1 := span{x−2m, . . . , x2m−1}.

The demonstration of this property requires some auxiliary results about the

matrices T2m and

S2m := VT
2mA

−1V2m. (22)

14



Proposition 3. The matrix S2m defined by (22) satisfies the following relations

A−1V2m = V2mS2m + [V2m+1, V2m+2]γm+1E
T
m, (23)

where

γm+1 =

V T
2m+1

V T
2m+2

A−1[V2m−1, V2m] ∈ R2s×2s.

Proof. According to the recursion formulas (8), we haveA−1V2m ∈ Ke
m+1(A, V ).

Therefore there is a matrix S2m ∈ R(2m+2)s×2ms such that

A−1V2m = V2m+2S2m, where V2m+2 = [V2m, V2m+1, V2m+2] ∈ Rn×(2m+2)s.

This implies that

S2m = VT
2m+2A

−1V2m =

 S2m
γm+1E

T
m

 .
Hence,

A−1V2m = V2m+2

 S2m
γm+1E

T
m

 = V2mS2m + [V2m+1, V2m+2]γm+1E
T
m.

2

Proposition 4. The matrix S2m = [Si,j ] ∈ R2ms×2ms defined by (22) is sym-

metric block pentadiagonal with blocks Si,j ∈ Rs×s. For all j = 1, 2, . . . ,m, we

have

Si,2j−1 = Os for i < 2j − 1 or i > 2j,

Si,2j = Os for i < 2j − 2 or i > 2j + 2.

Proof. The result can be shown similarly as Proposition 2. 2

Lemma 1. Let the matrix A ∈ Rn×n be nonsingular and symmetric, and let

the matrices T2m, S2m, and E1 ∈ R2ms×s be defined by (13), (22), and (18),

respectively. Then

AjV = V2mTj
2mE1, j = 0, 1, . . . ,m− 1, (24)

A−jV = V2mT−j
2mE1, j = 0, 1, . . . ,m. (25)

15



Proof. We first show (24). Assume thatm > 1. Multiplying the second equation

of (12) by E1 from the right and using the fact that ET
mE1 = O2s×s, we obtain

AV = AV2mE1 + V2mT2mE1.

Due to the zero structure of T2m, the last term vanishes. Now consider

AjV = V2mTj
2mE1,

for some 2 ≤ j ≤ m− 1. Then

AjV = A ·Aj−1V = AV2mTj−1
2m E1.

Using the decomposition (12), we obtain

AjV = [V2mT2m + V2m+1[T2m+1,2m−1, T2m+1,2m]ET
m]Tj−1

2m E1

= V2mTj
2mE1 + V2m+1[T2m+1,2m−1, T2m+1,2m]ET

mTj−1
2m E1.

This gives ET
mTj−1

2m E1 = O2s×s since only the first (2j − 1)s entries the block

vector Tj−1
2m E1 may be nonvanishing. Thus,

AjV = V2mTj
2mE1, j = 0, 1, . . . ,m− 1.

This shows (24).

We turn to (25). Due to the zero structure of S2m, we obtain by using the

same techniques as above that

A−jV = V2mSj2mE1, j = 0, 1, . . . ,m.

Equation (25) is now shown by demonstrating that

Sj2mE1 = T−j
2mE1, j = 1, 2, . . . ,m.

We first show that

Tj
2mSj2m = Tj−1

2m Sj−1
2m − Tj−1

2m µm+1γm+1E
T
mSj−1

2m , j = 1, 2, . . . ,m,

with µm+1 = VT
2mA[V2m+1, V2m+2], and where γm+1 is defined by (23). Using

(12) and (23), we obtain

I2ms = T2mS2m + µm+1γm+1E
T
m.

16



Let 2 ≤ j ≤ m and assume that

Tk
2mSk2m = Tk−1

2m Sk−1
2m − Tk−1

2m µm+1γm+1E
T
mSk−1

2m , k = 1, . . . , j − 1.

Then

Tj
2mSj2m = T2mTj−1

2m Sj−1
2m S2m

= Tj−1
2m Sj−1

2m − Tj−1
2m µm+1γm+1E

T
mSj−1

2m .

Multiplying this equation by E1 from the right gives

Tj
2mSj2mE1 − Tj−1

2m Sj−1
2m E1 − Tj−1

2m µm+1γm+1E
T
mSj−1

2m E1.

Due to the zero structure of S2m, we get ET
mSj−1

2m E1 = O2s×s for j =

1, 2, . . . ,m. This implies that

Tj
2mSj2mE1 − Tj−1

2m Sj−1
2m E1 = E1, j = 1, 2, . . . ,m.

Since T2m is nonsingular, we obtain

Sj2mE1 = T−j
2mE1, j = 1, 2, . . . ,m.

This shows (25). 295

Theorem 2. Let A be a symmetric nonsingular matrix. Carry out m steps

of the extended symmetric block Lanczos process applied to A with initial block

vector V ∈ Rn×s with orthonormal columns, and assume that no breakdown

occurs. Then the expression (18) is a 2ms-node block Gauss–Laurent quadrature

rule associated with the measure dα in (3), i.e.,

Ge
2m(f) = I(f), ∀f ∈ ∆−2m,2m−1, (26)

where ∆−2m,2m−1 = span{x−2m, . . . , x2m−1}.

Proof. Let p ∈ ∆−2m,2m−1. Then p(x) =
∑2m−1

i=−2m cix
i for certain coefficients

ci. By linearity it suffices to show that

V TAjV = ET
1 T

j
2mE1, j = 0, 1, . . . , 2m− 1, (27)

V TA−jV = ET
1 T

−j
2mE1, j = 0, 1, . . . , 2m. (28)
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Let j = j1 + j2 with 0 ≤ j1, j2 < m. Then

V TAjV = V TAj1Aj2V = [Aj1V ]T [Aj2V ] = [V2mTj1
2mE1]T [V2mTj2

2mE1]

= ET
1 T

j1
2mVT

2mV2mTj2
2mE1 = ET

1 T
j
2mE1.

For the power 2m− 1, we have

V TA2m−1V = [Am−1V ]TA[Am−1V ] = [V2mTm−1
2m E1]TA[V2mTm−1

2m E1]

= ET
1 T

m−1
2m (VT

2mAV2m)Tm−1
2m E1 = ET

1 T
2m−1
2m E1.

This shows (27). The same techniques can be used to show (28). This establishes

(26). 2

The extended symmetric block Lanczos method can be used not only to

approximate expressions of the form (1), but also to approximate the bilinear

form (17) of real (s× s)-matrix-valued functions P and Q. Having carried out

m steps of the extended block Lanczos method, we can evaluate the reduced

bilinear form

〈P,Q〉2m := (P (T2m) ◦ E1)T (Q(T2m) ◦ E1)

=
2ms∑
i=1

PT (θ
(m)
i )u

(m)
i (u

(m)
i )TQ(θ

(m)
i ),

(29)

with T2m, θ
(m)
1 , θ

(m)
2 , . . . , θ

(m)
2ms, and u

(m)
1 , u

(m)
2 , . . . , u

(m)
2ms defined by (18) and

(19).100

Lemma 2. Let f be the function defined in (1), and let 〈·, ·〉, 〈·, ·〉2m be the

bilinear forms defined by (17) and (29), respectively. Let R(λ) = f(λ)Is and

recall that R0(λ) ≡ Is. Then

〈R,R0〉 = I(f), (30)

〈R,R0〉2m = Ge
2m(f), (31)

〈P,Q〉 = 〈P,Q〉2m, (32)

where P,Q ∈ Rs×s are Laurent polynomials with s × s matrix coefficients such

that

P (λ) =

2i−1∑
k=−2i

λkCk, Q(λ) =

2j∑
k=−2j

λkDk, i+ j ≤ m.
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Proof. We have

〈R,R0〉 = (R(A) ◦ V )T (R0(A) ◦ V ) = (f(A)V )TV = V T f(AT )V = I(f).

This shows (30). In a similar way, we obtain (31),

〈R,R0〉2m = (R(T2m) ◦ E1)T (R0(T2m) ◦ E1)

= (f(T2m)E1)TE1 = ET
1 f(TT

2m)E1 = Ge
2m(f).

Finally, equation (17) gives

〈P,Q〉 = (P (A) ◦ V )T (Q(A) ◦ V )

= (

2i−1∑
k=−2i

AkV Ck)T (

2j∑
l=−2j

AlV Dl)

=

2i−1∑
k=−2i

2j∑
l=−2j

CT
k V

TAk+lV Dl.

Application of (26) yields

〈P,Q〉 =

2i−1∑
k=−2i

2j∑
l=−2j

CT
k E

T
1 T

k+l
2m E1, since − 2m ≤ k + l ≤ 2m− 1,

= (P (T2m) ◦ E1)T (Q(T2m) ◦ E1)

= 〈P,Q〉2m.

This completes the proof. 2

4. Block anti-Gauss–Laurent quadrature rules

Laurie [19] introduced anti-Gauss rules for the estimation of the quadrature

error of Gauss rules applied to the integration of a real-valued function on

a real interval. This section describes an extension that can be applied to

estimate the quadrature error of the block Gauss–Laurent rules of Section 3.

We introduce the (2m + 1)s-node block anti-Gauss–Laurent quadrature rule,

denoted by Ae
2m+1, associated with the 2ms-node block Gauss–Laurent rule

(18). It is characterized by

(I− Ae
2m+1)(f) = −(I−Ge

2m)(f), ∀f ∈ ∆−2m,2m+1,
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where ∆−2m,2m+1 = span{x−2m, . . . , x2m+1}. This is equivalent to

Ae
2m+1(f) = (2I−Ge

2m)(f), ∀f ∈ ∆−2m,2m+1.

Therefore, Ae
2m+1 may be considered a (2m + 1)s-node block Gauss–Laurent

quadrature rule with respect to the bilinear form 〈·, ·〉2m+1 given by

〈P,Q〉2m+1 := 2〈P,Q〉 − 〈P,Q〉2m, (33)

where P and Q are Laurent polynomials with s×s matrix coefficients such that

P (λ) =

2i+1∑
k=−2i

λkCk, Q(λ) =

2j∑
k=−2j

λkDk, i+ j ≤ m,

and 〈·, ·〉 and 〈·, ·〉2m are defined by (17) and (29), respectively.

We will introduce Laurent polynomials R̃2j and R̃2j+1, for j = 0, 1, . . . ,

with s× s matrix coefficients, that are orthonormal with respect to the bilinear

form (33) for all j sufficiently small. These Laurent polynomials satisfy a pair

of five-term recurrence relations of the form

R̃2j(λ)H̃2j+1,2j−1 = λR̃2j−2(λ)−
∑2j

i=2j−3 R̃i−1(λ)H̃i,2j−1,

R̃2j+1(λ)H̃2j+2,2j = λ−1R̃2j−1(λ)−
∑2j+1

i=2j−2 R̃i−1(λ)H̃i,2j ,
j = 1, 2, . . . ,

where

R̃0(λ) = Is, R̃1(λ) = (λ−1Is − Γ̃1,2)Γ̃−1
2,2, R̃−1(λ) = R̃−2(λ) = Os,

with

H̃i,2j−1 = 〈λR̃2j−2, R̃i−1〉2m+1, H̃i,2j = 〈λ−1R̃2j−1, R̃i−1〉2m+1. (34)

The matrices H̃2j+1,2j−1, H̃2j+2,2j ∈ Rs×s are determined so that 〈R̃2j , R̃2j〉2m+1 =

Is and 〈R̃2j+1, R̃2j+1〉2m+1 = Is.105

Due to (26) and (32), block anti-Gauss–Laurent quadrature rules yield the

same result as block Gauss–Laurent quadrature rules for all Laurent polynomials

in ∆−2m,2m−1, i.e., if P,Q are Laurent polynomials with s×s matrix coefficients,

P (λ) =

2i−1∑
k=−2i

λkCk, Q(λ) =

2j∑
k=−2j

λkDk, i+ j ≤ m,
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then we have

〈P,Q〉2m+1 = 〈P,Q〉. (35)

Using this property in (34) gives

H̃i,j = Hi,j , i, j = 1, 2, . . . , 2m− 1,

H̃2m,i = H2m,i, i ∈ {2m− 2, 2m− 1},

H̃i,2m = Hi,2m, i ∈ {2m− 2, 2m− 1}.

This shows that R̃j(λ) = Rj(λ) for j = 0, 1, . . . , 2m− 1. In addition, we have

R̃2m(λ)H̃2m+1,2m−1 = λR̃2m−2(λ)−
2m∑

i=2m−3

R̃i−1(λ)H̃i,2m−1

= λR2m−2(λ)−
2m∑

i=2m−3

Ri−1(λ)Hi,2m−1

= R2m(λ)H2m+1,2m−1.

(36)

Moreover,

〈λR̃2m−1, R̃2m〉2m = (H2m+1,2m−1H̃
−1
2m+1,2m−1)T 〈λR2m−1, R2m〉2m.

It follows from Theorem 1 that

RT
2m(θ

(m)
i )u

(m)
i = 0, i = 1, 2, . . . , 2ms.

We obtain 〈λR̃2m−1R̃2m〉2m = Os. Furthermore,

H̃2m+1,2m−1 = 〈λR̃2m−2, R̃2m〉2m+1 = 2〈λR̃2m−2, R̃2m〉 − 〈λR̃2m−2, R̃2m〉2m

= 2(H2m+1,2m−1H̃
−1
2m+1,2m−1)T 〈λR2m−2, R2m〉

= 2(H2m+1,2m−1H̃
−1
2m+1,2m−1)TH2m+1,2m−1.

Applying the properties 〈R̃2m, R̃2m〉2m+1 = 〈R2m, R2m〉 = Is, and using (36) as

well as the fact that 〈R2m, R2m〉2m+1 = 2Is, we obtain

H̃T
2m+1,2m−1H̃2m+1,2m−1 = 2HT

2m+1,2m−1H2m+1,2m−1.

The upper triangular matrices H̃2m+1,2m−1, H2m+1,2m−1 ∈ Rs×s are assumed

to be nonsingular and can be chosen according to

H̃2m+1,2m−1 =
√

2H2m+1,2m−1.
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Substituting this expression into (36) yields

R̃2m(λ) =
1√
2
R2m(λ).

Consider the matrix Ta
2m+1 = [T̃i,j ] ∈ R(2m+1)s×(2m+1)s, which is symmetric

and block pentadiagonal with s× s blocks T̃i,j , associated with the block (2m+

1)s-point anti-Gauss–Laurent rule

Ae
2m+1(f) = ET

1 f(Ta
2m+1)E1, (37)

where E1 ∈ R(2m+1)s×s is made up of the first s columns of the identity matrix

I(2m+1)s, and T̃i,j = 〈λR̃i−1, R̃j−1〉2m+1 for i, j = 1, 2, . . . , 2m + 1. Using the

property (35), we find that

T̃i,j = Ti,j for i, j = 1, 2, . . . , 2m,

where Ti,j = 〈λRi−1, Rj−1〉. In view of Theorem 1, we obtain

〈λR2m, R2m−2〉2m = 〈λR2m, R2m−1〉2m = 〈λR2m, R2m〉2m = Os.

Therefore,

T̃2m+1,2m−1 = 〈λR̃2m, R̃2m−2〉2m+1 =
1√
2
〈λR2m, R2m−2〉2m+1

=
1√
2

[2〈λR2m, R2m−2〉 − 〈λR2m, R2m−2〉2m]

=
√

2T2m+1,2m−1,

T̃2m+1,2m = 〈λR̃2m, R̃2m−1〉2m+1 =
1√
2
〈λR2m, R2m−1〉2m+1

=
1√
2

[2〈λR2m, R2m−1〉 − 〈λR2m, R2m−1〉2m]

=
√

2T2m+1,2m,

T̃2m+1,2m+1 = 〈λR̃2m, R̃2m〉2m+1 =
1

2
〈λR2m, R2m〉2m+1

=
1

2
[2〈λR2m, R2m〉 − 〈λR2m, R2m〉2m]

= T2m+1,2m+1.
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In conclusion, the symmetric block pentadiagonal matrix Ta
2m+1 with s× s

blocks associated with the (2m + 1)s-node block anti-Gauss–Laurent rule (37)

can be obtained from the matrix T2m+1 = VT
2m+1AV2m+1 associated with the

(2m+1)s-node block Gauss–Laurent rule by multiplying the entries of the blocks

T2m+1,2m−1 and T2m+1,2m by
√

2, i.e.,

Ta
2m+1 =

T2m Ψ2m

ΨT
2m T2m+1,2m+1

 ,
where Ψ2m = [Os, . . . , Os,

√
2T2m+1,2m−1,

√
2T2m+1,2m]T ∈ R2ms×s.

Introduce the spectral factorization Ta
2m+1 = Y2m+1Θ2m+1Y

T
2m+1, where

Y2m+1 := [ỹ
(m)
1 , . . . , ỹ

(m)
(2m+1)s] ∈ R(2m+1)s×(2m+1)s,

Θ2m+1 := diag[θ̃
(m)
1 , . . . , θ̃

(m)
(2m+1)s] ∈ R(2m+1)s×(2m+1)s.

The approximation (37) can be written as

Ae
2m+1(f) =

(2m+1)s∑
i=1

f(θ̃
(m)
i )ũ

(m)
i (ũ

(m)
i )T ,

where the vector ũ
(m)
i ∈ Rs is made up of the first s elements of ỹ

(m)
i , 1 ≤ i ≤

(2m+1)s. The reduced inner product associated with the (2m+1)s-node block

anti-Gauss–Laurent rule can be expressed as follows

〈P,Q〉2m+1 :=

(2m+1)s∑
i=1

PT (θ̃
(m)
i )ũ

(m)
i (ũ

(m)
i )TQ(θ̃

(m)
i ), P,Q ∈ Rn×s.

Using (30) and (31) gives

〈R,R0〉2m+1 = 2〈R,R0〉 − 〈R,R0〉2m = 2I(f)−Ge
2m(f) = Ae

2m+1(f), (38)

where R(λ) = f(λ)Is, and R0(λ) ≡ Is.

We now provide some results that show that pairs of a 2ms-node block

Gauss–Laurent rule (18) and a (2m + 1)s-node block anti-Gauss–Laurent rule

(37) may give element-wise upper and lower bounds for I(f) when the integrand

f is analytic in a sufficiently large region in the complex plan that contains the

convex hull of the spectrum of A. Assume that there are M + 1 orthonormal
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matrix-valued Laurent polynomials {R0, . . . , RM} defined by (14) with M �

4m+ 2, and consider the expansion

g(λ) =

M∑
j=0

Rj(λ)Cj , λ ∈ σ(A),

where σ(A) denotes the spectrum of A, and the Cj are s × s matrices. By

the orthonormality of {Rj}j≥0, it holds that 〈R0, R0〉 = Is and 〈Rj , R0〉 = Os

∀j ≥ 1, since R0(λ) ≡ Is. This means that 〈g,R0〉 = CT
0 . On the other hand,

we have

〈g,R0〉2m =

M∑
j=0

CT
j 〈Rj , R0〉2m =

4m−1∑
j=0

CT
j 〈Rj , R0〉2m +

M∑
j=4m

CT
j 〈Rj , R0〉2m.

It follows from (32) that

〈Rj , R0〉2m = 〈Rj , R0〉 = Os, j = 1, 2, . . . , 4m− 1.

Hence,

〈g,R0〉2m = 〈g,R0〉+ CT
4m〈R4m, R0〉2m + CT

4m+1〈R4m+1, R0〉2m

+

M∑
j=4m+2

CT
j 〈Rj , R0〉2m.

Using (33) and the same techniques as above, we get

〈g,R0〉2m+1 =

M∑
j=0

CT
j 〈Rj , R0〉2m+1

=

4m−1∑
j=0

CT
j 〈Rj , R0〉2m+1 +

M∑
j=4m

CT
j 〈Rj , R0〉2m+1

= 〈g,R0〉+ CT
4m〈R4m, R0〉2m+1

+ CT
4m+1〈R4m+1, R0〉2m+1 +

M∑
j=4m+2

CT
j 〈Rj , R0〉2m+1

= 〈g,R0〉 − CT
4m〈R4m, R0〉2m − CT

4m+1〈R4m+1, R0〉2m

+

M∑
j=4m+2

CT
j 〈Rj , R0〉2m+1.
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When the coefficient matrices Cj decay in norm sufficiently rapidly with in-

creasing index j, the approximations

〈g,R0〉2m − 〈g,R0〉 ≈ CT
4m〈R4m, R0〉2m + CT

4m+1〈R4m+1, R0〉2m,

〈g,R0〉2m+1 − 〈g,R0〉 ≈ −CT
4m〈R4m, R0〉2m − CT

4m+1〈R4m+1, R0〉2m,

are quite accurate. This implies that 〈g,R0〉2m and 〈g,R0〉2m+1 bracket 〈g,R0〉

element-wise. This situation often occurs when f is analytic in a sufficiently

large region in the complex plane that contains the convex hull of the spec-110

trum of A. In particular, let g(λ) = f(λ)V , where f corresponds to the func-

tion in (1). Then an application of equations (30), (31), and (38), suggests

that the block Gauss–Laurent and block anti-Gauss–Laurent quadrature rules

Ge
2m(f) and Ae

2m+1(f), respectively, bracket I(f) element-wise, i.e., [Ge
2m(f)]i,j

and [Ae
2m+1(f)]i,j bracket [I(f)]i,j for all 1 ≤ i, j ≤ s.115

Algorithm 1 describes how an approximation of V T f(A)V and an error

estimate can be computed by a pair of block Gauss–Laurent and block anti-

Gauss–Laurent quadrature rules.

5. Numerical experiments

This section reports some numerical examples that illustrate the performance

of pairs of block Gauss–Laurent and block anti-Gauss–Laurent quadrature rules

(BGLQ) when applied to the approximation of expressions of the form (1).

These quadratures are implemented by Algorithm 1. We compare the approxi-

mation errors obtained with these rules to the approximation errors achieved by

(standard) block Gauss and block anti-Gauss quadrature rules (BGQ) with the

same number of nodes. The latter rules are based on the symmetric block Lanc-

zos process and are described in [8]. All experiments were coded in MATLAB

R2015a on a computer with an Intel Core i-3 processor and 3.89 GB of RAM.

The computations were carried out with about 15 significant decimal digits. In

all experiments, except when explicitly stated otherwise, the initial block vector

V ∈ Rn×s is generated by first determining an n×s block vector with uniformly
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Algorithm 1 Approximation of V T f(A)V by pairs of block Gauss–Laurent

and block anti-Gauss–Laurent quadrature rules for a symmetric matrix A.

Input: Symmetric nonsingular matrix A, initial orthonormal block V , function f .

1. Choose tolerance ε > 0 and the maximum number of steps mmax.

2. Γ1,2 = V T
1 A

−1V1; Ṽ2 = A−1V1 − V1Γ1,2;

3. Compute the (skinny) QR factorization of Ṽ2, i.e., Ṽ2 = V2Γ2,2;

4. Ṽ3 = AV1; H1,1 = V T
1 Ṽ3;

5. for j = 1 : mmax

(a) Ṽ2j+2 = A−1V2j ; h2j,2j = V T
2j Ṽ2j+2;

(b) Compute Hi,2j−1 and Hi,2j from recursion relations of Proposition 1.

(c) Ṽ2j+1 = Ṽ2j+1 −
2j∑

i=2j−3

ViHi,2j−1;

(d) if j = 1

T1:2,1 = H1:2,1; T1,2 = TT
2,1; T2,2 = −T2,1Γ1,2Γ−1

2,2;

else

T2j−3:2j,2j−1 = H2j−3:2j,2j−1; T2j−1,2j = TT
2j,2j−1;

T2j,2j = −T2j,2j−1H2j−1,2j−2H
−1
2j,2j−2;

end

(e) Ge
2j(f) = ET

1 f(T2j)E1;

(f) Compute the (skinny) QR factorization of Ṽ2j+1, i.e., Ṽ2j+1 =

V2j+1H2j+1,2j−1;

(g) Ṽ2j+2 = Ṽ2j+2 −
∑2j+1

i=2j−2 ViHi,2j ;

(h) if j = 1, T3,1 = H3,1; T3,2 = −T3,1Γ1,2Γ−1
2,2;

else

T2j+1,2j−1 = H2j+1,2j−1; T2j+1,2j = −T2j+1,2j−1H2j−1,2j−2H
−1
2j,2j−2;

end

(i) Ψ2j =
√

2 [Os, . . . , Os, T2j+1,2j−1, T2j+1,2j ]
T ;

(j) Ṽ2j+3 = AV2j+1; H2j+1,2j+1 = V T
2j+1Ṽ2j+3;

(k) Compute Ta
2j+1 =

T2j Ψ2j

ΨT
2j H2j+1,2j+1

 and Ae
2j+1(f) = ET

1 f(Ta
2j+1)E1;

(l) if ‖Ge
2j(f)− Ae

2j+1(f)‖max/‖Ge
2j(f) + Ae

2j+1(f)‖max < ε

Uapp(f) = [Ge
2j(f) + Ae

2j+1(f)]/2; Break;

end

(m) Compute the (skinny) QR factorization of Ṽ2j+2, i.e., Ṽ2j+2 =

V2j+2H2j+2,2j ;

(n) end

Output: Approximation Uapp(f) of V T f(A)V .
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distributed random entries in the interval [0, 1], and then orthonormalizing the

columns. The number of steps, m, of Algorithm 1 is chosen to be the smallest

possible so that

RelErr2m(f) :=
‖Ge

2m(f)− Ae
2m+1(f)‖max

‖Ge
2m(f) + Ae

2m+1(f)‖max
≤ ε (39)

for a user-specified tolerance ε > 0, or when m exceeds the maximum al-

lowed number of steps mmax. We use for C ∈ Rs×s the norm ‖C‖max :=

max1≤i,j≤s |Ci,j |. Assume that Ge
2m(f) satisfies (39). Then we approximate (1)

by the average block Gauss–Laurent quadrature rule

Uapp(f) = (Ge
2m(f) + Ae

2m+1(f))/2.

In all examples, we let ε = 2 · 10−7 and mmax = 100. The BGQ method [8] is120

terminated analogously.

Algorithm 1 requires the solution of systems of equations. This is done by

computing the Cholesky factorization of A when possible; otherwise we com-

pute an LU factorization. Faster factorization methods can be used when the

structure of A allows this.125

The tables report for several functions f , matrices A, and block vectors V

the required CPU time (Time) in seconds, the relative error (RelErr) achieved

with the BGLQ and BGQ methods, and the number of iterations (Iter), with

Iter:=2m for the BGLQ method and Iter:=m for the BGQ method. The block

size of V is set to s = 5 or s = 10. The plots in the figures display the evolution130

of the relative errors as a function of the number of iterations by the BGLQ

(blue) and BGQ (red) methods.

Example 1. Let A = [ai,j ] ∈ R1000×1000 be the symmetric positive definite

Toeplitz matrix with entries ai,j = 1/(1 + |i − j|). The initial block vector is

chosen to be V = E1. The approximation errors and timings for the BGLQ135

and BGQ methods are listed in Table 1. The table shows both the BGLQ and

BGQ methods to determine approximations of about the same quality, but the

BGLQ method requires fewer steps to satisfy the stopping criterion (39) and

demands less CPU time. The count of arithmetic floating point operations, and
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Table 1: Example 1: Approximation of V T f(A)V for several functions, A ∈ Rn×n, V ∈ Rn×s,

n = 1000, s = 5, 10.

f(x)
BGLQ BGQ

Time (s) RelErr Iter. (2m) Time (s) RelErr Iter. (m)

s = 5

exp(−x)/x 6.3 · 10−2 4.00 · 10−8 4 1.3 · 10−1 1.33 · 10−7 9

x−1/2 3.8 · 10−2 3.68 · 10−9 4 1.5 · 10−1 4.37 · 10−8 9

x1/2 3.2 · 10−2 4.81 · 10−8 4 1.3 · 10−1 5.28 · 10−8 9

log(x) 4.5 · 10−2 2.40 · 10−9 4 4.1 · 10−1 3.76 · 10−8 8

exp(−
√
x) 5.4 · 10−2 1.45 · 10−7 4 1.4 · 10−1 1.09 · 10−7 8

s = 10

exp(−x)/x 9.2 · 10−2 1.24 · 10−7 4 3.2 · 10−1 1.56 · 10−7 8

x−1/2 6.7 · 10−2 3.84 · 10−8 4 7.5 · 10−1 6.21 · 10−8 8

x1/2 5.8 · 10−2 4.36 · 10−8 4 6.2 · 10−1 7.81 · 10−8 8

log(x) 6.9 · 10−2 5.21 · 10−8 4 8.3 · 10−1 5.16 · 10−8 8

exp(−
√
x) 8.1 · 10−2 4.79 · 10−8 4 4.8 · 10−1 1.23 · 10−7 8

therefore possibly also the CPU time, for the BGLQ method can be reduced140

by using a factorization method that exploits the structure of A, such as the

method described by Ammar and Gragg [2]. We remark that increasing the

block size s changes the function (1) and, generally, results in a larger CPU

time and sometimes a larger approximation error. Also, note that the function

exp(−x)/x has a simple pole at the origin. This function therefore can be145

approximated well by Laurent polynomials with denominator degree one and

high numerator degree. However, this kind of Laurent polynomials do not satisfy

the recursion relations of the present paper.

Example 2. Let the matrix A ∈ Rn×n with n = 10000 be block diagonal with

2× 2 blocks of the form ai c

c ai

 ,
with c = 1/2 and ai = (2i−1)/(n+1) for i = 1, . . . , n/2 [21]. Results for several

functions f are reported in Table 2. The table shows the BGQ method not to be150

able to satisfy the stopping criterion (39) within 100 iterations. Figure 1 displays
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Table 2: Example 2: Approximation of V T f(A)V for several functions, A ∈ Rn×n, V ∈ Rn×s,

n = 10000, s = 5, 10.

f(x)
BGLQ BGQ

Time (s) RelErr Iter. (2m) Time (s) RelErr Iter. (m)

s = 5

exp(−x)/x 2.3 · 10−1 1.16 · 10−9 8 3.8 · 101 0.02 100

x−1/2 1.1 · 101 1.86 · 10−7 78 6.6 · 101 0.10 100

x1/2 9.1 · 100 1.77 · 10−7 70 6.7 · 101 0.02 100

log(x) 9.9 · 100 1.86 · 10−7 78 1.2 · 102 0.02 100

exp(−
√
x) 1.0 · 101 1.91 · 10−7 72 8.3 · 101 0.02 100

s = 10

exp(−x)/x 3.4 · 10−1 1.08 · 10−7 6 5.5 · 101 0.03 100

x−1/2 2.2 · 101 1.09 · 10−7 64 3.1 · 102 0.08 100

x1/2 1.6 · 101 1.14 · 10−7 58 2.7 · 102 0.02 100

log(x) 2.4 · 101 1.17 · 10−7 64 3.5 · 102 0.23 100

exp(−
√
x) 1.9 · 101 1.23 · 10−7 60 2.1 · 102 0.04 100

the relative approximation error as a function of the number of iterations carried

out.

Example 3. The matrix of this example is obtained from the discretization of

the self-adjoint differential operator L(u) := − 1
10uxx−100uyy on the unit square155

[0, 1]× [0, 1] with Dirichlet homogeneous boundary conditions. Discretization is

carried on a uniform grid using the standard 3-point symmetric finite difference

approximation in each coordinate direction. The number of inner grid points

in each direction is n0 = 100. This yields a symmetric positive definite matrix

A ∈ Rn×n of order n = n20. The block vector is chosen to be V = E1. The160

computed results are presented in Table 3. Approximations determined by

the BGLQ method are of higher accuracy than approximations obtained by

the BGQ method, because for many functions f the latter method is not able

to satisfy the stopping criterion (39) within nmax = 100 iterations. Figure 2

displays the convergence history.165

Example 4. We consider the matrix A = n2 tridiag(−1, 2,−1) for n = 10000

[16]. Table 4 reports the performance of the BGQ and BGLQ methods. The
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(b) f(x) = log(x).

Figure 1: Example 2. Comparison of the evolution of relative errors. The block size of V is

s = 10.

Table 3: Example 3: Approximation of V T f(A)V for several functions, A ∈ Rn×n, V ∈ Rn×s,

n = 10000, s = 5, 10.

f(x)
BGLQ BGQ

Time (s) RelErr Iter. (2m) Time (s) RelErr Iter. (m)

s = 5

x−1/2 4.2 · 10−1 1.12 · 10−7 24 3.7 · 101 2.26 · 10−5 100

x1/2 2.6 · 10−1 9.12 · 10−8 20 1.6 · 100 1.84 · 10−7 36

log(x) 2.8 · 10−1 8.01 · 10−8 20 1.5 · 101 1.96 · 10−7 65

s = 10

x−1/2 1.9 · 100 1.07 · 10−7 24 1.6 · 102 3.88 · 10−5 100

x1/2 6.5 · 10−1 9.12 · 10−8 20 6.1 · 100 1.90 · 10−7 36

log(x) 7.1 · 10−1 8.01 · 10−8 20 6.8 · 101 1.97 · 10−7 70
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(a) f(x) = x1/2.
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(b) f(x) = log(x).

Figure 2: Example 3. Comparison of the evolution of relative errors. The block size of V is

s = 10.

results are similar to those of Example 2, i.e., the BGLQ method yields signif-

icantly smaller approximation errors than the BGQ method. Figure 3 displays

the convergence as a function of the number of iterations for two of the functions.170

6. Conclusion and extensions

This paper presents block Gauss–Laurent-type quadrature rules for the in-

expensive approximation of matrix functions of the form (1). These rules are

computed with the extended block symmetric Lanczos method. Applications of

these rules to the determination of estimates of upper and lower bounds for the175

entries of expressions of the form (1) are described. The numerical examples

show the block Gauss–Laurent-type quadrature rules to require fewer steps and

less CPU time, than (standard) block Gauss-type quadrature rules, to deliver

approximations of the same or higher accuracy.

The work in this paper can be extended in several ways. For instance,180

we have omitted discussion of breakdown of the recursions due to that the

block columns are not of full rank. This situation can be handled by deflation.

Another topic that deserves attention is the situation when the numerator and

denominator degrees of the Laurent polynomials are significantly different. This

situation is discussed in [17] when the block size is one.185
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Table 4: Example 4: Approximation of V T f(A)V for several functions, A ∈ Rn×n, V ∈ Rn×s,

n = 10000, s = 5, 10.

f(x)
BGLQ BGQ

Time (s) RelErr Iter. (2m) Time (s) RelErr Iter. (2m)

s = 5

x−1/2 1.2 · 100 1.25 · 10−7 30 5.5 · 101 3.61 · 10−1 100

x1/2 2.1 · 100 1.12 · 10−7 40 5.5 · 101 6.33 · 10−4 100

log(x) 3.0 · 100 1.03 · 10−7 40 1.1 · 102 1.28 · 10−1 100

s = 10

x−1/2 1.6 · 100 1.01 · 10−7 24 2.7 · 102 2.36 · 10−2 100

x1/2 5.0 · 100 1.13 · 10−7 32 2.6 · 102 7.28 · 10−5 100

log(x) 5.1 · 100 1.65 · 10−7 32 4.3 · 102 1.52 · 10−2 100

10 20 30 40 50 60 70 80 90 100

iterations

10-14

10-12

10-10

10-8

10-6

10-4

10-2

R
e

la
ti
v
e

 E
rr

o
r

BGLQ (2m)

BGQ (m)

(a) f(x) = x1/2.
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Figure 3: Example 4. Comparison of the evolution of relative errors. The block size of V is

s = 10.
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