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Linear ill-posed problems often are analyzed in function spaces using tools from functional analysis, while their numerical
solution typically is computed by first discretizing the problem and then applying tools from finite-dimensional linear algebra.
The Chebfun package makes it possible to solve linear ill-posed problems without explicit discretization. This work discusses
the use of Tikhonov regularization with a fairly general linear regularization operator within the Chebfun framework.
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1 Introduction

We are interested in determining an approximate solution of least-squares problems of the form

min
x∈L2(Ω1)

∥∥∥∥∫
Ω1

κ(s, t)x(t) dt− gδ(s)
∥∥∥∥

Ω2

, (1)

where Ωi is a subset of Rdi equipped with the standard L2-norm and di is a small positive integer for i ∈ {1, 2}. The kernel κ
is assumed to be square integrable and the function gδ represents available data that are contaminated by measurement error.
This kind of problems arise in numerous applications including remote sensing, fluid mechanics, signal processing, and image
restoration.

Let gexact denote the unavailable error-free function that is associated with gδ and let xexact denote the solution of minimal
norm of ∫

Ω1

κ(s, t)x(t) dt = gexact(s), s ∈ Ω2, (2)

where we tacitly assume that the above equation is consistent. This is required in order to be able to apply the discrepancy
principle to determine a regularization parameter introduced below. If equation (2) is not consistent, then the discrepancy
principle should not be used; we will comment on this situation below.

We are interested in determining an accurate approximation of xexact when only an approximation gδ of the function gexact

is known. The approximation of xexact is computed by determining a suitable approximate solution of (1).
A frequently used example of equation (1) that arises in image restoration is when the kernel models Gaussian blur, that is

when

κ(s, t) =
1√

2πσ2
exp

(
(s− t)2

2σ2

)
. (3)

Then Ω1 = Ω2 are rectangles in the plane, and the solution x(t), t ∈ Ω1, of (1) represents a grayscale image. The kernel
models the blurring of the unavailable exact grayscale image that is represented by xexact(t), t ∈ Ω1, and which we would
like to determine. In this application, the kernel often is referred to as a point-spread function. In particular, the parameter
σ > 0 determines how much the image is blurred. The function gδ(s), s ∈ Ω2, represents an available blurred and noisy
image, while gexact(s), s ∈ Ω2, defined by (2) with x(t) = xexact(t) represents an unavailable blurred, but noise-free image.
The difference gδ − gexact models the noise in the available image gδ . In many image restoration applications, the noise is
white Gaussian. Note that κ is smooth; in particular κ is square integrable. The computation of an approximation of the exact
image xexact by determining an approximate solution of (1) is commonly referred to as deconvolution.

Straightforward solution of (1) generally yields a poor approximation of xexact due to significant propagation of the noise
in gδ into the computed solution. To discuss how an accurate approximation of xexact can be computed, it is convenient to
define the integral operator

(Ax)(s) =

∫
Ω1

κ(s, t)x(t) dt.
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Due to the fact that κ is square integrable, the integral operator does not have a bounded inverse. This follows from the
Riemann-Lebesgue lemma, which shows that A cos(2πmt) is arbitrarily small for m sufficiently large. However, the maxi-
mum of | cos(2πmt)| for 0 ≤ t ≤ 1 is 1. This result indicates that small perturbations (e.g., errors) in the data function gδ

may give rise to large changes in the computed solution of (1). This makes the solution of (1) a so-called ill-posed problem;
see [9, 15] for details on the Riemann-Lebesgue lemma and its ramification.

Tikhonov regularization [28] aims to reduce the sensitivity of the solution of (1) to the noise in gδ by replacing the mini-
mization problem (1) by the penalized least-squares problem

min
x∈L2(Ω1)

{∥∥Ax− gδ∥∥2

Ω2
+ µ‖Lx‖2Ω1

}
, (4)

where L is a linear regularization operator and µ > 0 is a regularization parameter. This parameter balances the relative
influence of the two terms in (4).

We will consider the situation when L is a differential operator chosen so that the null spaces of A and L intersect trivially.
Then (4) has a unique solution xµ for any µ > 0; see [15]. The Tikhonov regularization problem (4) is said to be in standard
form when L is a multiple of the identity; otherwise, the problem is in general form.

There are several approaches to determine a suitable value of µ; see, e.g., [9, 15, 19, 20, 26, 27]. They typically require the
solution of (4) for several µ-values. For instance, when the discrepancy principle is used to determine µ, one seeks to find the
unique value of µ > 0 so that the solution xµ of (4) satisfies∥∥Axµ − gδ∥∥2

Ω2
= η2δ2, (5)

where δ is an upper bound for the norm of the error ‖gexact − gδ‖Ω2
, which is assumed to be available, and η > 1 is a

user-specified parameter that is independent of δ; see [9]. The solution of (5) for µ > 0 (which determines xµ) requires a
zero-finder and the repeated solution of (4) for different µ-values. We will use the discrepancy principle in the computed
examples presented below.

Another popular method for determining a suitable value of µ > 0 is furnished by the L-curve criterion. This criterion
seeks to determine the point on the curve

µ→
(

ln
∥∥Axµ − gδ∥∥Ω2

, ln ‖Lxµ‖Ω1

)
, µmin ≤ µ ≤ µmax,

with largest curvature. This requires the solution of (4) for several values of µ. The curve obtained typically is L-shaped with
the “corner” of the “L” corresponding to a suitable value of µ; see [4, 17] for further details. The determination of an fairly
accurate location of the “corner” generally requires that the minimization problem (4) be solved for several µ-values. We
hasten to add that this approach of determining a suitable value of µ often gives useful results, but may fail to do so for some
problems; see Kindermann [19] for a discussion. But we note that when equation (2) does not hold, i.e., when gexact is not in
the range of the operator A, the discrepancy principle should not be used to determine µ. In this situation other techniques,
such as the L-curve criterion, generalized cross validation, or the method described by Park et al. [26] can be employed.

The standard way of solving (4) is to first discretize the operatorsA and L, and then compute the generalized singular value
decomposition (GSVD) of the pair of matrices so obtained; see, e.g., [8, 13, 15] for a description of this approach. Having
computed the GSVD, the left-hand side of (5) can be evaluated quite rapidly for different µ-values.

Solving Tikhonov regularization problems in general form is more costly than the solution of Tikhonov regularization
problems in standard form. However, the extra flexibility provided by using an operator L different from the identity often
gives computed approximations of xexact of higher quality. In the standard form problem, the solution xµ is pushed towards
0, while the solution of a problem in general form with L a differential operator pushes the solution towards being smooth.
Generally, the regularization operator L should be chosen so that known important features of the desired solution xexact are
not damped. For instance, if xexact(t) is known to be an increasing real-value function of a real variable t, then it may be
appropriate to let L be a second order differential operator, say L = d2/dt2, whose nullspace include constant and linear
functions. In the continuous setting, the most common regularization operators different from the identity are differential
operators [9,12]; in the discrete setting many techniques for constructing suitable regularization matrices have been proposed.
Their construction uses finite difference approximations of derivatives [5, 11, 15, 21], orthogonal projections [22], reordering
of the unknowns [3, 25], the solution of minimization problems [7, 24], and the solution of an inverse problem [23].

We are interested in solving (4) by using the MATLAB package Chebfun [6]. This package approximates functions by
piece-wise polynomials anchored at translated Chebyshev points. These piece-wise polynomials are referred to as chebfuns.
All computations within Chebfun’s framework are carried out with these approximations of actual functions. A user does not
explicitly have to choose how to define the chebfuns; this is done by the Chebfun package. In particular, a user can work with
(approximations of) functions and operators without initial explicit discretization. Illustrations of the solution of minimization
problems (4) in standard form when using Chebfun can be found in [1]. The main advantage of applying Chebfun, when
compared to the standard solution approach of discretizing the equation (4) first, is that it allows a user to carry out the
computations in a way that feels closer to the theory for ill-posed problems. In particular, a user does not have to choose a
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suitable discretization before starting to solve the problem. This is advantageous, because it is not always straightforward to
determine how fine the discretization should be chosen. We note that using a discretization that is unnecessarily fine makes
the solution process needlessly expensive. Computed examples reported in [1] illustrate that discretization first may for some
problems require more CPU time than the regularization first approach implemented with Chebfun. The regularization first
approach provides us with suitable ansatz functions for the discretization and makes the subsequent discretization simpler.
However, we should mention that Chebfun only simulates the regularization first approach, since the approximation by piece-
wise polynomials employed by Chebfun itself is a form of discretization. Thus in the end we replace the standard solution
approach

Discretization→ Regularization

by

Hidden discretization by replacing f by a chebfun→ Regularization→ Discretization.

The last discretization stems from the fact that the computed solution is expressed in terms of a finite sum of functions, each
of which is represented by a chebfun. It is important to note that when using Chebfun, a user does not have to explicitly
discretize the problem; all discretizations are furnished by Chebfun. This lends a user of Chebfun the impression of working
with functions and operators.

This work is concerned with the solution of (4) in general form. A difficulty to overcome is that Chebfun, at least for now,
does not have an implementation of an analogue of the GSVD.

2 A solution method

Chebfun can be applied to compute the singular value expansion of the kernel

κ(s, t) =
∑̀
i=1

σiφi(s)ψi(t),

where the singular functions {φi}`i=1 are orthogonal in Ω2, the singular functions {ψi}`i=1 are orthogonal in Ω1, and the
number of terms, `, is determined by Chebfun. Details on how Chebfun computes the singular value expansion can be found
in [29]. Typically, ` ≤ 100; see [1] for illustrations.1 We seek to determine an approximate solution of (4) of the form

x(t) =
∑̀
i=1

βiψi(t). (6)

That is, we are using the span of the singular functions {ψi}`i=1 as ansatz space for the solution of the problem (1). The
coefficients βi are determined by the function gδ in (1). We ignore solution components that cannot be represented by the
expansion (6).

For definiteness, let Ω1 and Ω2 be bounded intervals on the real axis and letL be the second derivative operator. Substituting
(6) into (4), and using the fact that standard L2 norms are used, gives

min
β


∫

Ω2

∣∣∣∣∣∣
∫

Ω1

k(s, t)

∑̀
j=1

βjψj(t)

 dt− gδ
∣∣∣∣∣∣
2

ds+ µ

∫
Ω1

∣∣∣∣∣∣
∑̀
j=1

βjLψj(t)

∣∣∣∣∣∣
2

dt

 , (7)

where β = [β1, . . . , β`]
T . The functions ψ(2)

j (t) = Lψj(t) easily can be computed with the Chebfun command diff, which

computes the derivative of a function. Note that the functions ψ(2)
j (t) do not form an orthogonal set. We obtain from (7) the

new minimization problem

min
β

∑̀
i=1

β2
i σ

2
i − 2

∑̀
i=1

βiσi

∫
Ω2

φi(s)g
δ(s) ds+

∫
Ω2

∣∣gδ∣∣2 ds+ µ
∑̀
i=1

∑̀
j=1

βiβj

∫
Ω1

ψ
(2)
i (t)ψ

(2)
j (t) dt

 .

1 Chebfun only computes a truncated approximation of the singular value expansion with a tolerance chosen by the user, we choose 10−16. Thus, within
the computation of the singular value expansion lies another hidden regularization known as truncated SVD (TSVD); see [14] for details.
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We will use matrix notation to simplify this problem. Define

Σ = diag[σ1, . . . , σ`] ∈ R`×`,

gδφ = [gδφ,i]
`
i=1, gδφ,i = σi

∫
Ω2

φi(s)g
δ(s) ds,

Ψ = [Ψij ]
`
i,j=1, Ψij =

∫
Ω1

Lψi(t)Lψj(t) dt.

Then the minimization problem (7) can be written as

min
β

{
βTΣ2β − 2βT gδφ + µβTΨβ

}
.

Its minimum is the solution of the linear system of equations(
µΨ + Σ2

)
β = gδφ. (8)

This system has to be solved repeatedly to determine a value of µ such that the associated solution xµ satisfies (5); the
sequence of the computed µ-values are determined by a zero-finder, such as Newton’s method, applied to equation (5). The
matrix µΨ + Σ2 is symmetric positive definite for any µ > 0. Moreover, this matrix is not very large. Therefore, we can solve
the system repeatedly for different µ-values by Cholesky factorization of the matrix in (8); we remark that each new µ-value
requires that a new Cholesky factorization be computed. Alternatively, we can compute the GSVD of the matrix pair {Ψ,Σ2}.
With the latter decomposition available, it is inexpensive to solve the system (8) repeatedly for several µ-values.

3 Model problems and numerical experiments

We present two computed examples that illustrate the performance of the method described above. The first computed example
is an integral equation (1) with

κ(s, t) =
√
s2 + t2, gexact(s) =

1

3
((1 + s2)3/2 − s3),

and solution xexact(t) = t. Here Ω1 = Ω2 = [0, 1]. This example was first used by Fox and Goodwin [10]. The other example
is an integral equation (1) defined by

κ(s, t) =
d

(d2 + (st)2)3/2

with d = 0.25 and Ω1 = Ω2 = [0, 1]. The solution xexact(t) = sin(πt) + 0.5 sin(2πt) is given and defines the right-hand side
function gexact(s) by (2). This problem is described in [30]; it is often referred to as gravity; see, for instance, [16].

The functions gexact in the examples are assumed not to be known, but associated error-contaminated functions gδ , defined
by

gδ = gexact(s) + δ
‖gexact(s)‖Ω2

‖F (s)‖Ω2

F (s),

are assumed to be available. Here the function F (s) is a smooth Chebfun function, generated with the Chebfun command
randnfun(ϑ,Ω2), with maximum frequency about 2π/ϑ and standard normal distribution N(0, 1) at each point. The
parameter δ > 0 specifies the noise level. In the computed examples, we let ϑ = 10−2.

Figures 1 and 2 display the computed solutions xµ(t) as well as the desired solutions xexact(t) for the test problems
with L being the differential operator d2/dt2. The computed solutions can be seen to be very close to the desired solution
for both test problems. When, instead, L is the identity operator, the computed solutions are less close to xexact(t). This is
illustrated in Figure 3, which compares the quality of the computed approximations xµ(t) of xexact(t) determined by Tikhonov
regularization in both standard and general forms. The accuracy of the computed approximate solution xµ(t) is measured by
the relative error

RE =
‖xexact(t)− xµ(t)‖Ω1

‖xexact(t)‖Ω1

. (9)

Figure 3 shows that the use of the second derivative operator instead of the identity operator can improve the quality of the
computed approximate solutions significantly.

We finally note that Chebfun performs the best when Ω1 and Ω2 are intervals. It is possible to apply Chebfun when the sets
Ωi are rectangles and the kernel has special structure. This is illustrated in [1]; see below for comments on the limitations of
Chebfun.
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Fig. 1: Example—“Fox-Goodwin”, δ =1.00 e−2.
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Fig. 2: Example—“Gravity”, δ =1.00 e−3.
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Fig. 3: Comparison of the quality of the computed solutions by Tikhonov regularization in standard and general forms. The green stars
represent the relative error when Tikhonov regularization is applied with L as the identity for different values of level noise δ. The red circles
represent the relative error when Tikhonov regularization is applied with L as the second derivative for different values of level noise δ.

4 Conclusions and extensions

In this short paper we discussed the solution of Tikhonov regularization in general form with the aid of Chebfun. The numerical
experiments illustrate that this approach is capable of computing accurate approximations of the desired exact solution xexact

of ill-posed problems despite the fact that the available data function gδ is contaminated by error. The examples show that the
quality of the computed solutions xµ can be much higher when L is a differential operator than when L is the identity. This
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has been illustrated in the literature before both in infinite-dimensional and finite-dimensional settings, and is the reason for
our interest in Tikhonov regularization in general form.

The approach described in this paper is restricted by two limitations of Chebfun. Currently it is not possible to compute a
GSVD with Chebfun. It is our understanding that at least for two-dimensional kernel functions it is possible to add a GSVD
function to Chebfun with limited effort. Secondly, it is currently not possible to use Chebfun when the kernel function is a
general function in four or six dimensions. Such kernel functions arise necessarily for two- and three-dimensional domains
Ωi. This limitation is harder to overcome and we do not expect Chebfun to include such capabilities anytime soon. The latest
extension, called Chebfun3 [18], introduced three dimensional Chebfuns.

There is a package similar to Chebfun for Julia called ApproxFun [2]. It may be possible to overcome some of Chebfun’s
limitation within the framework of ApproxFun. We plan to investigate this.
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