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Abstract Discrete ill-posed inverse problems arise in various areas of science
and engineering. The presence of noise in the data often makes it difficult to
compute an accurate approximate solution. To reduce the sensitivity of the
computed solution to the noise, one replaces the original problem by a nearby
well-posed minimization problem, whose solution is less sensitive to the noise
in the data than the solution of the original problem. This replacement is
known as regularization. We consider the situation when the minimization
problem consists of a fidelity term, that is defined in terms of a p-norm, and
a regularization term, that is defined in terms of a q-norm. We allow 0 <
p, q ≤ 2. The relative importance of the fidelity and regularization terms is
determined by a regularization parameter. This paper develops an automatic
strategy for determining the regularization parameter for these minimization
problems. The proposed approach is based on a new application of generalized
cross validation. Computed examples illustrate the performance of the method
proposed.

Keywords `p-`q minimization, regularization parameter, generalized cross
validation, inverse problem, iterative method

Mathematics Subject Classification (2000) 65F10, 65R32, 90C26

A. Buccini
Department of Mathematics and Computer Science
University of Cagliari
09124 Cagliari, Italy
E-mail: alessandro.buccini@unica.it
L. Reichel
Department of Mathematical Sciences
Kent State University
Kent, 44242 OH
E-mail: reichel@math.kent.edu



2 Alessandro Buccini, Lothar Reichel

1 Introduction

In many areas of science and engineering one is faced with the problem of hav-
ing to compute a meaningful approximate solution, defined in an appropriate
way, of linear systems of equations of the form

Ax ≈ b, (1)

where A ∈ Rm×n is a given matrix, x ∈ Rn is the desired solution, and
b ∈ Rm is a data vector. The symbol ≈ indicates that we would like to
determine a vector x such that Ax approximates b in a suitable way. We
consider the case when the singular values of A decrease to zero quickly without
a significant gap. Then the matrix A is severely ill-conditioned and, moreover,
it is not meaningful to define the rank of A. Approximation problems (1) with
a matrix of this kind are commonly referred to as discrete ill-posed problems;
see, e.g., [17, 26,27] for discussions.

In applications of interest to us, the data vector b is not available; instead a
measured vector bδ ∈ Rm, which is contaminated by noise η ∈ Rm, is known,
i.e.,

bδ = [bδ1, b
δ
2, . . . , b

δ
m]T = b + η

replaces the vector b in (1). Here and throughout this paper the superscript T

denotes transposition. We assume that η is made up of white Gaussian noise,
impulse noise and/or salt and pepper noise. Impulse noise modifies only some
entries of b and leaves the other entries unchanged. In detail, we have for
1 ≤ i ≤ m,

bδi =

{
di with probability σ,
bi with probability 1− σ,

where the di are realizations of a random variable with uniform distribution in
the interval [dmin, dmax], which is the dynamic range of bi. If di ∈ {dmin, dmax},
i.e., if the di only attain their maximal or minimal achievable values, then
impulse noise is commonly referred to as salt-and-pepper noise. Impulse noise
simulates the effect of broken sensors on a measuring device such as a CCD
camera.

Since A is ill-conditioned and bδ is contaminated by noise, the least-squares
solution A†bδ of minimal norm of (1) with b replaced by bδ is meaningless
due to propagation and severe amplification of the error η in bδ into the solu-
tion; here A† denotes the Moore-Penrose pseudo-inverse of A. To reduce the
propagated error in the computed solution, one typically modifies the problem
to be solved. This modification is commonly referred to as regularization.

A regularization method that recently has received considerable attention
is the `p-`q minimization method; see [14, 18, 30, 35]. This method solves the
minimization problem

min
x∈Rn

{
1

p

∥∥Ax− bδ
∥∥p
p

+
µ

q
‖Lx‖qq

}
, (2)
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where L ∈ Rr×n is a regularization matrix, µ > 0 a regularization parameter,
and ‖z‖pp =

∑k
i=1 |zi|p for z = [z1, z2, . . . , zk]T ∈ Rk for k ∈ {m,n}. We are

interested in parameters p and q in the interval (0, 2]. Observe that z 7→ ‖z‖p
is a norm only if p ≥ 1; however, for notational convenience, we will refer to
the quantity ‖z‖p as an `p-norm also for 0 < p < 1.

The regularization parameter µ > 0 determines the trade-off between the
the first and second terms in (2), and decides how sensitive the solution of
(2) is to the error η in bδ. Moreover, the choice of µ affects how close the
solution is to the desired vector xtrue = A†b. An imprudent choice of µ may
result in that the solution of (2) is a poor approximation of xtrue. It therefore
is important to develop methods that are able to determine a suitable value of
µ. This value will depend on the matrices A and L, the vectors bδ and η, as
well as the parameters p and q. If p = q = 2, then the problem (2) reduces to
Tikhonov regularization in general form; see, e.g., [17,22,27,38] for discussions
on Tikhonov regularization.

We now briefly discuss different choices for p and q, and first comment on
the choice of q, which affects the second term in (2). This terms is commonly
referred to as the regularization term. In many situations the desired solution
xtrue of (1) is sparse after some transformation. For instance, if we represent
xtrue in terms of framelets or wavelets, then xtrue typically has a sparse repre-
sentation, i.e., many coefficients in this representation vanish. Moreover, when
L is a discretized gradient operator, the vector Lxtrue generally has many van-
ishing entries. To promote sparsity of the computed solution of (2), we may
consider letting L = I and q = 0. Then the regularization term measures the
size of the computed solution by the `0-norm. This “norm” counts the number
of nonzero entries in the vector x in (2). Note that this norm is not convex.
Similarly, to promote sparsity in the vector Lx, we may consider letting q = 0
in (2). However, the minimization problems so obtained are extremely dif-
ficult to solve. Therefore, it is common to approximate the `0-norm by the
`1-norm. This approximation has the advantage that the `1-norm is convex,
which makes it easier to solve (2) than when using the `0-norm. However,
`q-norms with 0 < q < 1 are better approximations of the `0-norm than the
`1-norm. In particular, smaller values of q > 0 yield better approximations of
the `0-norm than larger values; see Figure 1 for an illustration. For 0 < q < 1
the resulting minimization problem (2) is not convex and its solution may be
difficult to determine; see Lanza et al. [36] for a recent discussion on the choice
of q in the context of image restoration.

The choice of p affects the first term in (2), known as the fidelity term, and
should depend on the type of noise η in the data vector bδ. If the noise η is
white Gaussian, then p = 2 is appropriate and a method for determining µ
for this kind of noise, based on the discrepancy principle, is described in [7].
This method requires that a fairly accurate estimate of the norm of η be
available and allows 0 < q < 1. However, for impulse noise, choosing p = 2
usually produces computed solutions of poor quality. It has been shown, see,
e.g., [8, 30, 35], that the choice 0 < p < 1 leads to accurate restorations in the
case of salt-and-pepper noise. In [8], the authors developed two strategies based
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Fig. 1: Comparison of different `q-norms. The solid black graph represents the
`0-norm, the dotted black graph shows the `1-norm, the dark gray solid graph
displays the `0.5-norm, and the light gray solid graph depicts the `0.1-norm.

on cross-validation for determining a suitable value of µ for any 0 < p ≤ 2
without any knowledge of the noise. This method is further commented on
below.

Let N (M) denote the null space of the matrix M . We will assume that the
matrices A and L are such that

N (A) ∩N (L) = {0}. (3)

Then the matrix ATA + µLTL is nonsingular for any µ > 0, and the mini-
mization problem (2) for p = q = 2 has the unique solution

xµ = (ATA+ µLTL)−1ATbδ. (4)

We remark that both the selection of L and µ are important for the quality
of the computed solution and have been widely discussed; see, e.g., [15,19,31–
33,37].

Generalized cross validation (GCV) introduced by Golub et al. [23] is a pop-
ular approach to choosing the regularization parameter for Tikhonov regular-
ization; more recent discussions on this method can be found in [19,20,24,29].
The GCV method is statistically based and chooses a regularization parameter
that minimizes the GCV functional

G(µ) =

∥∥bδ −Axµ
∥∥2

2(
trace

(
I −A (ATA+ µLTL)

−1
AT
))2 . (5)

Denote the minimizer of G(µ) by µGCV. In rare events, when the minimizer is
not unique, we choose the largest one.
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The minimization of G(µ) requires the computation, or at least estimation,
of the trace of the matrix I−A(ATA+µLTL)−1AT that is not explicitly known.
This can make the computation of G(µ) expensive when the matrices A and
L are large. Different ways to speed up the computations by application of a
global block Lanczos method or Golub-Kahan bidiagonalization are described
in [19,20]. However, these works are limited to the situation when L = I.

In this paper, we combine ideas in [19] with the techniques described in [30]
to derive an algorithm for computing the GCV parameter for (2) for general
values of 0 < p, q ≤ 2. Specifically, we consider the AMM-GKS algorithm
in [30] for the solution of (2) (see Section 3.1 for more details), and modify
it so that at each iteration the regularization parameter is chosen adaptively
by minimizing a reduced version of the function (5). The computation of the
GCV parameter is fully automatic in the sense that no information about
the noise η is required. The GCV method for determining the regularization
parameter is a so-called heuristic method, see Kindermann [32], and therefore
may fail for certain data vectors b. In our experience, failure is extremely
rare. The GCV method is related to cross validation (CV), another heuristic
method for determining a suitable regularization parameter; see [8, 39]. We
will illustrate in Section 4 that GCV typically gives about the same value of
the regularization parameter as CV for a much lower computational effort.

This paper is organized as follows: Section 2 reviews how the GCV pa-
rameter for Tikhonov regularization in general form can be computed fairly
inexpensively by projection into a Krylov subspace, and in Section 3 we discuss
how to determine the GCV parameter for large-scale minimization problems
(2). A smoothed variant of GCV that can give better regularization parameter
values also is presented. Section 4 contains numerical examples that illustrate
the performance of the proposed approach. Finally, Section 5 contains some
concluding remarks.

2 GCV for Tikhonov regularization in general form

This section discusses the computation of the GCV parameter for Tikhonov
regularization in general form, i.e., when solving the minimization problem (2)
with p = q = 2. We first describe an approach that requires the generalized
singular value decomposition (GSVD) of the matrix pair {A,L}. This approach
is computationally feasible only for small to medium-sized problems since the
computation of the GSVD for a large matrix pair is very expensive. We then
discuss how the computational burden for large-scale problems can be reduced
by projecting the matrix pair {A,L} into a Krylov subspace of fairly small
dimension.
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2.1 GCV computation by using the GSVD

This subsection reviews material in [27], where further details can be found.
Consider the Tikhonov regularization problem in general form with µ > 0,

xµ = arg min
x∈Rn

{∥∥Ax− bδ
∥∥2

2
+ µ ‖Lx‖22

}
, (6)

and introduce the GSVD of the matrix pair {A,L},{
A = UΣAY

T ,
L = V ΣLY

T ,
(7)

where ΣA and ΣL are diagonal, possibly rectangular, matrices, the matrices U
and V are orthogonal, and the matrix Y is square and non-singular. Further
details of these matrices, including their sizes, can be found, e.g., in [16, 25,
27]. The evaluation of the GCV function G(µ), defined by (5), requires the
computation of the quantities

rµ =
∥∥Axµ − bδ

∥∥2

2
,

tµ = trace
(
I −A

(
ATA+ µLTL

)−1
AT
)
,

for several values of µ > 0, where the vector xµ is given by (4). These quantities
can be evaluated inexpensively when the factorizations (7) are available as
follows. For notational simplicity, the formulas below assume that all matrices
are square. This restriction easily can be removed; see, e.g., [16, 25, 27] for
details.

The quantity rµ can be expressed as

rµ =
∥∥bδ −Axµ

∥∥2

2

(a)
=
∥∥bδ −A(ATA+ µLTL)−1ATbδ

∥∥2

2

(b)
=
∥∥∥b̃δ −ΣA(ΣT

AΣA + µΣT
LΣL)−1ΣT

Ab̃δ
∥∥∥2

2
,

where (a) is obtained by using the definition (4) of xµ, and (b) is derived using

the factorizations (7) with b̃δ = UTbδ. Analogously,

tµ = trace
(
I −A

(
ATA+ µLTL

)−1
AT
)

= trace
(
I −ΣA(ΣT

AΣA + µΣT
LΣL)−1ΣT

A

)
,

where we have used the factorizations (7) and the fact that trace is invariant
under similarity transformation. We have

µGCV = arg min
µ

rµ
tµ
,

where we in rare cases of nonunicity let µGCV be the largest of the minimizers.
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It is clear from the above expressions for rµ and tµ that the main computa-
tional cost for evaluating (5) is the computation of the GSVD (7) of the matrix
pair {A,L}. Observe that, to determine µGCV we typically have to evaluate
G(µ) for many values of µ. However, it suffices to compute the factorizations
(7) only once, since they are independent of µ.

2.2 GCV computation in a Krylov subspace

When the matrices A and L are large, the computation of the GSVD (7)
is unattractive due to its high cost; for instance, Paige’s algorithm generally
requires at least 35.3n3 arithmetic floating point operations whenA,L ∈ Rn×n;
see [1, Table 5.1] for details. We therefore now describe a more computational
attractive approach that is based on projecting the problem into a Krylov
subspace of fairly small dimension. Our projection method extends the method
used in [19] by allowing the matrix L to be different from the identity.

Let A ∈ Rm×n and L ∈ Rr×n and let the columns of V ∈ Rn×d form an or-
thonormal basis for the Krylov subspace V of dimension 1 ≤ d� min{m,n, r},

V = Kd
(
ATA,ATbδ

)
= span

{
ATbδ, ATAATbδ, . . . , (ATA)d−1ATbδ

}
.

We assume here that d is small enough so that dim(Kd
(
ATA,ATbδ

)
) = d.

This is the generic situation. It is convenient to compute the columns of V
by applying d steps of Golub-Kahan bidiagonalization to A with initial vector
bδ. This gives the decomposition

AV = [U, ud+1]B(A), (8)

where the matrices [U, ud+1] ∈ Rm×(d+1) and V ∈ Rn×d have orthonormal
columns and B(A) ∈ R(d+1)×d is lower bidiagonal; see, e.g., [25]. We assume
that d is small enough so that this decomposition exists.

We would like to compute an approximate solution of the Tikhonov mini-
mization problem (6) in V. The restriction of the approximate solution to the
subspace V of low dimension d reduces the computational cost of significantly.
Thus, we would like to solve

x = arg min
x∈V

{∥∥Ax− bδ
∥∥2

2
+ µ ‖Lx‖22

}
.

Substituting x = V y for some y ∈ Rd into the above equation gives

y = arg min
y∈Rd

{∥∥AV y − bδ
∥∥2

2
+ µ ‖LV y‖22

}
. (9)

Substitute the QR factorization

LV = Q(L)R(L),



8 Alessandro Buccini, Lothar Reichel

where the matrix Q(L) ∈ Rr×d has orthonormal columns and R(L) ∈ Rd×d is
upper triangular, and the decomposition (8) into (9) gives

y = arg min
y∈Rd

{∥∥∥B(A)y − e1‖bδ‖22
∥∥∥2

2
+ µ

∥∥∥R(L)y
∥∥∥2

2

}
, (10)

with e1 = [1, 0, . . . , 0]T denoting the first axis vector. The projected problem
(10) is of quite inexpensive to compute and of fairly small dimension. In par-
ticular, it is feasible to compute the GSVD of the matrix pair {B(A), R(L)}
and use it to calculate an approximation of the GCV function G(µ).

3 GCV for `p-`q regularization

We describe how to combine the computations discussed in Section 2 for deter-
mining the regularization parameter by the GCV method with the algorithms
presented in [30] for minimizing the expression (2).

3.1 Solution of the `p-`q minimization problem for fixed µ > 0

For convenience of the reader, we outline the AMM-GKS method for solving
(2) proposed in [30]. Introduce a smoothed version of the q-norm ‖x‖qq for
0 < q ≤ 1 as follows. Let Φq : R→ R be defined by

Φq(t) = |t|q,

and observe that, if 0 < q ≤ 1, then t 7→ Φq(t) is not differentiable at t = 0.
We approximate Φq by the differentiable function

Φq,ε(t) =
(√

t2 + ε2
)q
, (11)

where ε > 0 is a (small) constant. Similarly, we define for x = [x1, x2, . . . , xn]T ∈
Rn the smoothed version of ‖x‖qq as

‖x‖qq ≈
n∑
i=1

Φq,ε(xi).

Finally, introduce the smoothed version of the functional that is minimized in
(2),

Jε(x) :=
1

p

m∑
i=1

Φp,ε((Ax− bδ)i) +
µ

q

r∑
i=1

Φq,ε((Lx)i). (12)

This gives us the smoothed version

x∗ := arg min
x
Jε(x)

of the minimization problem (2).
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The AMM-GKS method described in [30] is a majorization-minimization
method for computing a stationary point of the functional (12). This method
determines a sequence of iterates x(k), k = 1, 2, . . . , that converge to a station-
ary point of (12). Each iterate is computed in by two steps: first the functional
(12) is majorized by a quadratic tangent majorant x → Q(x,x(k)) for Jε at
x(k). Then the unique minimizer of x → Q(x,x(k)) is calculated. This mini-
mizer is the next iterate x(k+1). We outline this method in the remainder of
this subsection.

Definition 1 ( [30]) Consider the differentiable functional Jε(x) : Rn → R.
We say that the functional x 7→ Q(x,y) : Rn → R is a quadratic tangent
majorant for Jε(x) at y ∈ Rn if the following conditions are satisfied:

– Q(x,y) is quadratic,
– Q(x,y) ≥ J (x) for all x ∈ Rn,
– Q(y,y) = J (y) and ∇xQ(y,y) = ∇xJ (y),

where ∇x denotes the gradient with respect to the first argument of Q.

Majorization step. The quadratic tangent majorant at the point x(k) con-
structed by the AMM-GKS method is determined as follows. Let

v(k) := Ax(k) − bδ,

u(k) := Lx(k),

and compute the vectors

ω
(k)
fid := ((v(k))2 + ε2)p/2−1,

ω(k)
reg := ((u(k))2 + ε2)q/2−1,

where all the operations, including squaring, are meant element-wise. Define
the diagonal matrices

W
(k)
fid = diag(ω

(k)
fid ), W (k)

reg = diag(ω(k)
reg).

It is shown in [30] that the functional

Q(x,x(k)) =
1

2

∥∥∥(W
(k)
fid )1/2(Ax− bδ)

∥∥∥2

2
+
µ

2

∥∥∥(W (k)
reg )1/2Lx

∥∥∥2

2
+ c, (13)

with c a suitable constant that is independent of x, is a quadratic tangent

majorant for Jε at x(k); see [30] for details on the derivation of ω
(k)
fid , ω

(k)
reg, and

c.
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Minimization step. We describe the computation of the minimizer x(k+1) of
(13). SinceQ is quadratic, x(k+1) can be determined as the zero of the gradient,
i.e., by solving

(ATW
(k)
fid A+ µLTW (k)

regL)x = ATW
(k)
fid bδ. (14)

The system matrix is nonsingular and positive definite for all µ > 0 if and
only if

N (ATW
(k)
fid A) ∩N (LTW (k)

regL) = {0}.

This condition typically is satisfied. Then the solution x(k+1) of (14) is the
unique minimizer of x→ Q(x,x(k)).

The computation of the solution of (14) can be demanding when the ma-
trices A and L are large. An approximate solution can be computed efficiently
by projecting the problem into a low-dimensional subspace Vd of dimension
1 ≤ d � min{m,n, r}. Let the columns of the matrix Vd ∈ Rn×d form an
orthonormal basis for Vd and calculate the skinny QR factorizations

(W
(k)
fid )1/2AVd = QARA with QA ∈ Rm×d, RA ∈ Rd×d,

(W
(k)
reg )1/2LVd = QLRL with QL ∈ Rr×d, RL ∈ Rd×d,

where the matrices QA and QL have orthonormal columns and the matrices
RA and RL are upper triangular. Using these factorizations, we obtain the
reduced analogue of equation (14),

(RTARA + µRTLRL)y = RTAQ
T
A(W

(k)
fid )1/2bδ. (15)

The solution y(k+1) of this equation gives, with a slight abuse of notation, the
approximate solution

x(k+1) = Vdy
(k+1)

of (14). Substituting this expression into (14) gives the residual vector

r(k+1) := ATW
(k)
fid (AVdy

(k+1) − bδ) + µLTW (k)
regLVdy

(k+1).

Observe that this vector in general is nonvanishing, since we are solving (14) in
the subspace Vd of Rn. We enlarge at each step the solution subspace by adding
the scaled residual vector vnew = r(k+1)/‖r(k+1)‖ to the solution subspace.
This vector is orthogonal to the columns of the matrix Vd. Define the matrix
Vd+1 = [Vd,vnew] ∈ Rn×(d+1). Its columns form an orthonormal basis for the
new solution subspace Vd+1. The so determined solution subspace is referred to
as a Generalized Krylov subspace (GKS); see, e.g., [34] for another application
of this kind of subspaces. The computations are initialized by choosing a d0-
dimensional solution subspace of Rn and letting the columns of the matrix
Vd0 form an orthonormal basis for this subspace. Typically, setting d0 = 1
and V0 = ATbδ/

∥∥ATbδ
∥∥

2
is appropriate. An algorithm that describes these

computations and determines the regularization parameter µ by the GCV
method is described in the following subsection.
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3.2 GCV and MM-GKS

In the computations outlined in the previous subsection, the regularization
parameter is kept fixed. We now describe how a value µk of the regularization
parameter can be determined in a fairly simple manner before computing the
next approximate solution x(k+1) of (2).

Equation (15) is the normal equation associated with the minimization
problem

y(k+1) = arg min
y∈Rd

{∥∥∥RAy −QTAW
(k)
fid bδ

∥∥∥2

2
+ µ ‖RLy‖22

}
.

This minimization problem is analogous to (10). Since it stems from projecting
a large problem into a generalized Krylov subspace of modest dimension d,
the matrices RA and RL are small enough to allow the computation of the
GSVD of the matrix pair {RA, RL} at moderate expense. We therefore can
use the technique described in Section 2.1 to determine a suitable value of the
regularization parameter by GCV. In detail, let the GSVD of the matrix pair
{RA, RL} be given by

RA = UΣAY
T ,

RL = V ΣLY
T .

Similarly as in Section 2.1, we define, for any µ > 0, the quantities

r(k)
µ =

∥∥∥UTQTAbδ −Σ2
A(Σ2

A + µΣ2
L)−1UTQTAW

(k)
fid bδ

∥∥∥2

2
,

t(k)
µ = trace

(
I −Σ2

A(Σ2
A + µΣ2

L)−1
)
.

(16)

This derivation uses that both matrices RA and RL are square. We compute
the GCV parameter µ(k) as the solution of

µ(k) = arg min
µ

r
(k)
µ

t
(k)
µ

.

If the minimum is not unique, then we choose the largest one. Typically, the
minimum is unique. This is assumed in Algorithm 1, which describes the com-
putations. The parameter µ(k) is updated in each iteration.
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Algorithm 1 (The MM-GKS-GCV method) Let 0 < p, q ≤ 2. Consider
A ∈ Rm×n and L ∈ Rr×n such that (3) holds. Fix ε > 0 and k0 > 0, and
choose the initial vector x0 = ATbδ;

Generate the initial subspace basis: Vd0 ∈ Rn×d0 such that V Td0Vd0 = I.
Let d = d0. In the computed examples, we let d0 = 1 and
Vd0 = ATbδ/‖ATbδ‖;
Compute and store AV0 and LV0;

y(0) = V Td x(0);
for k = 0, 1, . . . do

v(k) = Ax(k) − bδ;

u(k) = LVdy
(k);

ω
(k)
fid := ((v(k))2 + ε2)p/2−1;

ω
(k)
reg = ((u(k))2 + ε2)q/2−1;

W
(k)
fid = diag(ω

(k)
fid );

W
(k)
reg = diag(ω

(k)
reg);

Compute the QR factorization QARA = (W
(k)
fid )1/2AVd;

Compute the QR factorization QLRL = (W
(k)
ref )1/2LVd;

Compute the GSVD of the pair {RA, RL} ;

µk = arg minµ
r(k)µ

t
(k)
µ

, where r
(k)
µ and t

(k)
µ are defined in (16);

y(k+1) = (RTARA + µRTLRL)−1RTAQ
T
A(W

(k)
fid )1/2bδ;

r = ATW
(k)
fid (AVdy

(k+1) − bδ) + µLTW
(k)
regLVdy

(k+1);
vnew = r/ ‖r‖2; Vd+1 = [Vd,vnew]; d = d+ 1;
Compute and store AVd and LVd;

x(k+1) = Vdy
(k+1);

end

Algorithm 1 requires the computation of the GSVD of the matrix pair
{RA, RL} in each iteration. Since the matrices RA and RL are not very large,
this is not very expensive.

3.3 Smoothed GCV for impulse noise

We describe a modified version of the GCV that, as we will see in Section 4, is
well suited for impulse noise. The Euclidean norm of impulse noise is infinite.
Therefore, the numerator in G(µ), see (5), may be infinite. It therefore may be
difficult to compute the minimum of G(µ). In computations in finite precision
arithmetic, the Euclidean norm of impulse noise is extremely large and this
leads to that it may be difficult to determine the minimum of G(µ). To remedy
this issue, we smooth the data vector bδ by convolving it with a Gaussian filter
with small variance. Let kν2 ∈ Rm represent a sampling of a Gaussian function
with mean zero and variance ν2, and define the smoothed vector

bδsmooth = kν2 ∗ bδ,
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where ∗ denotes the convolution operator. It is well known that if we assume
periodic boundary conditions, then convolution can be carried out easily with
the aid of the Fourier transform F. We have

F(bδsmooth) = F(kν2)� F(bδ),

where � denotes element-wise multiplication. Moreover, if bδ represents the
vectorization of a multi-dimensional array, e.g., an image, it is beneficial to let
kν2 be the vectorization of a discretized multi-dimensional Gaussian function.

Using bδsmooth we can define the smoothed version of the GCV functional
by

Gsmooth(µ) =

∥∥bδsmooth −Axµ
∥∥2

2(
trace

(
I −A (ATA+ µLTL)

−1
AT
))2 .

This functional is the standard GCV functional (5) with the data vector bδ

replaced by the smoothed data vector bδsmooth. The MM-GKS-GCV-Smooth
algorithm is obtained by minimizing Gsmooth at each iteration in Algorithm 1
instead of G.

4 Numerical examples

This section shows some numerical examples that illustrate the performance
of the proposed methods. The examples are concerned with the restoration of
images that have been contaminated by noise and space-invariant blur, as well
as with computerized tomography; see [28] for details on image restoration
and [9] for a description of computerized tomography.

We set q = 0.1 in all examples, while the value of p depends on the type
of noise the data vector bδ is corrupted by. For white Gaussian noise, we set
p = 2; for other kinds of noise, we let p = 0.8.

We would like to compute a sparse solution in the framelet domain and
therefore use a two-level framelet analysis operator as regularization operator
L. Framelets are extensions of wavelets. They are defined as follows:

Definition 2 Let W ∈ Rr×n with n ≤ r. The set of the rows of W is a
framelet system for Rn if ∀x ∈ Rn it holds

‖x‖22 =

r∑
j=1

yTj x,

where yj ∈ Rn is the j-th row of W (written as a column vector), i.e., W =

[y1, . . . ,yr]
T

. The matrix W is referred to as an analysis operator and WT

as a synthesis operator. The matrix W defines a tight frame if and only if
WTW = I.
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We remark that in general WWT 6= I, unless r = n and the framelets are
orthonormal. Note that N (W) = {0}. Therefore, property (3) holds. Tight
frames have been used in many image restoration applications including in-
painting and deblurring; see, e.g., [2–6,10–13].

We use framelets determined by linear B-splines. In one space-dimension
they are made up of a low-pass filter W0 and two high-pass filters W1 and W2,
whose masks are

w(0) =
1

2
[1, 2, 1] , w(1) =

√
2

4
[1, 0, −1] , w(2) =

1

4
[−1, 2, −1] ,

respectively. We can derive the synthesis operatorW starting from these masks
by imposing reflexive boundary conditions. These boundary conditions secure
that WTW = I. Defining

W0 =
1

4


3 1 0 . . . 0
1 2 1

. . .
. . .

. . .

1 2 1
0 . . . 0 1 3

 , W1 =

√
2

4


−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .

−1 0 1
0 . . . 0 −1 1

 ,

and

W2 =
1

4


1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 . . . 0 1 1

 .
The synthesis operator is obtained by stacking the three matrices above

W =

W0

W1

W2

 .
We can extend the operator above to two space-dimension by means of

tensor products

Wij = Wi ⊗Wj , i, j = 0, 1, 2.

This yields the analysis operator

W =


W00

W01

...
W22

 .
The matrix W00 is a low-pass filter. All the other matrices Wij contain at least
one high-pass filter in some direction. In our examples, we set L =W.
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We compare generalized cross validation with two other approaches to
selecting the regularization parameter in (2), including cross validation as de-
scribed in [8] and the discrepancy principle as discussed in [7]. We also compare
the quality of the computed solutions determined by these method with the so-
lution obtained with the optimal choice of the regularization parameter. The
latter choice of the regularization parameter is not practical, because it re-
quires that the desired solution xtrue be known; the regularization parameter
is then determined to yield a computed solution that minimizes the restoration
error

RRE(x) =
‖x− xtrue‖2
‖xtrue‖2

, (17)

where xtrue denotes the desired solution.
The method described in [7] determines a sequence of regularization pa-

rameters, in a similar fashion as in this work, by requiring that the computed
approximate solution in each iteration satisfies the discrepancy principle (DP).
To perform well, this method requires that a fairly accurate estimate of the
norm of the error ‖η‖2 in the data vector bδ be known. This norm is not
meaningful for impulse noise. Therefore, the discrepancy principle cannot be
used when bδ is contaminated by impulse noise.

Two methods for determining the regularization parameter by cross-validation
are described in [8]. The first method determines the regularization parameter
so that missing data is well predicted. This classical approach of carrying out
cross-validation is referred to as CV in the tables. The other method, which
we refer to as modified cross-validation (MCV), seeks to determine the reg-
ularization parameter so that missing entries of the computed solution are
well predicted. The MCV method typically gives approximations of the de-
sired solution xtrue of somewhat higher quality than the CV method; see [8]
for illustrations. This paper compares different parameter choice rules for the
minimization problem (2). A comparison with other methods for solving the
minimization problem (2), that require the regularization parameter to be
hand-tuned, can be found in [30,35].

The restoration error (17) and the structural and similarity index (SSIM)
are compared in our tests. The definition of the latter is somewhat involved;
here we just note that the SSIM measures how well the overall structure of an
image is recovered, and that the larger the index the better the reconstruction.
In particular, the highest value achievable is 1; see [40] for details.

For all examples we set ε = 1 in (11); see [7] for a discussion on the choice
of ε. We terminate the iterations either after 100 iterations or when∥∥x(k+1) − x(k)

∥∥
2∥∥x(k)

∥∥
2

< 10−4.

Finally, for the computations of bδsmooth, we set ν2 = 1 in all examples.
All the computations were performed using Matlab R2018b running on a

Windows 10 laptop computer with a i7-8750H @2.20 GHz CPU and 16GB of
RAM.
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(a) (b)

Fig. 2: Tomography test case: (a) True phantom (256× 256 pixels), (b) sino-
gram (90 equispaced angles in [0, π(, 362 measurements per angle, and 1%
white Gaussian noise).

Tomography. The first example considers a tomography problem. The example
is constructed with the aid of the IR Tools Matlab package [21]. The phantom
has 256×256 pixels, and we consider 90 equispaced angles in the interval [0, π(,
and 362 rays per angle. This results in a matrix A ∈ R32580×65536. We added
1% of white Gaussian noise to the sinogram, i.e., ‖η‖2 = 0.01 ‖b‖2. Since the
noise is Gaussian, we set p = 2 and, like in all considered examples, q = 0.1.
We show the true phantom and the sinogram in Figure 2.

Table 1 reports the RRE and SSIM for the computed solutions determined
by all the parameter choice rules considered in Table 1. All the rules can be
seen to perform very similarly. Obviously, the optimal parameter provides the
best reconstruction in terms of the RRE. This parameter choice rule requires
knowledge of the exact solution xtrue and therefore cannot be used in real ap-
plication. The DP provides the second best approximation of xtrue, however,
it demands knowledge of the norm of the noise η. The CV, MCV, and GCV
methods do not require any knowledge of the noise. We can observe, that al-
though the MCV method slightly outperforms the GCV method in terms of
the RRE (but not in terms of the SSIM), the GCV method demands much
less CPU time than the CV and MCV methods. This is due to the fact that
both the CV and MCV methods require several runs of the MM-GKS algo-
rithm, while the GCV method only carries out a single run. Finally, we note
that the GCV-Smooth method does not perform well. This is due to the fact
that the noise in the data bδ is purely Gaussian. The smoothing of bδ leads
to an underestimation of the amount of noise in bδ, which results in a too
small value of the regularization parameter; the computed solution is under-
regularized. These considerations are confirmed by the visual comparison of
the reconstructions shown in Figure 3.

Peppers. Our second example considers an image deblurring problem. We blur
the image in Figure 4(a) with the PSF shown in Figure 4(b), and add 25% of
impulse noise. This yields the blurred and noisy image displayed in Figure 4(c).
When we construct this example, we cut the boundaries of the blurred image
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(a) (b)

(c) (d)

Fig. 3: Tomography test case reconstructions: (a) Optimal, (b) DP, (c) GCV,
(d) GCV-Smooth.

to simulate realistic data; see [28] for more details. Since the image is generic,
we impose reflexive boundary conditions. Moreover, since the blurred image is
corrupted by impulse noise, we set p = 0.8.

We report the results obtained in Table 1. Since the noise is not Gaussian,
we cannot apply the discrepancy principle to determine the regularization pa-
rameter. However, the CV, MCV, and GCV methods can be applied. We also
report the RRE and SSIM for the optimal choice of the regularization pa-
rameter. We can see that the GCV and GCV-Smooth methods provide the
best reconstructions. In particular, the reconstruction obtained with GCV is
slightly better than the optimal one, and the one obtained with GCV-Smooth
is significantly better. While this may appear strange, it is due to the con-
struction of the generalized Krylov subspace. In particular, since the solution
subspace depends on the approximate solutions generated during the compu-
tations, the solution subspaces determined by the various methods differ, and
this may lead to different results. We remark that, while we for stationary
methods (with µ fixed) can show converge of the computed iterates, we have
no such result for the iterates determined by the CV and GCV methods. Fi-
nally, we observe that the use of the smoothed GCV function yields a very
accurate reconstruction which, in particular, is more accurate than the one
obtained with the standard GCV method. These observations are confirmed
by visual inspection of the reconstructions displayed in Figure 5.
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(a) (b) (c)

Fig. 4: Peppers test case: (a) True image (246 × 246 pixels), (b) PSF (9 × 9
pixels), (c) Blurred and noisy image (25% of impulse noise).

(a) (b)

(c) (d)

Fig. 5: Peppers test case reconstructions: (a) Optimal, (b) MCV, (c) GCV,
(d) GCV-Smooth.

Cameraman. The last example describes another image deblurring problem.
We consider the exact image in Figure 6(a) and blur it with the PSF in Fig-
ure 6(b). Adding 20% of salt-and-pepper noise produces the blurred and noisy
image in Figure 6(c). As in the previous example, we cut the boundary of
the blurred image to simulate realistic data. In view of that the image is
generic, we impose reflexive boundary conditions. Since the PSF is quadran-
tically symmetric, the matrix A obtained can be diagonalized by the discrete
cosine transform. Because LTL = I, we therefore could avoid the application
of generalized Krylov subspaces in the MM-GKS method. However, for consis-
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(a) (b) (c)

Fig. 6: Cameraman test case: (a) True image (252 × 252 pixels), (b) PSF
(12× 12 pixels), (c) Blurred and noisy image (20% of salt and pepper noise).

tency we use the same approach as in the previous examples. Since the noise
is not Gaussian, we set p = 0.8, similarly as in the example above.

Table 1 shows the RRE and SSIM values obtained with the different pa-
rameter choice rules. We observe that the GCV and GCV-smooth methods
provide more accurate approximations of xtrue in terms of RRE, than both the
CV and MCV, for a much lower computational cost. Moreover, the RRE ob-
tained with the GCV method is close to the optimal one, and the RRE for the
restoration determined by the GCV-Smooth method is significantly smaller.
Figure 7 displays the obtained reconstructions. Visual inspection shows that
the reconstruction obtained with the GCV-Smooth method is very detailed,
but “grayish”. The latter is due to the presence of some pixels, whose values
are significantly larger than 255 (which is the value corresponding to white,
the value 0 corresponds to black), which causes a rescaling before plotting.
Projecting the reconstruction orthogonally into the cube [0, 255]n gives the
image in Figure 8. We can observe that the gray-scale level is now correct and
the reconstruction is very close to the original image.

5 Conclusions

We propose the GCV method for choosing the regularization parameter for the
`p-`q regularization method. This method is easy to implement and computa-
tionally fairly inexpensive thanks to that the original minimization problem
(2) is projected into a generalized Krylov subspace of small to moderate size.
A comparison with some other available methods shows that the proposed
approach is competitive and provides accurate approximations of the desired
solution. Moreover, the proposed approach is completely automatic and does
not need hand-tuning of any parameter. Thus, it can be considered for real
world applications.
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(a) (b)

(c) (d)

Fig. 7: Cameraman test case reconstructions: (a) Optimal, (b) MCV, (c) GCV,
(d) GCV-Smooth.

Fig. 8: Cameraman test case reconstruction obtained using the MM-GKS-
GCV-Smoothed method and projecting the approximation into the cube
[0, 255]n.
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Table 1: RRE, SSIM, and CPU time in seconds obtained with the different
choice rule for the regularization parameter considered.

Test case Choice rule RRE SSIM CPU time (sec.)

Tomograpy

Optimal 0.19614 0.58851 5.975
DP 0.19897 0.62124 7.345
CV 0.20239 0.53228 1.012 × 103

MCV 0.19687 0.57299 2.072 × 103

GCV 0.19945 0.55018 8.605 × 101

GCV-Smooth 0.28796 0.32062 1.036 × 102

Peppers

Optimal 0.10166 0.76351 1.164 × 101

CV 0.18149 0.58044 9.570 × 102

MCV 0.15015 0.64031 1.847 × 103

GCV 0.099600 0.74446 9.375 × 101

GCV-Smooth 0.077343 0.81442 8.915 × 101

Cameraman

Optimal 0.092446 0.84164 1.121 × 101

CV 0.16119 0.64255 1.050 × 103

MCV 0.12752 0.75052 2.020 × 103

GCV 0.098815 0.73118 1.182 × 102

GCV-Smooth 0.047421 0.93320 9.317 × 101
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