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Abstract. Golub and Meurant describe how pairs of Gauss and Gauss–Radau quadrature rules
can be applied to determine inexpensively computable upper and lower bounds for certain real-valued
matrix functionals defined by a symmetric matrix. However, there are many matrix functionals for
which their technique is not guaranteed to furnish upper and lower bounds. In this situation, it may
be possible to determine upper and lower bounds by evaluating pairs of Gauss and anti-Gauss rules.
Unfortunately, it is difficult to ascertain whether the values determined by Gauss and anti-Gauss rules
bracket the value of the given real-valued matrix functional. Therefore, generalizations of anti-Gauss
rules have recently been described, such that pairs of Gauss and generalized anti-Gauss rules may
determine upper and lower bounds for real-valued matrix functionals also when pairs of Gauss and
(standard) anti-Gauss rules do not. The available generalization requires the matrix that defines the
functional to be real and symmetric. The present paper reviews available anti-Gauss and generalized
anti-Gauss rules and extends them in several ways that allow applications in new situations. In
particular, the genarlized anti-Gauss rules for a real-valued non-negative measure described in M.
Pranić and L. Reichel, Generalized anti-Gauss quadrature rules, J. Comput. Appl. Math., 284
(2015), pp. 235–243, are extended to allow the estimation of the error in matrix functionals defined
by a non-symmetric matrix, as well as to matrix-valued matrix functions. Modifications that give
simpler formulas and thereby make the application of the rules both easier and applicable to a larger
class of problems also are described.

Key words. Gauss quadrature, anti-Gauss quadrature, nonsymmetric Lanczos algorithm, block
Lanczos algorithm, network analysis

1. Introduction. This paper reviews available methods and presents new ones
for computing bounds or estimates of bounds for matrix functions of the form

F (A) := V T f(A)V, (1.1)

where A ∈ R
n×n is a large matrix and V ∈ R

n×k is a tall skinny matrix that consists of
1 ≤ k ≪ n orthonormal columns. We will frequently refer to tall and skinny matrices
as “block vectors” in order to distinguish them from large square matrices A. We
derive expressions that yield upper and lower bounds for (1.1) when an expansion of
f(t) in terms of certain orthogonal or bi-orthogonal polynomials, defined by a measure
that is determined by A and V , converges to f(A) sufficiently quickly with increasing
number of terms. However, generally, it is difficult to assess whether convergence
is sufficiently fast to secure that the computed quantities furnish upper and lower
bounds. We therefore refer to the expressions derived as estimates of upper and lower
bounds.

The superscript T in (1.1) denotes transposition and the function f is assumed
to be such that f(A) is well defined; it suffices that f is analytic in an open simply
connected set in the complex plane that contains the spectrum of A in its interior;
see, e.g., Higham [27] for several ways to define f(A). Matrix functions of the form
(1.1) arise, e.g., in network analysis, when solving linear discrete ill-posed problems
by Tikhonov regularization, and in certain solution methods for partial differential
equations; see, e.g., [3, 6, 10, 18, 22, 29] and references therein. Functions that appear
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in these applications include

f(t) := exp(αt), f(t) := cosh(t), f(t) :=
1

t+ β
,

where α and β are parameters. In some applications approximations of (1.1) are
required for several values of the parameters α and β.

First consider the situation when A ∈ R
n×n is a large symmetric matrix and

k > 1. The evaluation of a function, such as the exponential, of a large matrix may
be prohibitively expensive. Golub and Meurant [22] propose that an approximation
of (1.1) be computed by application of a few steps of the symmetric block Lanczos
algorithm to A with initial block vector V . This yields a fairly small block tridiagonal
matrix T at which the function f has to be evaluated. Generally, T is small enough so
that f(T ) can be computed fairly quickly, e.g., by using one of the methods described
by Higham [27]. The computed approximation so obtained can be interpreted as a
block Gauss quadrature rule; see Golub and Meurant [22] or Section 3 for details.
This approach of approximating (1.1) is very attractive. However, it may be difficult
to determine error estimates except in special situations and, therefore, it can be
difficult to decide how many steps of the symmetric block Lanczos algorithm to carry
out to determine an approximation of (1.1) of desired accuracy. Having a reliable
estimate of the quadrature error makes it possible to assess how many steps of the
block Lanczos algorithm should be carried out. Keeping the number of steps small,
and thereby also keeping the number of matrix-block-vector products with the matrix
A small, is important when A is large, because then the evaluation of the matrix-
block-vector products constitutes the dominating computational effort to evaluate an
approximation of (1.1). We note that the simple and seemingly natural approach to
estimate the error of a Gauss rule by evaluating the difference between two consecutive
Gauss rules and using this difference as an error estimate may yield a very inaccurate
error estimate. This is illustrated in [13] for Gauss quadrature rules defined by a real-
valued positive measure. This suggests that the quadrature error should be estimated
in a different manner.

Fenu et al. [18] describe block anti-Gauss quadrature rules that, when paired with
a suitable block Gauss rule, give component-wise upper and lower bounds for (1.1)
for certain functions f , matrices A, and block vectors V . These matrix-valued block
anti-Gauss rules generalize the real-valued anti-Gauss rules introduced by Laurie [30]
for the approximation of integrals with respect to a real-valued positive measure on
the real axis. We remark that a reason for Laurie to define real-valued anti-Gauss
rules is to be able to estimate the quadrature error in the associated Gauss rule. Anti-
Gauss rules have the advantage over Gauss–Kronrod rules, which also are used for
the same purpose, that they exist also when Gauss–Kronrod rules do not, and they
are simpler to compute; see Notaris [33] for a nice recent survey of error estimation
methods for real-valued Gauss quadrature rules associated with a positive measure
on the real axis.

While it is possible to provide conditions that secure that pairs of suitable block
Gauss and anti-Gauss rules yield component-wise upper and lower bounds for (1.1),
it is difficult to verify whether these conditions hold for a given matrix function.
Therefore, for block size k = 1, a generalization of real-valued anti-Gauss quadrature
rules was presented in [36] that, together with a suitable real-valued Gauss rule, may
bracket the functional (1.1) also when pairs of Gauss and (standard) anti-Gauss rules
do not. It is one of the aims of this paper to describe block analogues of the generalized
real-valued anti-Gauss rules discussed in [36].
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Each step of the symmetric block Lanczos algorithm applied to a symmetric ma-
trix A ∈ R

n×n requires the evaluation of the product of A and a block vector of
order n × k. These matrix-block-vector product computations constitute the domi-
nating computational effort for computing approximations of (1.1) when the matrix
A is large. Every step of the symmetric block Lanczos algorithm determines a new
block diagonal entry and a new block subdiagonal entry of a block tridiagonal matrix.
The latter matrix defines a block Gauss quadrature rule and is also used to construct
block tridiagonal matrices that define (standard) block anti-Gauss and generalized
block anti-Gauss quadrature rules. The function f has to be evaluated at these block
tridiagonal matrices; see below. After application of m steps of the symmetric block
Lanczos algorithm, m diagonal blocks and m subdiagonal blocks of the block tridiag-
onal matrix are known. Commonly, the last subdiagonal block is discarded to obtain
a square block tridiagonal matrix; see, e.g., [18]. We propose to include the last sub-
diagonal block in the quadrature rule and “guess” or estimate a suitable last diagonal
block to obtain a square block tridiagonal matrix. This approach yields quadrature
rules that are exact for polynomials of higher degree than the corresponding rules
obtained when the last subdiagonal block is discarded. We refer to the block quadra-
ture rules determined in this manner as “simplified,” because they may be considered
simplifications of Gauss quadrature rules that can be determined after execution of
m + 1 steps of the symmetric block Lanczos algorithm. Simplified anti-Gauss and
block anti-Gauss quadrature rules have recently been described in [2]. The present
paper introduces simplified generalized block anti-Gauss rules. The latter rules are
simpler to derive and use than the corresponding “unsimplified” generalized block
anti-Gauss rules, which are also described in this paper.

We remark that when A is symmetric, the block size k is one, and derivatives of
the function f in (1.1) do not change sign in the convex hull of the spectrum of A,
upper and lower bounds for the functional (1.1) can be determined by evaluating pairs
of Gauss and suitable Gauss–Radau rules. This is described by Golub and Meurant
[22]. The present paper is concerned with the computation of error estimates in
situations when the approach by Golub and Meurant [22] is not guaranteed to yield
upper and lower bounds for (1.1).

So far, we have discussed expressions (1.1) with a symmetric matrix A. This
paper also considers functions of the form

F (A) := WT f(A)V, (1.2)

where the matrix A ∈ R
n×n is allowed to be nonsymmetric, and the block vectors

V,W ∈ R
n×k are biorthonormal, i.e., WTV = Ik, where Ik denotes the identity

matrix of order k. An approximation of the function (1.2) can be computed by
applying a few steps of the nonsymmetric block Lanczos algorithm to A with initial
block vectors V and W . The approximation so obtained can be interpreted as a block
Gauss quadrature rule. Fenu et al. [18] discuss this approach of approximating (1.2)
and describe associated block anti-Gauss quadrature rules. This paper introduces
generalized anti-Gauss rules that can be applied to bracket the expression (1.2) in
a fairly inexpensive manner. These rules generalize those described in [36]. Also
simplified versions of these quadrature rules are discussed.

This paper is organized as follows. Section 2 considers the approximation of the
functions (1.1) and (1.2) when the block size k is one. A modification of the generalized
anti-Gauss rules described in [36] for (1.1) with a symmetric matrix A is described.
It allows one more moment to be matched for the same number of steps by the

3



symmetric Lanczos algorithm than the method in [36] and, therefore, may yield higher
accuracy for about the same computational effort. Analogous generalized anti-Gauss
quadrature rules associated with the matrix function (1.2) with A nonsymmetric,
and V and W vectors, are also described. Section 3 discusses block analogues of the
quadrature rules considered in Section 2. An analysis of when pairs of block Gauss
and generalized block anti-Gauss rules bracket the exact value is presented in Section
4, and a few computed examples are described in Section 5, including applications to
network analysis. Concluding remarks can be found in Section 6.

2. Scalar-valued generalized anti-Gauss rules. This section first considers
approximation of the functional (1.1) when k = 1 and the matrix A is symmetric,
and subsequently discusses approximation of the functional (1.2) with k = 1 and a
nonsymmetric matrix A. In this section V in (1.1) is a unit vector, and V and W in
(1.2) are biorthonormal vectors.

2.1. Scalar-valued functionals with a symmetric matrix. Let the sym-
metric matrix A ∈ R

n×n have the spectral factorization

A = SΛST , Λ = diag[λ1, λ2, . . . , λn], (2.1)

where the eigenvector matrix S ∈ R
n×n is orthogonal and the λi ∈ R are eigenvalues.

We assume A to be so large that the computation of its spectral factorization is
unfeasible or undesirable. The factorization (2.1) sheds light on properties of the
approximation methods for (1.1), but does not have to be computed.

Substituting the spectral factorization (2.1) into (1.1) yields

F (A) = V TSf(Λ)STV =

n∑

j=1

f(λj)V
TSeje

T
j S

TV,

where ej = [0, . . . , 0, 1, 0, . . . , 0]T ∈ R
n denotes the jth axis vector. The sum on

the right-hand side is a Stieltjes integral determined by a nondecreasing piece-wise
constant distribution function ω defined on the real axis with a jump (STV ej)

2 at λj

for 1 ≤ j ≤ n. We may write the sum as an integral,

If :=

∫
f(x)dω(x), (2.2)

with a measure dω of total mass one.
Introduce the inner product

(f, g) := I(fg)
for polynomials f and g of suitably low degrees, and let {pj}j=0,1,2,... denote the
sequence of orthonormal polynomials with respect to this inner product. Thus, pj is
of degree j with a positive leading coefficient, and

(pj , pk) =

{
1, j = k,
0, j 6= k.

The polynomials pj satisfy a three-term recursion relation, which for the polynomials
p0, p1, . . . , pm can be expressed as

x




p0(x)
p1(x)

...
pm−1(x)


 = Tm




p0(x)
p1(x)

...
pm−1(x)


+




0
...
0

pm(x)


 ,
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where Tm is a symmetric tridiagonal matrix defined by the recurrence coefficients for
the orthonormal polynomials pj ,

Tm :=




α1 β1 0
β1 α2 β2

β2 α3 β3

β3
. . .

. . .
. . . βm−2

βm−2 αm−1 βm−1

0 βm−1 αm




∈ R
m×m. (2.3)

This matrix can be computed by the symmetric Lanczos algorithm, which is described
by Algorithm 1. Each step with this algorithm requires the evaluation of one matrix-
vector product with the matrix A. Iteration j determines the entries αj and βj of
the matrix (2.3). In applications, m ≪ n. Moreover, we assume that m is small
enough so that breakdown in Algorithm 1 does not occur within the first m steps
and, therefore, the matrix (2.3) exists. Breakdown is rare, but fortuitous, because in
case of breakdown the Gauss rule is exact for all polynomials. We will not dwell on
this unusual situation further.

We note that the orthonormal polynomials pj are implicitly defined by the relation
vj = pj−1(A)v1, where the vj are determined by Algorithm 1. In particular, the
vectors vj and polynomials pj satisfy the same recurrence relation.

Algorithm 1 The symmetric Lanczos process.

1: Input: symmetric matrix A ∈ R
n×n, initial unit vector v ∈ R

n,

2: number of steps m.

3: v0 := 0 ∈ R
n, β0 := 0, v1 := v

4: for j = 1 to m

5: w := Avj − vj−1βj−1

6: αj := vTj w

7: w := w − vjαj

8: βj := ‖w‖; vj+1 := w/βj

9: end for

10: Output: Entries α1, α2, . . . , αm and β1, β2, . . . , βm of the matrix (2.3).

Let the function f be continuous on the convex hull of the spectrum of A. The
m-point Gauss quadrature rule associated with the integral operator (2.2) can be
written as

Gmf = eT1 f(Tm)e1, (2.4)

and is characterized by the property that

If = Gmf ∀f ∈ P2m−1, (2.5)

where P2m−1 denotes the set of all polynomials of degree at most 2m− 1. The Gauss
rule (2.4) can also be expressed as

Gmf =

m∑

i=1

f(x
(G)
i )w

(G)
i , (2.6)
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where the nodes x
(G)
i are the eigenvalues of Tm and the weights w

(G)
i are the squares

of the first components of normalized eigenvectors of Tm; it is well known that the
eigenvalues of Tm are pairwise distinct, see, e.g., [21, 22]. The equivalence of the
expressions (2.4) and (2.6) follows by substituting the spectral factorization of Tm

into (2.4). The nodes and weights in (2.6) can be computed efficiently with the
Golub–Welsch algorithm [20, 21, 22] or by a method described by Laurie [31].

The following (m + ℓ)-point quadrature rules for ℓ ≥ 2 were defined in [36].
They generalize the (m+1)-point anti-Gauss rule introduced by Laurie [30], which is
obtained when ℓ = 1.

Definition 2.1. The generalized anti-Gauss quadrature rule with nodes x̃
(ℓ)
i and

weights w̃
(ℓ)
i , i = 1, 2, . . . ,m+ ℓ,

G̃(ℓ)
m+ℓf =

m+ℓ∑

i=1

f(x̃
(ℓ)
i )w̃

(ℓ)
i (2.7)

is an (m+ ℓ)-point quadrature rule such that

(I − G̃(ℓ)
m+ℓ)f = −(I − Gm)f ∀f ∈ P2m+2ℓ−1. (2.8)

It follows from (2.5) and (2.8) that

G̃(ℓ)
m+ℓf = If ∀f ∈ P2m−1. (2.9)

We can express (2.8) as

G̃(ℓ)
m+ℓf = (2I − Gm)f ∀f ∈ P2m+2ℓ−1, (2.10)

which shows that G̃(ℓ)
m+ℓ may be considered an (m + ℓ)-point Gauss quadrature rule

associated with the functional 2I − Gm. This functional is said to be quasi-definite
if the determinants of all Hankel matrices defined by the moments of the functional
are either positive or negative; see, e.g., [12, 34, 35] for discussions on bilinear forms
defined by a quasi-definite functional. When 2I − Gm is quasi-definite, there is a
family of orthonormal polynomials {p̃i}i=0,1,2,... associated with the bilinear form

〈f, g〉 := (2I − Gm)(fg);

see [12, 34, 35]. Thus,

〈p̃j , p̃i〉 =
{

1, j = i,
0, j 6= i.

Assuming that the polynomials p̃0, p̃1, . . . , p̃m+ℓ exist, they satisfy a three-term
recursion relation, which can be written as

x




p̃0(x)
p̃1(x)

...
p̃m+ℓ−1(x)


 = T̃

(ℓ)
m+ℓ




p̃0(x)
p̃1(x)

...
p̃m+ℓ−1(x)


+




0
...
0

p̃m+ℓ(x)


 ,
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where

T̃
(ℓ)
m+ℓ =




α̃1 β̃1 0

β̃1 α̃2 β̃2

β̃2 α̃3 β̃3

β̃3
. . .

. . .
. . . β̃m−2

β̃m−2 α̃m−1 β̃m−1

β̃m−1
. . .

. . .
. . . β̃m+ℓ−1

0 β̃m+ℓ−1 α̃m+ℓ




(2.11)

is a tridiagonal matrix of order m+ ℓ. Its nontrivial entries are recursion coefficients
for the polynomials p̃j . The matrix (2.11) can be chosen to be real and symmetric
when the functional 2I − Gm is positive definite. In this case the nodes and weights
of the generalized anti-Gauss rule (2.7) are the eigenvalues and the squares of the
first components of normalized eigenvectors, respectively, of the matrix (2.11). When
2I − Gm is quasi-definite, the tridiagonal matrix (2.11) may be chosen to be real
nonsymmetric. In any case, the (m + ℓ)-point generalized anti-Gauss rule can be
evaluated as

G̃(ℓ)
m+ℓf = eT1 f(T̃

(ℓ)
m+ℓ)e1, (2.12)

which may not require explicit computation of the nodes and weights. For instance,

when f(t) is a rational function of t, it may be faster to compute f(T̃
(ℓ)
m+ℓ) by evaluating

matrix-vector products with the matrix T̃
(ℓ)
m+ℓ or by solving linear systems of equations

with this matrix than to first compute the spectral factorization of T̃
(ℓ)
m+ℓ and then

evaluate (2.7).
Introduce the average quadrature rule

Ã(ℓ)
m+ℓ :=

1

2
(Gm + G̃(ℓ)

m+ℓ), (2.13)

which generalizes the average rule Ã(1)
m+1 considered by Laurie [30]. We obtain from

(2.10) that

Ã(ℓ)
m+ℓf = If ∀f ∈ P2m+2ℓ−1.

We turn to the determination of the entries of the matrix (2.11) and start with the

case ℓ = 1. The quadrature rule associated with the matrix T̃
(1)
m+1 is the anti-Gauss

rule described by Laurie [30]. It follows from (2.5) and (2.9) that

α̃j = αj , j = 1, . . . ,m,

and

β̃j = βj , j = 1, . . . ,m− 1.

Therefore,

p̃j = pj , j = 1, . . . ,m− 1.
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Further,

α̃m+1 = αm+1, β̃m =
√
2βm, p̃m =

1√
2
pm,

and it follows that

p̃m+1 =
1√

2β̃m+1

(βm+1pm+1 − βmpm−1);

see [30] for details.

The entries α̃1, . . . , α̃m and β̃1, . . . , β̃m are available after execution of m steps of

Algorithm 1. The determination of the entry α̃m+1 of T̃
(1)
m+1 requires the execution of

one more step of the algorithm. Alternatively, we may provide an estimate for this
entry without carrying out the extra step of Algorithm 1. For instance, we may set

the last diagonal entry of the matrix T̃
(1)
m+1 to α̃m. Denote the “estimated” entry by

α̂m+1 and let T̂
(1)
m+1 denote the matrix obtained by replacing the entry α̃m+1 by α̂m+1

in T̃
(1)
m+1. The quadrature rule Ĝ(1)

m+1 determined by the matrix T̂
(1)
m+1 satisfies

Ĝ(1)
m+1f = G̃(1)

m+1f ∀f ∈ P2m. (2.14)

This is a consequence of the fact that the entry α̃m+1 in T̃
(1)
m+1 does not affect the

integration of polynomials in P2m by the quadrature rule G̃(1)
m+1. Replacing the entry

α̃m+1 by α̂m+1 therefore does not affect the accuracy of the quadrature rule Ĝ
(1)
m+1

when applied to polynomials in P2m. A different proof is presented in Section 3

(Theorem 3.5). The rule Ĝ(1)
m+1 has already been considered in [2].

It follows from (2.14) that the average rule

Â(1)
m+1 :=

1

2
(Gm + Ĝ(1)

m+1)

satisfies

Â(1)
m+1f = If ∀f ∈ P2m. (2.15)

We turn to the rare situation when the coefficient β̃m+1 vanishes, and the coeffi-

cients β̃1, . . . , β̃m are nonvanishing. Then the functional I − Gm is quasi-definite on

Pm, but not on Pm+1. It follows that the degree of exactness of G̃(1)
m+1 is larger than

2m+ 1.
For every positive integer ℓ, the leading (m + ℓ − 1) × (m + ℓ − 1) principal

submatrix of T̃
(ℓ)
m+ℓ is T̃

(ℓ−1)
m+ℓ−1. In particular, when ℓ = 2 and T̃

(1)
m+1 is known, we only

have to derive expressions for the entries α̃m+2 and β̃m+1 to determine T̃
(2)
m+2. These

expressions are shown in the following theorem.
Theorem 2.2. Assume that β̃m+1 6= 0. Then the nontrivial entries in the last

row of the matrix T̃
(2)
m+2, defined by (2.11), satisfy

α̃m+2 =
αm+2β

2
m+1 − αmβ2

m

β̃2
m+1

, (2.16)

β̃2
m+1 = β2

m+1 − β2
m. (2.17)
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Proof. An equivalent result is shown in [36], where the orthogonal polynomials
are monic, i.e., have leading coefficient one. The analogues of the tridiagonal matrices
(2.3) and (2.11) associated with monic orthogonal polynomials have all superdiagonal
entries equal to one, and the formulas corresponding to (2.16) and (2.17) differ, but
are equivalent. The formulas (2.16) and (2.17) can be shown by a modification of the
proof of [36, Theorem 2.1].

When the right-hand side of (2.17) is positive, it is natural to define

β̃m+1 =
√

β2
m+1 − β2

m.

This yields a real symmetric matrix T̃
(2)
m+2. If, on the other hand, the right-hand side of

(2.17) is negative, then we can let T̃
(2)
m+2 be nonsymmetric and such that the product

of the last off-diagonal entries equals the right-hand side of (2.17). For instance, we
may choose the last superdiagonal entry to be unity and the last subdiagonal entry
to be equal to the right-hand side of (2.17). This is a consequence of the following
result.

Proposition 2.3. Let the matrix C ∈ C
(m+2)×(m+2) be nonsingular and such

that all entries but the diagonal one vanish in the first row and column. Assume that
the spectral factorization

T̃
(2)
m+2 = S̃

(2)
m+2Λ̃

(2)
m+2(S̃

(2)
m+2)

−1 (2.18)

exists. Then

G̃(2)
m+2f = eT1 f(CT̃

(2)
m+2C

−1)e1.

Proof. We have to show that the value of the quadrature rule (2.12) with ℓ = 2
is independent of the matrix C. This quadrature rule can be written as

G̃(2)
m+2f = eT1 S̃

(2)
m+2f(Λ̃

(2)
m+2)(S̃

(2)
m+2)

−1e1,

see, e.g., Gragg [23] or Fenu et al. [18] for proofs. Due to the structure of the matrix
C, we have

G̃(2)
m+2f = eT1 CS̃

(2)
m+2f(Λ̃

(2)
m+2)(S̃

(2)
m+2)

−1C−1e1 = eT1 f(CT̃
(2)
m+2C

−1)e1.

The different choices of the last sub- and super-diagonal entries of T̃
(2)
m+2 corresponds

to different diagonal matrices C.

Using results of Pozza et al. [34], the requirement that T̃
(2)
m+2 has a spectral

factorization (2.18) can be removed.

The computation of the entries of T̃
(2)
m+2 requires that m+2 steps with Algorithm

1 be carried out. The matrix T̃
(2)
m+2 defines the quadrature rule G̃(2)

m+2. Analogously as
above, we may carry out only m+1 steps of Algorithm 1 and use an estimate α̂m+2 of

α̃m+2. We denote the matrix obtained by replacing α̃m+2 by α̂m+2 in T̃
(2)
m+2 by T̂

(2)
m+2.

For instance, we may let α̃m+2 := α̃m+1. The matrix T̂
(2)
m+2 defines the quadrature

rule Ĝ(2)
m+2. Similarly to (2.14), we have

Ĝ(2)
m+2f = G̃(2)

m+2f ∀f ∈ P2m+2;

9



see Theorem 3.5 below for a proof.
We define the average rule

Â(2)
m+2 :=

1

2
(Gm + Ĝ(2)

m+2)

and obtain analogously to (2.15) that

Â(2)
m+2f = If ∀f ∈ P2m+2.

We turn to ℓ = 3, and provide expressions for the entries in the last row of the

matrix T̃
(3)
m+3, assuming that a division by zero does not prevent these expressions

from being evaluated. Analogous formulas for a nonsymmetric tridiagonal matrix

that is analogous to T̃
(3)
m+3 and is associated with monic orthogonal polynomials are

derived in [36]. We therefore omit the proof.

Theorem 2.4. Assume that β̃m+2β̃m+1 6= 0. Then the nontrivial entries in the

last row of the matrix T̃
(3)
m+3 defined by (2.11) satisfy

β̃2
m+2 =

β̃2
m+1(β

2
m+2β

2
m+1 − β2

mβ2
m−1)− β2

m+1β
2
m(αm+2 − αm)2

β̃2
m+1

(2.19)

and

α̃m+3 =
β2
m+2β

2
m+1(αm+3 + 2αm+2 − 2α̃m+2) + β2

mβ2
m−1(2α̃m+2 − 2αm − αm−1)

β̃2
m+2β̃

2
m+1

+
αm+2β

2
m+1(αm+2 − α̃m+2)

2 − αmβ2
m(αm − α̃m+2)

2

β̃2
m+2β̃

2
m+1

.

We remark that if the right-hand side of (2.19) is positive, then we let β̃m+2 be
the square root of this expression. If, instead, the right-hand side of (2.19) is negative,

then we may choose T̃
(3)
m+3 to be nonsymmetric with the last superdiagonal entry one

and the last subdiagonal entry equal to the right-hand side of (2.19).

The matrix T̃
(3)
m+3 determines the quadrature rule G̃(3)

m+3. The computation of the

entries of T̃
(3)
m+3 requires m+3 steps with Algorithm 1, which demands the evaluation

of m + 3 matrix-vector products with the matrix A. Similarly as above, we may,
in order to reduce the number of matrix-vector product evaluations with A by one,
replace the entry α̃m+3 by an estimate α̂m+3. For instance, we may use α̃m+2 as an
estimate of α̃m+3. We denote the symmetric tridiagonal matrix that is obtained by

replacing the entry α̃m+3 of T̃
(3)
m+3 by an estimate α̂m+3 by T̂

(3)
m+3, and denote the

quadrature rule associated with the latter matrix by Ĝ(3)
m+3. We remark that α̃m+3

may be replaced by some α̂m+3 ∈ R also when the product β̃m+2β̃m+1 vanishes. Thus,

the quadrature rule Ĝ(3)
m+3 can be defined also when the rule G̃(3)

m+3 does not exist. The

properties of the rule Ĝ(3)
m+3 are analogous to those of Ĝ(2)

m+2; see Theorem 3.5 below
for details for the more general situation when the measure dw is matrix-valued. An

average rule Â(3)
m+3 can be defined similarly as Â(2)

m+2; cf. (2.13).

2.2. Real-valued functionals with a nonsymmetric matrix. We extend
the discussion of the previous subsection to matrix functionals with a large, possibly

10



nonsymmetric, matrix A ∈ R
n×n, and vectors V,W ∈ R

n such that V TW = 1.
Introduce the spectral factorization

A = SΛS−1, Λ = diag[λ1, λ2, . . . , λn], (2.20)

and the vectors

[ν1, ν2, . . . , νn] := WTS, [ν′1, ν
′
2, . . . , ν

′
n] := (S−1V )T .

We tacitly assume that the spectral factorization of A exists. This factorization is
used in our derivation, but does not have to be computed. The rare situation when the
matrix A does not have a spectral factorization is discussed by Pozza et al. [34, 35].

The expression (1.2) can be written as

F (A) = WTSf(Λ)S−1V =

n∑

j=1

f(λj)νjν
′
j . (2.21)

We may represent the right-hand side of (2.21) by an integral with a measure dω with
support in the complex plane, i.e.,

If =

∫
f(z)dω(z). (2.22)

Introduce the the bilinear form

[f, g] := I(fg)

for polynomials f and g of suitably low degree. Let {pj}j=0,1,2,... and {qi}i=0,1,2,...

denote sequences of biorthonormal polynomials with respect to this bilinear form.
Thus,

[pj , qi] =

{
1, j = i,
0, j 6= i,

where the polynomials pj and qj are of degree j. They are implicitly defined by the
nonsymmetric Lanczos process described by Algorithm 2. In particular, this process
determines how the pj and qj are scaled; see (2.24) below.

Gauss and anti-Gauss quadrature rules with respect to the measure dω in (2.22)
can be computed conveniently by the nonsymmetric Lanczos process applied to the
matrix A with initial vectors v1 := V and w1 := W ; see, e.g., [11, 18].

It is well known that the nonsymmetric Lanczos process may break down. In the
present section we assume that the number of steps, m ≪ n, of the nonsymmetric
Lanczos process is small enough for breakdown not to take place. Insightful discussions
on how to handle breakdowns are provided by Bai et al. [4], Brezinski et al. [8, 9],
Freund et al. [19], and Gutknecht [24, 25].

Application of m steps of the nonsymmetric Lanczos process to A with initial
vectors v1 := V and w1 := W yields the decompositions

AVm = VmTm + βmvm+1e
T
m,

ATWm = WmTT
m + β′

mwm+1e
T
m,

where the matrices Vm = [v1, v2, . . . , vm] ∈ R
n×m, Wm = [w1, w2, . . . , wm] ∈ R

n×m,
and the vectors vm+1, wn+1 ∈ R

n satisfy V T
mWm = Dm, vTm+1wm+1 = dm+1, V

T
mwm+1 =

11



Algorithm 2 The nonsymmetric Lanczos process.

1: Input: nonsymmetric matrix A ∈ R
n×n, initial vectors V,W ∈ R

n such that

2: V TW = 1, number of steps m.

3: w0 := 0 ∈ R
n, v0 := 0 ∈ R

n, w1 := W , v1 := V , β0 := 0, β′
0 := 0

4: for j = 1 to m

5: αj := vTj (Awj − wj−1βj)

6: r := Awj − αj−1wj − wj−1βj−1

7: s := AT vj − αj−1vj − vj−1β
′
j−1

8: βj := ‖r‖; wj+1 := r/βj

9: β′
j := ‖s‖; vj+1 := s/β′

j

10: end for

11: Output: Entries α1, α2, . . . , αm, β1, β2, . . . , βm, and β′
1, β

′
2, . . . , β

′
m of the ma-

trix (2.23).

0, WT
mvm+1 = 0, and βm, β′

m ∈ R. The nontrivial entries of the diagonal matrix
Dm ∈ R

m×m are such that the columns of Vm and Wm are of unit norm; the scalar
dm+1 is determined analogously. The matrix

Tm =




α1 β′
1 0

β1 α2 β′
2

β2 α3 β′
3

β3
. . .

. . .
. . . β′

m−2

βm−2 αm−1 β′
m−1

0 βm−1 αm




∈ R
m×m (2.23)

is tridiagonal and generally nonsymmetric. We remark that the nonsymmetric Lanc-
zos process can be implemented by using coupled two-term recursion formulas, and
such an implementation has been shown to have better numerical properties; see [26]
for an analysis. Algorithm 2 describes a simpler implementation that uses three-term
recursions for clarity of exposition.

The biorthonormal polynomials pj and qj are implicitly defined by Algorithm 2
via

vj = pj−1(A)v1, wj = qj−1(A
T )w1, j = 1, 2, . . . . (2.24)

The m-point Gauss quadrature rule associated with the measure in (2.22) can be
expressed as

Gmf = eT1 f(Tm)e1, (2.25)

where the matrix Tm is given by (2.23). This rule is characterized by the property
that

If = Gmf ∀f ∈ P2m−1; (2.26)

see [11, 18] for details.
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We turn to generalized anti-Gauss rules associated with the measure in (2.22).
Consider the bilinear form

〈f, g〉 := (2I − Gm)(fg),

where I is defined by (2.22) and the Gauss rule by (2.25). There are two families
of biorthonormal polynomials {p̃j}j=0,1,2,... and {q̃i}i=0,1,2,... associated with this
bilinear form. Thus,

〈p̃j , q̃i〉 =
{

1, j = i,
0, j 6= i.

Assuming that the polynomials p̃0, p̃1, . . . , p̃m+ℓ and q̃0, q̃1, . . . , q̃m+ℓ exist, they satisfy
three-term recursion relations, that can be written as

x [p̃0(x), p̃1(x), . . . , p̃m+ℓ−1(x)] = [p̃0(x), p̃1(x), . . . , p̃m+ℓ−1(x)] T̃
(ℓ)
m+ℓ

+β̃m+ℓ [0, . . . , 0, p̃m+ℓ(x)] ,

x [q̃0(x), q̃1(x), . . . , q̃m+ℓ−1(x)] = [q̃0(x), q̃1(x), . . . , q̃m+k−1(x)] (T̃
(ℓ)
m+ℓ)

T

+β̃′
m+ℓ [0, . . . , 0, q̃m+ℓ(z)] ,

(2.27)

where

T̃
(ℓ)
m+ℓ =




α̃1 β̃′
1 0

β̃1 α̃2 β̃′
2

β̃2 α̃3

. . .

. . .
. . . β̃′

m−2

β̃m−2 α̃m−1 β̃′
m−1

β̃m−1
. . .

. . .
. . . β̃′

m+ℓ−1

0 β̃m+ℓ−1 α̃m+ℓ




(2.28)

is a tridiagonal matrix of order m+ ℓ.
We turn to the computation of the generalized anti-Gauss rule

G̃(ℓ)
m+ℓf = eT1 f(T̃

(ℓ)
m+ℓ)e1 (2.29)

determined by the matrix (2.28). Thus, we discuss the evaluation of the entries of
this matrix. The rule (2.29) satisfies (2.8) with I given by (2.22) and the m-point
Gauss rule Gm defined by (2.25). We first consider the entries of the matrix (2.28) for
the situation when ℓ = 1. It follow from (2.26) and (2.10) that

α̃j = αj , j = 1, . . . ,m,

and

β̃j = βj , β̃′
j = β′

j , j = 1, . . . ,m− 1.

Therefore,

p̃j = pj , q̃j = qj , j = 1, . . . ,m− 1,
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and

α̃m+1 = αm+1, β̃m =
√
2βm, β̃′

m =
√
2β′

m,

p̃m =
1√
2
pm, q̃m =

1√
2
qm.

We obtain

p̃m+1 =
1√

2β̃m+1

(βm+1pm+1 − β′
mpm−1),

q̃m+1 =
1√

2β̃′
m+1

(β′
m+1qm+1 − βmqm−1); (2.30)

see [11] for a proof. All entries of the matrix T̃
(1)
m+1 can be determined by carrying out

m+1 steps with Algorithm 2. Alternatively, we carry out only m steps and estimate
the entry α̃m+1; for instance, we may set this entry to α̃m. The latter approach is
discussed and illustrated in [2].

We turn to the situation when ℓ = 2. For every ℓ ≥ 1, the leading (m+ ℓ− 1)×
(m+ℓ−1) principal submatrix of T̃

(ℓ)
m+ℓ is T̃

(ℓ−1)
m+ℓ−1. Assuming that the matrix T̃

(1)
m+1 is

known, we only have to determine expressions for the entries α̃m+2, β̃m+1, and β̃′
m+1

in the last row and column of T̃
(2)
m+2, if they exist. It is convenient to sometimes write

I(fg) = I(f, g) and Gm(fg) = Gm(f, g) for I defined by (2.22) and Gm by (2.25).
Similar notation will be used in Section 3.

Theorem 2.5. Assume that β̃m+1β̃
′
m+1 6= 0. Then the nontrivial entries in the

last row and column of the matrix T̃
(2)
m+2 defined by (2.28) satisfy

α̃m+2 =
αm+2βm+1β

′
m+1 − αmβmβ′

m

β̃m+1β̃′
m+1

, (2.31)

β̃m+1β̃
′
m+1 = βm+1β

′
m+1 − βmβ′

m. (2.32)

Proof. We first show (2.32). The relation (2.30) and the fact that I(pj , q) = 0 for
q ∈ Pj−1 yield

2I(xp̃m, q̃m+1) = 2I
(

x√
2
pm, 1√

2β̃′
m+1

(β′
m+1qm+1 − βmqm−1)

)

= 1

β̃′
m+1

(
I(xpm, β′

m+1qm+1)− I(xpm, βmqm−1)

)

= 1

β̃′
m+1

(
β′
m+1I(xpm, qm+1)− βmI(xpm, qm−1)

)

= 1

β̃′
m+1

(βm+1β
′
m+1 − βmβ′

m).

(2.33)

Similarly, the three-term recurrence relations (2.27), property (2.26), and the
observation that Gm(pm, q) = 0 for all polynomials q, give

Gm(xp̃m, q̃m+1) = Gm

(
x√
2
pm, 1√

2β̃′
m+1

(β′
m+1qm+1 − βmqm−1)

)

= 1
2Gm

(
xpm, 1

β̃′
m+1

(β′
m+1qm+1 − βmqm−1)

)
= 0.

(2.34)
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The relations (2.33) and (2.34) now yield

β̃m+1 = (2I − Gm)(xp̃m, q̃m+1) =
1

β̃′
m+1

(βm+1β
′
m+1 − βmβ′

m).

This shows (2.32).
We turn to (2.31). Analogously as above, we obtain

2I(xp̃m+1, q̃m+1)

= 2I
(

x√
2β̃

m+1

(βm+1pm+1 − β′
mpm−1),

1√
2β̃′

m+1

(β′
m+1qm+1 − βmqm−1)

)

= 1

β̃
m+1β̃

′
m+1

I
(
x(βm+1pm+1 − β′

mpm−1), (β
′
m+1qm+1 − βmqm−1)

)

= 1

β̃
m+1β̃

′
m+1

(
β′
m+1βm+1I

(
xpm+1, qm+1

)
+ β

′

mβmI
(
xpm−1, qm−1

))

= 1

β̃
m+1β̃

′
m+1

(
β′
m+1βm+1αm+2 + β′

mβmαm

)

and

Gm(xp̃m+1, q̃m+1) = Gm

(
x

β̃
m+1

((x− α̃m+1)p̃m − β̃′
mp̃m−1),

1

β̃′
m+1

((x− α̃m+1)q̃m − β̃mq̃m−1)

)

=

Gm

(
x((x−α

m+1)
1√
2
pm−

√
2β′

m
p
m−1),((x−α

m+1)
1√
2
qm−

√
2βmq

m−1)

)

β̃
m+1β̃

′
m+1

= 1

β̃
m+1β̃

′
m+1

Gm(x(−
√
2β′

mpm−1),−
√
2βmqm−1)

= 1

β̃
m+1β̃

′
m+1

(2β′
mβmIm(xpm−1, qm−1))

= 1

β̃
m+1β̃

′
m+1

(2β′
mβmαm).

The above relations yield

α̃m+2 = (2I − Gm)(xp̃m+1, q̃m+1)

=
1

β̃m+1β̃′
m+1

(
β′
m+1βm+1αm+2 + β′

mβmαm − 2β′
mβmαm

)
,

and the right-hand side simplifies to (2.31).

The evaluation of the entries of the matrix T̃
(2)
m+2 requires that m+ 2 steps with

Algorithm 2 be carried out. If we estimate the value of the entry α̃m+2, then it suffices

to carry out m + 1 steps. Moreover, the condition β̃m+1β̃
′
m+1 6= 0 may be violated,

in which case α̃m+2 is not defined. It is then meaningful to replace α̃m+2 in T̃
(2)
m+2

by a well-defined entry α̂m+2. We refer to the matrix so defined as T̂
(2)
m+2 and to the

quadrature rule associated with T̂
(2)
m+2 as Ĝ(2)

m+2. This rule is said to be a simplified
generalized anti-Gauss rule. In computations, we choose the last subdiagonal and

superdiagonal entries of T̃
(2)
m+2 and T̂

(2)
m+2 to be β̃m+1β̃

′
m+1 and unity, respectively.

This choice can be justified by a result analogous to Proposition 2.3.
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Now let ℓ = 3. We assume that the matrix T̃
(2)
m+2 is known and seek to determine

the entries β̃m+2 and β̃′
m+2 in the last row and column of the matrix T̂

(3)
m+3. The last

diagonal element of T̂
(3)
m+3 is set to α̂m+3 := α̃m+2. It is convenient not to use the

matrix T̃
(3)
m+3 because its last diagonal entry is tedious to evaluate. The quadrature

rule associated with T̂
(3)
m+3 is denoted by Ĝ(3)

m+3. It satisfies

Ĝ(3)
m+3f = G̃(3)

m+3f ∀f ∈ P2m+4,

where G̃(3)
m+3 is the quadrature rule determined by the matrix T̃

(3)
m+3; see Theorem 3.5

below. The following result yields properties of the last off-diagonal entries of the

matrices T̃
(3)
m+3 and T̂

(3)
m+3.

Theorem 2.6. Assume that β̃m+1β̃
′
m+1β̃

′
m+2 6= 0. Then the last off-diagonal

entries of the matrix T̃
(3)
m+3 defined by (2.28) satisfy

β̃m+2β̃
′
m+2 =

1

β̃m+1β̃′
m+1

(
β̃m+1β̃

′
m+1

(
βm+2β

′
m+2βm+1β

′
m+1 − βmβ′

mβm−1β
′
m−1

)

−βm+1β
′
m+1βmβ′

m(αm+2 − αm)2
)
.

Proof. The last off-diagonal entries of T̃
(3)
m+3 are defined by

β̃m+2 = (2I − Gm)(xp̃m+1, q̃m+2), β̃′
m+2 = (2I − Gm)(xp̃m+2, q̃m+1).

Express q̃m+2 in terms of polynomials qj . We obtain from

q̃m+2 =
1

β̃′
m+2

((x− α̃m+1)q̃m+1 − β̃m+1q̃m)

that

q̃m+2 =
1√

2β̃′
m+2β̃

′
m+1

(
β′
m+1β

′
m+2qm+2 + β′

m+1(αm+2 − α̃m+2)qm+1

+βm(α̃m+2 − αm)qm−1 − βmβm−1qm−2

)
.

Moreover,

2I(xp̃m+1, q̃m+2) =
1

β̃′
m+2β̃m+1β̃′

m+1

(
βm+1β

′
m+1βm+2β

′
m+2+

βm+1β
′
m+1(α

2
m+2 − α̃m+2αm+2)− βmβ′

m(α̃m+2αm − α2
m) + βmβ′

mβm−1β
′
m−1

)

and

Gm(xp̃m+1, q̃m+2) =

(
2βmβ′

mα2
m − 2βmβ′

mα̃m+2αm + 2βmβ′
mβm−1β

′
m−1

)

β̃′
m+2β̃m+1β̃′

m+1

.

The theorem now follows after some extensive, but not difficult, computations.
Assume that β̃m+2β̃

′
m+2 6= 0. Then, in computations, we choose the last subdi-

agonal and superdiagonal entries of T̂
(3)
m+3 to be β̃m+2β̃

′
m+2 and unity, respectively.

This choice can be justified by a result analogous to Proposition 2.3.
We remark that it is possible, but tedious, to compute the entries of the last row

and column of the nonsymmetric tridiagonal matrices T̃
(ℓ)
m+ℓ for ℓ ≥ 4.
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3. Generalized block anti-Gauss rules. This section generalizes the discus-
sion of Section 2 to the situation when V and W in (1.1) and (1.2) are block vectors
with block size 1 < k ≪ n.

3.1. Generalized block anti-Gauss rules for functions of a symmetric

matrix. We consider the approximation of matrix functions of the form (1.1) with a
large symmetric matrix A ∈ R

n×n when V ∈ R
n×k is a block vector with orthonormal

columns. Substituting the spectral factorization (2.1) of A into (1.1) gives

V T f(A)V = Ṽ f(Λ)Ṽ T =

n∑

i=1

f(λi)ṽiṽ
T
i =

∫
f(x)dw̃(x) =: If, (3.1)

where Ṽ = [ṽ1, . . . , ṽn] = V TS ∈ R
k×n and w̃ : R → R

k×k is a matrix-valued distri-
bution with mass ṽiṽ

T
i at the eigenvalue λi of A. There is a sequence of polynomials

pj that are orthonormal with respect to the bilinear form

(f, g) := I(f, g)

associated with the measure dw̃ in (3.1) and have k×k matrix coefficients; see Golub
and Meurant [22] or Fenu et al. [18] for details. This bilinear form can be defined for
matrix-valued functions f and g; see (3.5) below.

The orthonormal polynomials pj satisfy a three-term recursion relation of the
form

xpj−1(x) = pj(x)Γj + pj−1(x)Ωj + pj−2(x)Γ
T
j−1, j = 1, 2, . . . ,

p0(x) := Ik, p−1(x) := Ok,
(3.2)

where the recursion coefficients Γj and Ωj are k× k matrices with real entries. More-
over, Ωj is symmetric and Γj can be chosen to be upper triangular. The matrix
Ok ∈ R

k×k denotes the zero matrix. We remark that the polynomials pj are consid-
ered for theoretical purposes only; they are not explicitly computed.

Introduce the matrix

Pm(x) := [p0(x), . . . , pm−1(x)] ∈ R
k×km.

Then the recursion relation (3.2) for the polynomials p0, . . . , pm can be expressed as

xPm(x) = Pm(x)Tm + pm(x)ΓmET
m,

where

Tm :=




Ω1 ΓT
1 0

Γ1 Ω2 ΓT
2

. . .
. . .

. . .

Γm−2 Ωm−1 ΓT
m−1

0 Γm−1 Ωm



∈ R

km×km (3.3)

and Ei := [e(i−1)k+1, . . . , eik] denotes a “block axis vector” of appropriate size with
k × k blocks. Thus, the ith block of Ei is Ik and all other blocks vanish. The matrix
Tm is symmetric, block tridiagonal, and has bandwidth 2k + 1. It is determined
by m steps of the symmetric block Lanczos process with block size k. Algorithm 3
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Algorithm 3 The symmetric block Lanczos process.

1: Input: symmetric matrix A ∈ R
n×n, initial block vector V ∈ R

n×k with

2: orthonormal columns, number of steps m.

3: V0 := O ∈ R
n×k, Γ0 := Ok, V1 := V

4: for j = 1 to m

5: B := AVj − Vj−1Γ
T
j−1

6: Ωj := V T
j B

7: Rj := B − VjΩj

8: Vj+1Γj := Rj

9: end for

10: Output: Blocks Ω1, . . . ,Ωm and Γ1, . . . ,Γm of the matrix (3.3).

describes this process under the assumption that no breakdown takes place. In line 8
of the algorithm, one computes a QR factorization of the matrix Rj , i.e., Vj+1 ∈ R

n×k

has orthonormal columns and Γj ∈ R
k×k is upper triangular with positive diagonal

entries.
The m-block Gauss rule associated with the matrix-valued measure dw̃ in (3.1)

is given by

Gmf = ET
1 f(Tm)E1, (3.4)

where the matrix Tm is defined by (3.3). Thus,

Gmf = If ∀f ∈ P2m−1,

where the function I is defined in (3.1); see, e.g., Fenu et al. [18] or Golub and
Meurant [22] for proofs.

We turn to generalized block anti-Gauss rules. These rules are block generaliza-
tions of the generalized anti-Gauss rules described in Section 2. They also generalize

the block anti-Gauss rules introduced in [18]. We say that G̃(ℓ)
m+ℓ is a generalized

(m+ ℓ)-block anti-Gauss rule associated with the matrix-valued measure dw̃ in (3.1)
if

(
I − G̃(ℓ)

m+ℓ

)
f = − (I − Gm) f ∀f ∈ P2m+2ℓ−1,

where I is defined in (3.1).
It is convenient to extend I to allow matrix-valued function arguments f, g ∈

R
k×k. We define

I(f, g) :=
n∑

i=1

fT (λi)ṽiṽ
T
i g(λi). (3.5)

The Gauss rule (3.4) can be extended similarly to allow arguments f, g ∈ R
k×k, i.e.,

we may define Gm(f, g); see [18] for details.

3.1.1. Generalized block anti-Gauss rules, ℓ = 1. The block anti-Gauss

rule G̃(ℓ)
m+ℓ for ℓ = 1 has previously been discussed in [18]. This rule satisfies

(
I − G̃(1)

m+1

)
f = − (I − Gm) f ∀f ∈ P2m+1,
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which can be written as

G̃(1)
m+1f = (2I − Gm) f ∀f ∈ P2m+1. (3.6)

Hence, G̃(1)
m+1 is the (standard) (m + 1)-block Gauss quadrature rule with respect to

the bilinear form defined by the matrix-valued function 2I −Gm. It follows from (3.6)
that the average rule

Am+1 :=
1

2

(
Gm + G̃(1)

m+1

)
(3.7)

is exact for all polynomials in P2m+1.

We provide a brief outline of the derivation of the block anti-Gauss rule G̃(1)
m+1 for

completeness; further details can be found in [18]. There is a sequence of orthonormal
polynomials p̃j associated with the bilinear from 2I−Gm defined analogously as (3.5).
These polynomials satisfy a recurrence relation of the form

λp̃j−1(λ) = p̃j(λ)Γ̃j + p̃j−1(λ)Ω̃j + p̃j−2(λ)Γ̃
T
j−1, j = 1, 2, . . . ,

p̃0(λ) := Ik, p̃−1(λ) := Ok,
(3.8)

with matrix-valued recurrence coefficients. The matrices Ω̃j ∈ R
k×k are symmetric

and the matrices Γ̃j ∈ R
k×k are upper triangular.

Introduce the symmetric block tridiagonal matrix

T̃
(1)
m+1 =




Ω̃1 Γ̃T
1 0

Γ̃1 Ω̃2 Γ̃T
2

. . .
. . .

. . .

Γ̃m−1 Ω̃m Γ̃T
m

0 Γ̃m Ω̃m+1



∈ R

k(m+1)×k(m+1) (3.9)

defined by the matrix-valued recursion coefficients for the polynomials p̃0, . . . , p̃m+1;

cf. (3.8). The matrix (3.9) determines the block anti-Gauss rule G̃(1)
m+1.

We can evaluate the block entries of the matrix (3.9) with almost no work from
the matrix Tm+1 that is associated with the (m + 1)-block Gauss quadrature rule
analogous to (3.4). It follows from (3.2) that the matrix recursion coefficients Ωi and
Γi are given by

Ωi = I(pi−1, λpi−1), Γi = I(pi, λpi−1),

and, similarly, we obtain from (3.8) that

Ω̃i = (2I − Gm) (p̃i−1, λp̃i−1) , Γ̃i = (2I − Gm) (p̃i, λp̃i−1) .

These relations can be used to show that

Ω̃i = Ωi, 1 ≤ i ≤ m,

Γ̃i = Γi, 1 ≤ i ≤ m− 1,

p̃i = pi, 0 ≤ i ≤ m− 1;

Moreover, one can choose

Γ̃m =
√
2Γm, Ω̃m+1 = Ωm+1; (3.10)
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see [18] for details. In conclusion, the matrix T̃
(1)
m+1 associated with the (m+1)-block

anti-Gauss rule G̃(1)
m+1 can be determined from the matrix Tm+1 associated with the

(m + 1)-block Gauss rule Gm+1 by multiplying the block entries Γm and ΓT
m of the

latter by
√
2. The quadrature rule G̃(1)

m+1 allows the representation

G̃(1)
m+1f = ET

1 f(T̃
(1)
m+1)E1,

which is analogous to (3.4).

3.1.2. Generalized block anti-Gauss rules, ℓ = 2. For every positive integer

ℓ, the leading k(m + ℓ − 1) × k(m + ℓ − 1) principal submatrix of T̃
(ℓ)
m+ℓ is T̃

(ℓ−1)
m+ℓ−1.

We derive explicit formulas for the coefficients Γ̃m+1 and Ω̃m+2 in the last block row

of T̃
(2)
m+2, if they exist.

Theorem 3.1. Assume that the matrix Γ̃m+1 is nonsingular. Then the nontrivial

block entries in the last block row of the matrix T̃
(2)
m+2 satisfy

Ω̃m+2 = Γ̃−T
m+1(Γ

T
m+1Ωm+2Γm+1 − ΓmΩmΓT

m)Γ̃−1
m+1, (3.11)

Γ̃T
m+1Γ̃m+1 = ΓT

m+1Γm+1 − ΓmΓT
m. (3.12)

Proof. We first show (3.12). The relation (3.8) with j = m+ 1 reads

p̃m+1Γ̃m+1 = λp̃m − p̃mΩ̃m+1 − p̃m−1Γ̃
T
m,

and from (3.10) and p̃m =
(
1/
√
2
)
pm, we obtain

p̃m+1Γ̃m+1 =
λ√
2
pm − 1√

2
pmΩm+1 −

√
2pm−1Γ

T
m,

which yields

p̃m+1 = 1√
2
(λpm − pmΩm+1 − 2pm−1Γ

T
m)Γ̃−1

m+1

= 1√
2
(pm+1Γm+1 − pm−1Γ

T
m)Γ̃−1

m+1.
(3.13)

Hence,

Γ̃m+1 = (2I − Gm) (p̃m+1, λp̃m) = 2I (p̃m+1, λp̃m)− Gm (p̃m+1, λp̃m) ,

where Gm (p̃m+1, λp̃m) = Ok due to [18, Theorem 2]. Moreover, it follows from (3.13)
that

Γ̃m+1 = 2I
(
(
1√
2
)(pm+1Γm+1 − pm−1Γ

T
m)Γ̃−1

m+1, (
1√
2
)λpm

)

= Γ̃−T
m+1(I (pm+1Γm+1, λpm)− I

(
pm−1Γ

T
m, λpm

)
).

Therefore,

Γ̃T
m+1Γ̃m+1 = ΓT

m+1I (pm+1, λpm)− ΓmI (pm−1, λpm)

= ΓT
m+1Γm+1 − ΓmΓT

m.
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We turn to (3.11). By using the relation (3.13) as above, we obtain

2I (p̃m+1, λp̃m+1) = 2I
(

1√
2

(
pm+1Γm+1 − pm−1Γ

T
m

)
Γ̃−1
m+1,

λ√
2

(
pm+1Γm+1 − pm−1Γ

T
m

)
Γ̃−1
m+1

)

= Γ̃−T
m+1(I(pm+1Γm+1, λpm+1Γm+1)

+I(pm−1Γ
T
m, λpm−1Γ

T
m))Γ̃−1

m+1

= Γ̃−T
m+1(Γ

T
m+1I(pm+1, λpm+1)Γm+1

+ΓmI(pm−1, λpm−1)Γ
T
m)Γ̃−1

m+1

= Γ̃−T
m+1(Γ

T
m+1Ωm+2Γm+1 + ΓmΩmΓT

m)Γ̃−1
m+1

(3.14)

and

Gm (p̃m+1, λp̃m+1) = Gm

(
(λp̃m − p̃mΩ̃m+1 − p̃m−1Γ̃

T
m)Γ̃−1

m+1,

λ(λp̃m − p̃mΩ̃m+1 − p̃m−1Γ̃
T
m)Γ̃−1

m+1

)

= Γ̃−T
m+1

(
Gm

(
λ√
2
pm − 1√

2
pmΩm+1 −

√
2pm−1Γ

T
m),

λ( λ√
2
pm − 1√

2
pmΩm+1 −

√
2pm−1Γ

T
m)

))
Γ̃−1
m+1

= Γ̃−T
m+1(Gm

(
−
√
2pm−1Γ

T
m, λ(−

√
2pm−1Γ

T
m)

)
)Γ̃−1

m+1

= Γ̃−T
m+1

(
2ΓmI(pm−1, λpm−1)Γ

T
m

)
Γ̃−1
m+1

= Γ̃−T
m+1

(
2ΓmΩmΓT

m

)
Γ̃−1
m+1.

(3.15)

Finally, combining (3.14) and (3.15) yields

Ω̃m+2 = (2I − Gm)(p̃m+1, p̃m+1)

= Γ̃−T
m+1(Γ

T
m+1Ωm+2Γm+1 + ΓmΩmΓT

m − 2ΓmΩmΓT
m)Γ̃−1

m+1.

The right-hand side simplifies to (3.11).
When the right-hand side of (3.12) is symmetric positive definite, we let the matrix

Γ̃m+1 be the Cholesky factor of the right-hand side; otherwise we choose the last sub-

and super-diagonal blocks of T̃
(2)
m+2 to be the right-hand side of (3.12) and the identity,

respectively. Different choices of the last sub- and super-diagonal blocks correspond

to different similarity transformations of the matrix T̃
(2)
m+2. The quadrature rule G̃

(2)
m+2

can be shown to be invariant under these transformations. This follows similarly as
Proposition 2.3.

3.1.3. Generalized block anti-Gauss rules, ℓ = 3. It is quite tedious to

compute the last block entries Γ̃m+2 and Ω̃m+3 of the matrix T̃
(3)
m+3. We therefore

only outline how to determine

Γ̃m+2 = (2I − Gm) (p̃m+2, λp̃m+1)

and propose to use a simplified generalized block anti-Gauss rule defined by a block

tridiagonal matrix T̂
(3)
m+3, which is obtained by replacing the last diagonal block entry
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Ω̃m+3 of T̃
(3)
m+3 by Ω̂m+3 = Ω̃m+2. The quadrature rule Ĝ(3)

m+3 determined by the

matrix T̂
(3)
m+3 satisfies

Ĝ(3)
m+3f = G̃(3)

m+3f ∀f ∈ P2m+4;

see Theorem 3.5 below.
Theorem 3.2. Assume that the matrix Γ̃m+1Γ̃m+2 is nonsingular. Then the last

subdiagonal block entry Γ̃m+2 of the matrix T̂
(3)
m+3 satisfies

Γ̃T
m+2Γ̃m+2 = Γ̃−T

m+1(Γ
T
m+1Γ

T
m+2Γm+2Γm+1 − ΓT

m−1ΓmΓT
m−1Γ

T
m

−(Ω̃m+2 − Ωm+2)Γ
T
m+1Ωm+2Γm+1 + (Ω̃m+2 − Ωm)ΓmΩmΓT

m)Γ̃−1
m+1.

Proof. We first express p̃m+2 in terms of polynomials pj . The relation

p̃m+2 = (λp̃m+1 − p̃m+1Ω̃m+2 − p̃mΓ̃m+1)Γ̃
−1
m+2

gives

p̃m+2 =
1√
2
(pm+2Γm+2Γm+1 + pm+1Γm+1(Ωm+2 − Ω̃m+2)

+pm−1Γ
T
m(Ω̃m+2 − Ωm)− pm−2Γ

T
mΓT

m−1)Γ̃
−1
m+1Γ̃

−1
m+2.

We obtain in the same manner as in Subsection 3.1.2 that

2I(p̃m+2, λp̃m+1) = Γ̃−T
m+2Γ̃

−T
m+1

(
ΓT
m+1Γ

T
m+2Γm+2Γm+1

−(Ω̃m+2 − Ωm+2)Γ
T
m+1Ωm+2Γm+1 − (Ω̃m+2 − Ωm)ΓmΩmΓT

m

+Γm−1ΓmΓT
m−1Γ

T
m

)
Γ̃−1
m+1,

Gm(p̃m+2, λp̃m+2) = Γ̃−T
m+2Γ̃

−T
m+1

(
2(Ωm − Ω̃m+2)ΓmΩmΓT

m + 2Γm−1ΓmΓT
m−1Γ

T
m

)
Γ̃−1
m+1.

The theorem now follows after some extensive computations.

3.2. Generalized block anti-Gauss rules for functions of a nonsymmet-

ric matrix. We extend the discussion of the previous subsection to matrix func-
tions (1.2) with a large, possibly nonsymmetric, matrix A ∈ R

n×n and block vectors
V,W ∈ R

n×k such that V TW = Ik. Substituting the spectral factorization (2.20)
into (1.2) yields

WT f(A)V = W̃f(Λ)Ṽ T =

n∑

i=1

f(λi)ṽiṽ
′

i
T =

∫
f(x)dw̃(x) =: If, (3.16)

where W̃ = [ṽ1, . . . , ṽn] = WTS ∈ R
n×k, Ṽ = [ṽ′1, . . . , ṽ

′
n] = (S−1V )T ∈ R

n×k, and
w̃ : R → R

b×k is a matrix-valued distribution with mass ṽiṽ
′

i
T at the eigenvalue λi of

A for 1 ≤ i ≤ n.
There are two sequences of polynomials pj and qj , j = 0, 1, . . ., that are biorthonor-

mal with respect to a bilinear form associated with the function I in (3.16). This
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bilinear form is defined analogously as (3.5). The polynomials satisfy recursion rela-
tions

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)∆
T
j−1,

λqj−1(λ) = qj(λ)∆j + qj−1(λ)Ω
T
j + qj−2(λ)Γ

T
j−1,

p0(λ) := Ik, q0(λ) := Ik, p−1(λ) := Ok, q−1(λ) := Ok,

(3.17)

for j = 1, 2, . . . , whose the recursion coefficients Γj , Ωj , and ∆j are real k×k matrices;
see [18] for details.

Letting

Pm(λ) := [p0(λ), . . . , pm−1(λ)] ∈ R
k×km,

Qm(λ) := [q0(λ), . . . , qm−1(λ)] ∈ R
k×km,

the recursion relations (3.17) for the polynomials p0, p1, . . . , pm and q0, q1, . . . , qm can
be expressed as

λPm(λ) = Pm(λ)Tm + pm(λ)ΓmET
m,

λQm(λ) = Qm(λ)TT
m + qm(λ)∆mET

m,

where

Tm =




Ω1 ∆T
1

Γ1 Ω2 ∆T
2

. . .
. . .

. . .

Γm−2 Ωm−1 ∆T
m−1

Γm−1 Ωm



∈ R

km×km (3.18)

is a block tridiagonal matrix. It can be determined by m steps of the nonsymmetric
block Lanczos process applied to A ∈ R

n×n with initial block vectors V,W ∈ R
n×k.

The implementation described by Algorithm 4 is proposed by Bai et al. [4]. Line 9
of the algorithm computes QR factorizations of the matrices Rj and Sj , and in line
10 the singular value decomposition of QT

SQR is evaluated. Thus, Σ ∈ R
k×k in line

10 is a diagonal matrix, whose diagonal entries are assumed to be positive, and the
matrices U and Z in the same line are orthogonal.

Consider the block quadrature rule

Gmf = ET
1 f(Tm)E1, (3.19)

where the matrix Tm is given by (3.18). Fenu et al. [18, Section 5] show that

Gmf = If ∀f ∈ P2m−1 (3.20)

and, therefore, refer to Gm as an m-block Gauss quadrature rule associated with the
operator I defined by (3.16).

3.2.1. Generalized block anti-Gauss rules, ℓ = 1. We seek to determine a

matrix-valued (m+ 1)-block anti-Gauss quadrature rule G̃(1)
m+1 such that

(
I − G̃(1)

m+1

)
f = − (I − Gm) f, f ∈ P2m+1. (3.21)
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Algorithm 4 The nonsymmetric block Lanczos process.

1: Input: nonsymmetric matrix A ∈ R
n×n, initial block vectors W,V ∈ R

n×k

2: such that V TW = Ik, number of steps m.

3: W0 := V0 := O ∈ R
n×k, ∆0 := Γ0 := Ok, V1 := V , W1 := W

4: for j = 1 to m

5: B := AVj − Vj−1∆
T
j−1

6: Ωj := WT
j B

7: Rj := B − VjΩj

8: Sj := ATWj −WjΩ
T
j −Wj−1Γ

T
j−1

9: QRRR := Rj , QSRS := Sj

10: UΣZT := QT
SQR

11: Vj+1 := QRZΣ− 1
2 , Wj+1 := QSUΣ− 1

2

12: Γj := Σ
1
2ZTRR, ∆j := Σ

1
2UTRS

13: end for

14: Output: Blocks Ω1,Ω2, . . . ,Ωm, Γ1,Γ2, . . . ,Γm−1, and ∆T
1 ,∆

T
2 , . . . ,∆

T
m−1

15: of the matrix (3.18).

This relation implies, analogously to the discussion following (3.6), that G̃(1)
m+1 is an

(m + 1)-block Gauss quadrature rule with respect to a bilinear form determined by

the matrix-valued function 2I − Gm. The average rule (3.7) with Gm and G(1)
m+1

determined by (3.19) and (3.21), respectively, is exact for all p ∈ P2m+1. A derivation
of the, generally nonsymmetric, block tridiagonal matrix (3.23) below associated with

the quadrature rule G̃(1)
m+1 can be found in [18]. We therefore here only outline the

derivation with the purpose of introducing notation that will be used subsequently.
There are sequences of polynomials p̃j and q̃j , j = 0, 1, . . . , that are biorthonormal

with respect to a bilinear form determined by the matrix-valued function 2I − Gm.
These polynomials satisfy recursion relations for j = 1, 2, . . . of the form

λp̃j−1(λ) = p̃j(λ)Γ̃j + p̃j−1(λ)Ω̃j + p̃j−2(λ)∆̃
T
j−1,

λq̃j−1(λ) = q̃j(λ)∆̃j + q̃j−1(λ)Ω̃
T
j + q̃j−2(λ)Γ̃

T
j−1,

p̃0(λ) := Ik, q̃0(λ) := Ik, p̃−1(λ) := Ok, q̃−1(λ) := Ok.

(3.22)

The recursion coefficients Ω̃j , Γ̃j , ∆̃
T
j are real k × k matrices, that define the block

tridiagonal matrix

T̃
(1)
m+1 =




Ω̃1 ∆̃T
1

Γ̃1 Ω̃2 ∆̃T
2

. . .
. . .

. . .

Γ̃m−1 Ω̃m ∆̃T
m

Γ̃m Ω̃m+1



∈ R

k(m+1)×k(m+1), (3.23)

which determines the (m+ 1)-block anti-Gauss rule

G̃(1)
m+1f = ET

1 f(T̃
(1)
m+1)E1. (3.24)

We turn to the computation of the block entries of the matrix (3.23). The recur-
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sions (3.17) and (3.22), together with (3.21) and [18, Corollary 8], yield

Ω̃i = Ωi, 1 ≤ i ≤ m+ 1,

Γ̃i = Γi, ∆̃i = ∆i, 1 ≤ i ≤ m− 1,

p̃i = pi, q̃i = qi, 0 ≤ i ≤ m− 1,

(3.25)

and ∆̃T
mΓ̃m = 2∆T

mΓm. Moreover, Ω̃m+1 = Ωm+1; see [18] for details. We choose

Γ̃m :=
√
2Γm, ∆̃m :=

√
2∆m. (3.26)

Thus, similarly as in Subsection 3.1.1, the matrix T̃
(1)
m+1 given by (3.23) can be deter-

mined from the matrix Tm+1 associated with the (m+ 1)-block Gauss rule (3.24) by
multiplying the last off-diagonal blocks Γm and ∆m by

√
2.

We note for future reference that the relations (3.25) yield

p̃mΓ̃m = λp̃m−1 − p̃m−1Ω̃m − p̃m−2∆̃
T
m−1

= λpm−1 − pm−1Ωm − pm−2∆
T
m−1 = pmΓm,

q̃m∆̃m = λq̃m−1 − q̃m−1Ω̃
T
m − q̃m−2Γ̃

T
m−1

= λqm−1 − qm−1Ω
T
m − qm−2Γ

T
m−1 = qm∆m;

(3.27)

see [18] for a detailed derivation.

3.2.2. Generalized block anti-Gauss rules, ℓ = 2. We derive explicit formu-
las for the coefficients Γ̃m+1, ∆̃m+1 and Ω̃m+2 in the last block row and column of

T̃
(2)
m+2, if they exist. The matrix T̃

(2)
m+2 is defined analogously as (3.23), and has the

latter as k(m+ 1)× k(m+ 1) leading principal submatrix.

Theorem 3.3. Assume that Γ̃m+1∆̃m+1 is nonsingular. Then the nontrivial

block entries in the last block row and column of the matrix T̃
(2)
m+2 satisfy

Ω̃m+2 = ∆̃−T
m+1(∆

T
m+1Ωm+2Γm+1 − ΓmΩm∆T

m)Γ̃−1
m+1, (3.28)

∆̃T
m+1Γ̃m+1 = ∆T

m+1Γm+1 − Γm∆T
m. (3.29)

Proof. The proof uses a formula analogous to (3.5) that allows the evaluation of
the function I in (3.16) with two matrix-valued arguments. Similarly, a modification
of the block Gauss rule (3.19) that allows two matrix-valued arguments is used; we
refer to [18] for their exact definition.

We first show (3.29). From (3.27), we have

q̃m∆̃m = λq̃m−1 − q̃m−1Ω̃m − q̃m−2Γ̃
T
m−1,

and by (3.26) and q̃m =
(
1/
√
2
)
qm it follows that

q̃m+1∆̃m+1 =
λ√
2
qm − 1√

2
qmΩm+1 −

√
2qm−1Γ

T
m

and

q̃m+1 = (
1√
2
(λqm − qmΩm+1 − 2qm−1Γ

T
m)∆̃−1

m+1)

=
1√
2
(qm+1∆m+1 − qm−1Γ

T
m)∆̃−1

m+1.

(3.30)
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Hence,

Γ̃m+1 = (2I − Gm) (q̃m+1, λp̃m) = 2I (q̃m+1, λp̃m)− Gm (q̃m+1, λp̃m) ,

where Gm (q̃m+1, λp̃m) = Ok due to [18, Theorem 4]. In view of (3.30), we also have

Γ̃m+1 = 2I
(

1√
2
(qm+1∆m+1 − qm−1Γ

T
m)∆̃−1

m+1,
1√
2
λpm

)

and

Γ̃m+1 = ∆̃−T
m+1(I (qm+1∆m+1, λpm)− I

(
qm−1Γ

T
m, λpm

)
),

∆̃T
m+1Γ̃m+1 = I (qm+1∆m+1, λpm)− I

(
qm−1Γ

T
m, λpm

)

= ∆T
m+1I (qm+1, λpm)− ΓmI (qm−1, λpm)

= ∆T
m+1Γm+1 − Γm∆T

m.

We turn to (3.28). Using the relation (3.30) as above, we obtain

2I (q̃m+1, λp̃m+1) = 2I
(

1√
2
(qm+1∆m+1 − qm−1Γ

T
m)∆̃−1

m+1,

λ√
2
(pm+1Γm+1 − pm−1∆

T
m)Γ̃−1

m+1

)

= ∆̃−T
m+1

(
I
(
qm+1∆m+1, λpm+1Γm+1

)
+ I

(
qm−1Γ

T
m, λpm−1∆

T
m

))
Γ̃−1
m+1

= ∆̃−T
m+1

(
∆T

m+1I
(
qm+1, λpm+1

)
Γm+1 + ΓmI

(
qm−1, λpm−1

)
∆T

m

)
Γ̃−1
m+1

= ∆̃−T
m+1

(
∆T

m+1Ωm+2Γm+1 + ΓmΩm∆T
m

)
Γ̃−1
m+1 (3.31)

and

Gm (q̃m+1, λp̃m+1) = Gm

((
λq̃m − q̃mΩ̃m+1 − q̃m−1Γ̃

T
m

)
∆̃−1

m+1,

λ
(
λp̃m − p̃mΩ̃m+1 − p̃m−1∆̃

T
m

)
Γ̃−1
m+1

)

= ∆̃−T
m+1Gm

(
λ√
2
qm − 1√

2
qmΩm+1 −

√
2qm−1Γ

T
m),

(λ(
λ√
2
pm − 1√

2
pmΩm+1 −

√
2pm−1∆

T
m)

)
Γ̃−1
m+1

= ∆̃−T
m+1Gm

(
−
√
2qm−1Γ

T
m, λ(−

√
2pm−1∆

T
m)

)
Γ̃−1
m+1

= ∆̃−T
m+1

(
2ΓmI(qm−1, λpm−1)∆

T
m

)
Γ̃−1
m+1

= ∆̃−T
m+1(2ΓmΩm∆T

m)Γ̃−1
m+1. (3.32)

It now follows from (3.31) and (3.32) that

Ω̃m+2 = (2I − Gm)(q̃m+1, λp̃m+1)

= ∆̃−T
m+1(∆

T
m+1Ωm+2Γm+1 + ΓmΩm∆T

m − 2ΓmΩm∆T
m)Γ̃−1

m+1,

where the right-hand side simplifies to (3.28).
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The last off-diagonal block entries of T̃
(2)
m+2 can be chosen arbitrarily so that (3.29)

holds. The different choices correspond to similarity transformations of T̃
(2)
m+2 under

which the quadrature rule G̃(2)
m+2 is invariant. The invariance can be shown analogously

as Proposition 2.3.

3.2.3. Generalized block anti-Gauss rules, ℓ = 3. We derive a relation for

the last subdiagonal and superdiagonal block entries Γ̃m+2 and ∆̃T
m+2 of T̃

(3)
m+3.

Theorem 3.4. Assume that the matrices Γ̃m+1 and ∆̃m+1∆̃m+2 are nonsingular.

Then the last subdiagonal block entries Γ̃m+2 and ∆̃m+2 of T̂
(3)
m+3 satisfy

∆̃T
m+2Γ̃m+2 = ∆̃−T

m+1

(
∆T

m+1∆
T
m+2Γm+2Γm+1 − Γm−1Γm∆T

m−1∆
T
m +

(Ω̃m+2 − Ωm+2)
T∆T

m+1Ωm+2Γm+1 − (Ω̃m+2 − Ωm)TΓmΩm∆T
m

)
Γ̃−1
m+1.

Proof. We first express q̃m+2 in terms of polynomials qj . It follows from

q̃m+2 =
(
λq̃m+1 − q̃m+1Ω̃m+2 − p̃mΓ̃m+1

)
∆̃−1

m+2

that

q̃m+2 =
1√
2

(
qm+2∆m+2∆m+1 − qm+1∆m+1(Ω̃m+2 − Ωm+2)

+qm−1Γ
T
m(Ω̃m+2 − Ωm)− qm−2Γ

T
mΓT

m−1

)
∆̃−1

m+1∆̃
−1
m+2,

and we obtain

2I(q̃m+2, λp̃m+1) = ∆̃−T
m+2∆̃

−T
m+1

(
∆T

m+1∆
T
m+2Γm+2Γm+1

+(Ω̃m+2 − Ωm+2)
T∆T

m+1Ωm+2Γm+1 − (Ω̃m+2 − Ωm)TΓmΩm∆T
m

+Γm−1Γm∆T
m−1∆

T
m

)
Γ̃−1
m+1,

Gm(q̃m+2, λp̃m+1) = ∆̃−T
m+2∆̃

−T
m+1(2(Ωm − Ω̃m+2)

TΓmΩm∆T
m

+2Γm−1Γm∆T
m−1∆

T
m)Γ̃−1

m+1.

The theorem now follows after some computations. They are tedious but fairly
straightforward. We therefore omit the details.

The formula for the last diagonal block, Ω̃m+3, of T̃
(3)
m+3 is quite complicated. We

therefore set this block to Ω̃m+2. This defines the block tridiagonal matrix T̂
(3)
m+3 and

the associated quadrature rule Ĝ(3)
m+3. This rule satisfies

Ĝ(3)
m+3f = G̃(3)

m+3f ∀f ∈ P2m+4; (3.33)

see below.
We conclude this section with a proof of (3.33). Let Gmf denote the m-block

Gauss rule (3.19) associated with the operator I defined by (3.16). This quadrature
rule can be expressed with the, generally nonsymmetric, block tridiagonal matrix
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Tm, which is defined by (3.18); cf. (3.19). Consider the associated (m + ℓ)-block

generalized anti-Gauss rule G̃(ℓ)
m+ℓf . It is defined by a block tridiagonal matrix

T̃
(ℓ)
m+ℓ =




Ω̃1 ∆̃T
1

Γ̃1 Ω̃2 ∆̃T
2

. . .
. . .

. . .

Γ̃m−1 Ω̃m ∆̃T
m+ℓ−1

Γ̃m+ℓ−1 Ω̃m+ℓ



∈ R

k(m+ℓ)×k(m+ℓ), (3.34)

i.e.,

G̃(ℓ)
m+ℓf = ET

1 f(T̃
(ℓ)
m+ℓ)E1.

The matrix (3.34) is a block analogue of (2.11). We assume that m and ℓ are
small enough so that the matrix (3.34) exists. Its leading km×km principal submatrix

is the block tridiagonal matrix Tm defined by (3.18). The other blocks of T̃
(ℓ)
m+ℓ are

determined so that the quadrature rule G̃(ℓ)
m+ℓf satisfies

(I − G̃(ℓ)
m+ℓ)f = −(I − Gm)f ∀f ∈ P2m+2ℓ−1. (3.35)

This is the block analogue of equation (2.8).

When the last diagonal block entry Ω̃m+ℓ ∈ R
k×k of (3.34) is replaced by another

matrix Ω̂m+ℓ ∈ R
k×k, we obtain the block tridiagonal matrix T̂

(ℓ)
m+ℓ and the associated

quadrature rule

Ĝ(ℓ)
m+ℓf = ET

1 f(T̂
(ℓ)
m+ℓ)E1. (3.36)

The following theorem collects some results for this quadrature rule.
Theorem 3.5. The quadrature rule (3.36) satisfies

Ĝ(ℓ)
m+ℓf = If ∀f ∈ P2m−1, (3.37)

Ĝ(ℓ)
m+ℓf = G̃(ℓ)

m+ℓf ∀f ∈ P2m+2ℓ−2. (3.38)

Proof. The nonsymmetric Lanczos process (Algorithm 4) generates the block
entries of the matrix (3.18) in the order Ω1,Γ1,∆1,Ω2,Γ2,∆2,Ω3, . . . . Each diagonal
block Ωj and each pair of off-diagonal blocks {Γj ,∆j} in the matrix (3.18) increase the
degree of the polynomials that are integrated exactly by the quadrature rule (3.19) by
one. The matrix (3.18) has m diagonal blocks and m− 1 pairs of off-diagonal blocks
and, therefore, the rule (3.19) is exact for all polynomials in P2m−1. If we would
replace the diagonal block Ωm by an arbitrary k×k matrix, then the quadrature rule
defined by the matrix so obtained would be exact for all polynomials in P2m−2.

We turn to (3.37). Since the matrix T̂
(ℓ)
m+ℓ associated with the rule Ĝ(ℓ)

m+ℓ is block
tridiagonal and has the matrix (3.18) as its km× km leading principal submatrix, it
integrates all polynomials exactly that the rule (3.19) integrates exactly. This shows
(3.37).

Consider the rule G̃(ℓ)
m+ℓ exact. It is defined by the block tridiagonal matrix T̃

(ℓ)
m+ℓ.

The rule Ĝ(ℓ)
m+ℓ is associated with a block tridiagonal matrix T̂

(ℓ)
m+ℓ, which differs from
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T̃
(ℓ)
m+ℓ only in the last diagonal block. Thus, the matrices T̃

(ℓ)
m+ℓ and T̂

(ℓ)
m+ℓ share the

first m + ℓ − 1 diagonal block entries and all m + ℓ − 1 pairs of off-diagonal block
entries. They therefore integrate all polynomials in P2m+2ℓ−2 in the same way. This
shows (3.38).

Corollary 3.6. Let the block quadrature rules Gm and Ĝ(ℓ)
m+ℓ be defined by (3.19)

and (3.36), respectively. Then the average rule

Â(ℓ)
m+ℓ :=

1

2
(Gm + Ĝ(ℓ)

m+ℓ) (3.39)

satisfies

Â(ℓ)
m+ℓf = If ∀f ∈ P2m+2ℓ−2. (3.40)

Hence, the average rule is exact for polynomials of higher degree than the Gauss and
simplified generalized anti-Gauss rules that determine it.

Proof. The rule G̃(ℓ)
m+ℓ is constructed to satisfy

G̃(ℓ)
m+ℓf = (2I − Gm)f ∀f ∈ P2m+2ℓ−1.

Since the block tridiagonal matrices that are associated with the block quadrature

rules G̃(ℓ)
m+ℓ and Ĝ(ℓ)

m+ℓ only differ in the last block diagonal entry, we obtain similarly
as in the proof of Theorem 3.5 that

Ĝ(ℓ)
m+ℓf = (2I − Gm)f ∀f ∈ P2m+2ℓ−2.

Substitution into (3.39) shows (3.40).
We remark that it is straightforward to show an analogue of Corollary 3.6 for the

average rule Ã(ℓ)
m+ℓ :=

1
2 (Gm + G̃(ℓ)

m+ℓ). We therefore omit the details.

4. Bracketing with Gauss and generalized anti-Gauss rules. It is the
purpose of this section to provide sufficient conditions for pairs of Gauss and associated
simplified generalized anti-Gauss rules to bracket If component-wise. Let {sj}∞j=0 be
a family of polynomials with each polynomial sj of exact degree j, and such that the
expansion

f(x) =

∞∑

j=0

ηjsj(x) (4.1)

converges on the convex hull of the support of the measure dw̃ defined in (3.16). We
also would like the sj be such that the terms ηjsj converge to zero. For instance,
when the convex hull of the support of the measure is an interval, then the sj can be
chosen to be Chebyshev polynomials for this interval. Alternatively, we may choose
the sj to be Chebyshev or Faber polynomials for the field of values of A or for some
ε-pseudospectrum of A; see Trefethen and Embree [38] for discussions on the latter.
We obtain

(I − Gm)f =
∞∑

j=0

ηj(I − Gm)sj =
∞∑

j=2m

ηj(I − Gm)sj = η2m(I − Gm)s2m + . . .

+η2m+2ℓ−2(I − Gm)s2m+2ℓ−2 +

∞∑

j=2m+2ℓ−1

ηj(I − Gm)sj , (4.2)
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where we have used (3.20). Similarly,

(I − Ĝ(ℓ)
m+ℓ)f =

∞∑

j=0

ηj(I − Ĝ(ℓ)
m+ℓ)sj =

∞∑

j=2m

ηj(I − Ĝ(ℓ)
m+ℓ)sj

= η2m(I − Ĝ(ℓ)
m+ℓ)s2m + . . .+ η2m+2ℓ−2(I − Ĝ(ℓ)

m+ℓ)s2m+2ℓ−2

+

∞∑

j=2m+2ℓ−1

ηj(I − Ĝ(ℓ)
m+ℓ)sj

= −η2m(I − Gm)s2m − . . .− η2m+2ℓ−2(I − Gm)s2m+2ℓ−2

+

∞∑

j=2m+2ℓ−1

ηj(I − Ĝ(ℓ)
m+ℓ)sj . (4.3)

Here we have applied (3.37), (3.35), and (3.38) in order.
If the terms ηj(I − Gm)sj decay in norm sufficiently rapidly with increasing j,

then the right-hand sides of

(I − Gm)f ≈ η2m(I − Gm)s2m + . . .+ η2m+2ℓ−2(I − Gm)s2m+2ℓ−2,

(I − Ĝ(ℓ)
m+ℓ)f ≈ −η2m(I − Gm)s2m − . . .− η2m+2ℓ−2(I − Gm)s2m+2ℓ−2

are accurate approximations of the left-hand sides. Hence,

Gmf ≈ If − η2m(I − Gm)s2m − . . .− η2m+2ℓ−2(I − Gm)s2m+2ℓ−2,

Ĝ(ℓ)
m+ℓf ≈ If + η2m(I − Gm)s2m + . . .+ η2m+2ℓ−2(I − Gm)s2m+2ℓ−2.

This suggests that the component-wise errors of the quadrature rules Gmf and Ĝ(ℓ)
m+ℓf

are roughly equal in magnitude and of opposite sign, and then the components of Gmf

and Ĝ(ℓ)
m+ℓf bracket the components of If . The magnitudes of the entries of ηjsj decay

quickly to zero when j increases if f is analytic in a large simply connected region in
the complex plane that contains the support of the measure dw̃ and has its boundary
far away from the support. The following theorem provides sufficient conditions for

Gmf and Ĝ(ℓ)
m+ℓf to bracket If .

Theorem 4.1. Consider the expansion (4.1) in terms of the polynomials sj and
assume that for some 1 ≤ q, r ≤ k,

∣∣∣∣∣∣



2m+2ℓ−2∑

j=2m

ηj(I − Gm)sj



q,r

∣∣∣∣∣∣
≥ max





∣∣∣∣∣∣




∞∑

j=2m+2ℓ−1

ηj(I − Gm)sj



q,r

∣∣∣∣∣∣
,

∣∣∣∣∣∣




∞∑

j=2m+2ℓ−1

ηj(I − Ĝ(ℓ)
m+ℓ)sj



q,r

∣∣∣∣∣∣



 ,

(4.4)

where [M ]q,r denotes the (q, r)-entry of the matrix M ∈ R
k×k. Then [Gmf ]q,r and

[Ĝm+ℓf ]q,r bracket [If ]q,r.
Proof. It follows from the expansions (4.2) and (4.3) that

Gmf = If −
2m+2ℓ−2∑

j=2m

ηj(I − Gm)sj −
∞∑

j=2m+2ℓ−1

ηj(I − Gm)sj , (4.5)

Ĝ(ℓ)
m+ℓf = If +

2m+2ℓ−2∑

j=2m

ηj(I − Gm)sj −
∞∑

j=2m+2ℓ−1

ηj(I − Ĝ(ℓ)
m+ℓ)sj . (4.6)
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This shows (4.4).
It is difficult to assess whether the bound (4.4) holds for a given function f , matrix

A, and pair of quadrature rules {Gm, Ĝ(ℓ)
m+ℓ}. Nevertheless, Theorem 4.1 indicates that

if the terms in the expansions (4.2) and (4.3) converge to zero quickly, then the pair

of quadrature rule values {Gmf, Ĝ(ℓ)
m+ℓf} is likely to bracket If component-wise. This

is in agreement with computational experience. For instance, when f(t) = exp(t), the

quadrature rules Gmf and Ĝ(ℓ)
m+ℓf bracket If component-wise for many matrices A.

This is illustrated in Section 5. Our interest in generalized and simplified generalized

anti-Gauss rules (with ℓ > 1) stems from the fact that the pair of rules {Gmf, Ĝ(ℓ)
m+ℓf}

may bracket If when ℓ > 1 also when this is not the case for ℓ = 1; see Section 5.

When several of the generalized or simplified generalized anti-Gauss rules Ĝ(ℓ)
m+ℓf for,

say, ℓ = 1, 2, 3, all are larger or all are smaller than Gmf , this suggests that the pairs

{Gmf, Ĝ(ℓ)
m+ℓf}, ℓ = 1, 2, 3, indeed may bracket If .

Corollary 4.2. Let the integrand f have the expansion (4.1). Then the average
rule (3.39) satisfies

Â(ℓ)
m+ℓf = If −

∞∑

j=2m+2ℓ−1

ηj(I − Â(ℓ)
m+ℓ)sj .

In particular, if f ∈ P2m+2ℓ−2, then ηj = 0 for j ≥ 2m + 2ℓ − 1, and therefore

Â
(ℓ)
m+ℓf = If , in agreement with (3.40).

Proof. The result follows by substituting the expansions (4.5) and (4.6) into
(3.39).

5. Computed examples. We illustrate the performance of real-valued gener-
alized anti-Gauss rules, simplified real-valued generalized anti-Gauss rules, and their
block versions. All computations were carried out in MATLAB with about 15 signifi-
cant decimal digits on a MacBook Pro laptop computer with a 2.6 GHz Intel Core i5
processor and 8 GB 1600 MHz DDR3 memory. We first describe a few applications
of these quadrature rules to the approximation of real-valued functionals, and sub-
sequently discuss applications to matrix-valued functions. Examples from network
analysis also are presented.

Table 5.1

Example 5.1: F (A) = uT (I +A2)−1u, A a symmetric Toeplitz matrix.

m ℓ (I − Gm)f (I − G̃(ℓ)
m+ℓ)f (I − Ã(ℓ)

m+ℓ)f (I − Ĝ(ℓ)
m+ℓ)f (I − Â(ℓ)

m+ℓ)f

3 1 4.48 · 10−5 −4.82 · 10−5 −1.69 · 10−6 −4.16 · 10−5 1.56 · 10−6

3 2 −4.76 · 10−5 −1.39 · 10−6 −4.07 · 10−5 2.04 · 10−6

3 3 −4.73 · 10−5 −1.29 · 10−6 −4.06 · 10−5 2.07 · 10−6

6 1 −3.64 · 10−7 3.66 · 10−7 1.09 · 10−9 3.42 · 10−7 −1.10 · 10−8

6 2 3.64 · 10−7 −6.47 · 10−11 3.40 · 10−7 −1.22 · 10−8

6 3 3.64 · 10−7 −6.18 · 10−11 3.40 · 10−7 −1.22 · 10−8

Example 5.1. We would like to compute approximations of the functional

If = F (A) := uT (I +A2)−1u,

with a symmetric Toeplitz matrix A ∈ R
200×200 with first row [1, 1/2, 1/3, . . . , 1/200].

Thus, f(t) = (1 + t2)−1 in (1.1). The vector u has normally distributed entries
with zero mean and is normalized to be of unit norm. The desired value is F (A) ≈
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1.36·10−2. Table 5.1 shows the pairs {Gmf, G̃(ℓ)
m+ℓf} as well as the pairs {Gmf, Ĝ(ℓ)

m+ℓf}
to bracket If for ℓ ∈ {1, 2, 3} and m ∈ {3, 6}. The simplified generalized anti-Gauss

rules Ĝ(ℓ)
m+ℓf are seen to give slightly more accurate approximations of If than the

(standard) generalized anti-Gauss rules G̃(ℓ)
m+ℓf . We remark that pairs of Gauss and

Gauss–Radau quadrature rules are not guaranteed to furnish upper and lower bounds
for If , because higher derivatives of the integrand f change sign on the convex hull
of the spectrum of A. ✷

Table 5.2

Example 5.2: F (A) = uT (I +A2)−1v, A a nonsymmetric Toeplitz matrix.

m ℓ (I − Gm)f (I − G̃(ℓ)
m+ℓ)f (I − Ã(ℓ)

m+ℓ)f (I − Ĝ(ℓ)
m+ℓ)f (I − Â(ℓ)

m+ℓ)f

4 1 −3.71 · 10−3 2.64 · 10−3 −5.41 · 10−4 4.41 · 10−3 3.47 · 10−4

4 2 2.43 · 10−3 −6.42 · 10−4 8.46 · 10−3 2.37 · 10−3

4 3 2.64 · 10−3 −5.41 · 10−4 4.41 · 10−3 3.47 · 10−4

5 1 1.46 · 10−3 −4.07 · 10−3 −1.31 · 10−3 −2.68 · 10−3 −6.09 · 10−4

5 2 1.54 · 10−3 1.50 · 10−3 1.44 · 10−3 1.45 · 10−3

5 3 −4.07 · 10−3 −1.31 · 10−3 −2.68 · 10−3 −6.09 · 10−4

Example 5.2. We determine approximations of the functional

If = F (A) := uT (I +A2)−1v,

where A is a 200× 200 real nonsymmetric Toeplitz matrix with first row and column
[1, 1/2, 1/3, . . . , 1/200] and [1, 1, . . . , 1]T , respectively, and f(t) = (1 + t2)−1 in (1.2).
The vectors u and v have normally distributed random entries with zero mean; they
are scaled so that uT v = 1. The exact value is F (A) ≈ 5.36 · 10−3. Since the
matrix A is nonsymmetric, the technique described by Golub and Meurant [22] of
evaluating pairs of Gauss and Gauss–Radau quadrature rules is not guaranteed to
furnish upper and lower bounds for If . Table 5.2 shows the errors in approximations
determined by Gauss, generalized anti-Gauss, simplified generalized anti-Gauss, and
average quadrature rules. Pairs of Gauss rules Gmf and generalized anti-Gauss rules

G̃(ℓ)
m+ℓf and pairs of Gauss rules and simplified generalized anti-Gauss rules Ĝ(ℓ)

m+ℓf
bracket F (A) for ℓ ∈ {1, 2, 3} and m = 4, as well as for ℓ ∈ {1, 3} and m = 5, but not
for ℓ = 2 and m = 5. This illustrates that it may be beneficial to compute quadrature

rules G̃(ℓ)
m+ℓf or Ĝ(ℓ)

m+ℓf for several values of m and ℓ. ✷

Table 5.3

Example 5.3: F (A) = uT exp(A)v, A a nonsymmetric Toeplitz matrix.

m ℓ (I − Gm)f (I − G̃(ℓ)
m+ℓ)f (I − Ã(ℓ)

m+ℓ)f

14 1 −6.51 · 101 −8.42 · 101 −7.47 · 101
14 2 −9.13 · 101 −7.82 · 101
14 3 1.57 · 103 7.53 · 102

Example 5.3. We would like to approximate

If = F (A) := uT exp(A)v,

where A is the nonsymmetric Toeplitz matrix of Example 5.2. Thus, f(t) = exp(t).
The vectors u and v also are determined as in Example 5.2. Table 5.3 shows the pairs
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Table 5.4

Example 5.4: F (A) = UT exp(A)U , A symmetric Toeplitz matrix.

m ℓ (I − Gm)f (I − G̃(ℓ)
m+ℓ)f (I − Ã(ℓ)

m+ℓ)f

5 1

[
−8.98 −1.00
−1.00 −1.49

]
· 10−4

[
8.96 1.00
1.00 1.49

]
· 10−4

[
−9.84 1.95
1.95 −0.26

]
· 10−7

5 2

[
9.19 1.03
1.03 1.54

]
· 10−4

[
1.04 0.16
0.16 0.25

]
· 10−5

5 3

[
9.19 1.03
1.03 1.54

]
· 10−4

[
1.06 1.60
0.16 0.24

]
· 10−5

Table 5.5

Example 5.4: F (A) = UT exp(A)U , A symmetric Toeplitz matrix.

m ℓ (I − Gm)f (I − Ĝ(ℓ)
m+ℓ)f (I − Â(ℓ)

m+ℓ)f

5 1

[
−8.98 −1.00
−1.00 −1.49

]
· 10−4

[
8.96 1.00
1.00 1.49

]
· 10−4

[
−9.84 1.95
1.95 −0.26

]
· 10−7

5 2

[
9.23 1.04
1.04 1.55

]
· 10−4

[
1.23 0.20
0.20 0.30

]
· 10−5

5 3

[
9.25 1.04
1.04 1.56

]
· 10−4

[
1.34 0.20
0.20 0.32

]
· 10−5

{G14f, G̃(ℓ)
14+ℓf} to bracket F (A) for ℓ = 3, but not for ℓ ∈ {1, 2}. While the absolute

quadrature errors are large, the relative errors are quite small since If ≈ 4.04 · 1011.
✷

Example 5.4. This example discusses an application of generalized block anti-
Gauss rules and simplified generalized block anti-Gauss rules to the evaluation of
matrix functions of the form

If = F (A) := UT exp(A)U,

where A ∈ R
200×200 is the symmetric Toeplitz matrix of Example 5.1 and U ∈ R

200×2

is a block vector with random orthonormal columns. Thus, f(t) = exp(t). Table 5.4

displays the block Gauss rule G5f and the generalized block anti-Gauss rules G̃(ℓ)
5+ℓf

for ℓ = 1, 2, 3 to give quadrature errors of component-wise opposite sign and of about
the same magnitude. The desired value is

F (A) ≈
[

6.2667 −0.2506
−0.2506 0.0208

]
· 103.

This value is computed with the MATLAB function expm. Thus, the relative errors
achieved with the quadrature rules of Tables 5.4 and 5.5 are quite small.

Table 5.5 shows the component-wise difference between the exact value and ap-
proximations determined by simplified generalized block anti-Gauss and associated
average rules. They are defined by setting Ω̂m+ℓ = Ωm+ℓ−1. The simplified general-
ized block anti-Gauss and the block Gauss rule also bracket F (A) component-wise.
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The average rules can be seen to give the best approximations of F (A) in both Tables
5.4 and 5.5. ✷

Our last examples illustrate the application of the quadrature rules of this paper
to quantities of interest in network analysis. A network is identified by a graph G =
{V, E}, which is defined by a set of vertices (also referred to as nodes) V and a set of
edges E . Let G be an unweighted graph with m nodes, and assume that G has no self-
loops or multiple edges. We consider both undirected graphs, in which travel can occur
in both directions along each edge, and directed graphs, in which some or all edges
are “one way streets”. Networks arise in many scientific and industrial applications,
including genetics, epidemiology, energy distribution, and telecommunication; see,
e.g., [15, 32]. The adjacency matrix A = [Aij ] ∈ R

n×n associated with a graph G with
n nodes has the entry Aij = 1 if there is an edge from node i to node j, and Aij = 0
otherwise. Thus, A is symmetric if and only if G is undirected. The importance of
node i can be assessed by evaluating the element (i, i) of a matrix function f , such as
the exponential function or a resolvent, of the adjacency matrix. Similarly, the ease
of communication between node i and node j can be determined by computing the
entry (i, j) of the exponential function or a resolvent of the adjacency matrix; see,
e.g., [16] for a justification in terms of walks in a graph. The computational task is
to evaluate expressions of the form (1.1) or (1.2); see [16, 18]. When the graph has
many nodes and, therefore, the adjacency matrix A is large, it is expensive to evaluate
functions of A. The use of quadrature rules to estimate desired entries of functions of
A is cheaper and therefore attractive.

The total communicability F (A) = eT f(A)e, where e = [1, 1, . . . , 1]T , measures
the ease of communication in a network; see [7, 32]. Here f(A) is the exponential
function or a resolvent of the adjacency matrix A. The total communicability can
conveniently be approximated by quadrature rules. The remaining tables of this
section show results for anti-Gauss, generalized anti-Gauss, and simplified anti-Gauss
rules with ℓ ∈ {1, 2} applied to evaluating quantities of interest when determining
properties of a network or of nodes in a network.

Table 5.6

Example 5.5: If = F (A) = eT exp(A)e, A the symmetric adjacency matrix for the Yeast

network, e = [1, 1, . . . , 1]T .

m ℓ (I − Gm)f (I − G̃(ℓ)
m+ℓ)f (I − Ã(ℓ)

m+ℓ)f (I − Ĝ(ℓ)
m+ℓ)f (I − Â(ℓ)

m+ℓ)f

8 1 2.03 · 10−4 −2.03 · 10−4 −2.79 · 10−7 −2.03 · 10−4 −2.79 · 10−7

8 2 −1.95 · 10−4 4.02 · 10−6 −2.03 · 10−4 −1.95 · 10−7

10 1 1.97 · 10−7 −1.97 · 10−7 8.77 · 10−10 −1.95 · 10−7 8.77 · 10−10

10 2 −1.97 · 10−7 −2.72 · 10−11 −1.97 · 10−7 −1.80 · 10−10

Example 5.5. We consider the network Yeast, which is represented by an undi-
rected graph with 2114 vertices and 4480 edges. It describes the protein interaction
of yeast. Each edge represents an interaction between two proteins [28, 37]. The
data set is available at [5]. We would like to determine the total communicability
F (A) = eT exp(A)e, where e = [1, 1, . . . , 1]T , of the network; see [7, 32]. We use
quadrature rules of Section 2 to provide estimates. The exact value is approximately
221. Table 5.6 shows the errors in computed approximations of the total communica-
bility determined by Gauss, generalized anti-Gauss, simplified generalized anti-Gauss,
and average quadrature rules. Quadrature rules with only a few nodes are seen to
yield approximations with higher accuracy than what typically is required in appli-
cations. Pairs of Gauss and generalized anti-Gauss, as well as pairs of Gauss and
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simplified generalized anti-Gauss rules are seen to bracket the exact value.
The adjacency matrix for the Yeast network is symmetric and all derivatives of

the integrand are positive. Therefore, the technique of Golub and Meurant [22], based
on evaluating pairs of a Gauss rule and a suitable Gauss–Radau rule, can be applied
to compute upper and lower bounds for F (A). This technique requires that an upper
bound for the largest eigenvalue of A be available in order to determine a suitable
Gauss–Radau rule. The application of pairs of Gauss and generalized anti-Gauss
rules or simplified generalized anti-Gauss rules does not require eigenvalue bounds.
We therefore believe the application of these rules may be of interest also when the
technique by Golub and Meurant [22] can be used.

Table 5.7

Example 5.5: If = F (A) = eT exp(A)e, A a nonsymmetric adjacency matrix for the modified

Yeast network, e = [1, 1, . . . , 1]T .

m ℓ (I − Gm)f (I − G̃(ℓ)
m+ℓ)f (I − Ã(ℓ)

m+ℓ)f (I − Ĝ(ℓ)
m+ℓ)f (I − Â(ℓ)

m+ℓ)f

7 1 −4.12 · 10−3 4.18 · 10−3 2.58 · 10−5 3.75 · 10−3 −1.84 · 10−4

7 2 4.28 · 10−3 7.67 · 10−5 3.87 · 10−3 −1.26 · 10−4

8 1 −2.02 · 10−4 2.03 · 10−4 2.98 · 10−7 2.07 · 10−4 2.25 · 10−6

8 2 2.03 · 10−4 4.08 · 10−7 2.07 · 10−4 2.27 · 10−6

10 1 −1.96 · 10−7 1.95 · 10−7 −8.43 · 10−10 1.98 · 10−7 1.02 · 10−9

10 2 1.99 · 10−7 1.37 · 10−9 2.04 · 10−7 3.69 · 10−9

It is easy to modify the Yeast network to obtain a directed network with a nonsym-
metric adjacency matrix. Then the technique by Golub and Meurant is not guaranteed
to determine bounds for the total communicability. We replace the superdiagonal en-
tries in rows 2 to 4 by zero. This implies that we replace “two-way streets” to the
nodes 2 to 4, by “one-way streets”. Table 5.7 shows that pairs of Gauss and gener-
alized anti-Gauss or simplified generalized anti-Gauss rules provide upper and lower
bounds for the total communicability for this directed network. ✷

Table 5.8

Example 5.6: Subgraph centrality for the vertices 100, 224, and 1000 of the modified Yeast

network.

i [f(A)]ii [f(A)]ii − Gmf

100 3.919 · 100 −1.54 · 10−6

224 9.124 · 102 −6.71 · 10−6

1000 1.031 · 101 −1.58 · 10−5

Table 5.9

Example 5.6: Subgraph centrality for the vertices 100, 224, and 1000 of the modified Yeast

network.

i ℓ [f(A)]ii − G̃(ℓ)
m+ℓf [f(A)]ii − Ã(ℓ)

m+ℓf [f(A)]ii − Ĝ(ℓ)
m+ℓf [f(A)]ii − Â(ℓ)

m+ℓf

100 1 1.61 · 10−6 3.26 · 10−8 1.14 · 10−6 −2.02 · 10−7

100 2 2.03 · 10−6 2.40 · 10−7 1.48 · 10−6 −3.22 · 10−8

224 1 6.72 · 10−6 4.27 · 10−9 5.87 · 10−6 −4.20 · 10−7

224 2 6.72 · 10−6 4.62 · 10−9 5.87 · 10−6 −4.19 · 10−7

1000 1 1.60 · 10−5 1.03 · 10−7 1.82 · 10−5 1.23 · 10−6

1000 2 1.63 · 10−5 2.96 · 10−7 1.87 · 10−5 1.45 · 10−6

Example 5.6. Let f(t) = exp(t). The subgraph centrality of a the node i is
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defined as the ith diagonal entry, [f(A)]ii, of f(A). A (relatively) large value indicates
that node i is important; see [16] for a discussion. We compute approximations of the
subgraph centralities [f(A)]ii for i ∈ {100, 224, 1000} for the modified Yeast network
described in Example 5.5. Thus, the adjacency matrix is nonsymmetric. Table 5.8
displays the exact values and the errors obtained by using the Gauss rule G8f . The
application of this rule to approximate [f(A)]ii requires 8 steps of the nonsymmetric
Lanczos process applied to A with the axis vector ei = [0, . . . , 0, 1, 0, . . . , 0]T as initial
vectors. Table 5.9 shows the errors in approximations determined by corresponding
generalized anti-Gauss and simplified generalized anti-Gauss rules. The table also
shows the errors for the associated average rules. Table 5.8 shows node 224 to be more
important than the nodes 100 and 1000. A preprocessing technique for determining
which ones of all the vertices in a network may have the largest subgraph centrality
is described in [17]. ✷

Table 5.10

Example 5.7: If = F (A) = eT exp(A)e, A a nonsymmetric adjacency matrix for the Celegans

network, e = [1, 1, . . . , 1]T .

m ℓ (I − Gm)f (I − G̃(ℓ)
m+ℓ)f (I − Ã(ℓ)

m+ℓ)f (I − Ĝ(ℓ)
m+ℓ)f (I − Â(ℓ)

m+ℓ)f

3 1 8.49 · 102 −9.83 · 102 −6.67 · 101 −2.39 · 103 −7.74 · 102
3 2 −4.35 · 103 −1.75 · 103 −7.65 · 103 −3.40 · 103
4 1 3.59 · 100 −4.89 · 100 −6.49 · 10−1 −4.24 · 100 −3.27 · 10−1

4 2 −1.15 · 102 −5.60 · 101 −8.85 · 101 −4.24 · 101

Example 5.7. Consider the metabolic network Celegans with 306 nodes and
2345 edges of the nematode (roundworm) caenorhabditis elegans [14]. The data set is
available at [1]. The network is directed, i.e., the adjacency matrix is nonsymmetric.
Table 5.10 shows the errors of computed approximations of the total communicability
determined by Gauss, generalized anti-Gauss, simplified generalized anti-Gauss, and
average quadrature rules. The exact value is about If ≈ 1.09 · 104. This example
illustrates that accuracy that typically is sufficient in applications can be achieved
already with quadrature rules with very few nodes. The quadrature rules are seen to
bracket the exact value. ✷

6. Conclusion. Laurie [30] introduced a class of quadrature rules, that he re-
ferred to as anti-Gauss rules, for the estimation of the error in associated Gaussian
quadrature rules. We derive new generalized anti-Gauss quadrature rules, and discuss
their properties and computation. Also a family of simplified generalized anti-Gauss
quadrature rules is introduced. The latter rules are easier to evaluate and may ex-
ist also when generalized anti-Gauss quadrature rules do not. Computed examples,
which include applications to network analysis, illustrate the performance of the new
quadrature rules.
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